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In recalling how he came to photograph the mathematical objects, 
Man Ray stated !atly that he “didn’t understand a thing, but the 
shapes were so unusual, as revolutionary as anything that is being 
done today in painting or in sculpture.” 1 Mark Green, Professor of 
Mathematics Emeritus and a founding director of the Institute for 
Pure and Applied Mathematics at the University of California, Los 
Angeles, has devoted his career to investigating fundamental ques-
tions of geometry, questions whose origins trace back to the very 
surfaces illustrated by the models that served as Man Ray’s subjects. 
"is interview probes the kind of thinking that brought these forms 
into existence and their place in the history of mathematical models, 
from the Platonic solids of ancient Greece to the mathematical mod-
els used by physicists to describe the shape of the universe.

What do you see when you look at these objects? Do you see 
mathematics? Do you see equations? 
It depends on which model it is. "ere are ones for which the math-
ematics jumps out at you and for other ones it’s much more just the 
beauty of the shape or the interest of the shape that is striking. It 
is not easy to describe a geometric object using words. "e model 
of the cyclide of Dupin [#g. 84], which is a surface I had studied at 
some point, has a lot of mathematics that you can see rather quickly. 
"e curves drawn on the plaster surface represent the so-called lines 
of curvature,2 and it’s interesting that they are all circles. Another 
property of this surface is that, despite having a hole in the mid-
dle, no matter how you cut it with a plane or a sphere you can only 
cut it into at most two pieces. Other properties—for example, that 
it is conformally equivalent to the torus—are also visual though 
harder to describe in nontechnical terms. It’s a very beautiful thing 
mathematically. Looking at some of the models of minimal sur-
faces—shapes whose surface area is minimized with respect to some 
conditions—there’s also a certain feel to that shape, a tension, which 
derives from the geometric property that de#nes it.3

 
When you think about a mathematical surface, like the ones 
you just described, what do you have in mind? Does your mind’s 
eye hold an image resembling these models? Or is it something 
completely else?
A lot of what mathematicians who do geometry, particularly 
algebraic geometry, need to do is to visualize these surfaces not the 
way they appear here. René Descartes, and independently Pierre 
de Fermat, had the radical idea to describe geometric objects by 
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equations. Once you do that, the entire language of algebra is 
available for describing geometry. On the other hand, features of the 
geometry are sometimes hidden—to see all of them one needs to add 
the square root of –1 to the usual numbers.4 "is added numerical 
dimension of the imaginary numbers, as they’re called, corresponds 
to an extra spatial dimension. Many things we study are naturally 
four-dimensional objects. Of course, we cannot, as mathematicians, 
see in four dimensions, but we can visualize some things indirectly, 
and we kind of have to. 

You mention the beauty or interest of the shape of these objects. 
What draws you to some objects of study more than others? Do 
mathematical objects have an emotional capacity?
I think what attracts me is really the inner harmony and the o'en 
very subtle mathematical properties that they’re displaying. "e 
universe in general, the more you understand it the more in awe you 
are of many di(erent parts of it, and o'en these shapes are a part of 
that. If string theory turns out to be correct, then in very, very tiny 
scales certain of these algebraic surfaces will have been shown to be 
the basis for most of the fundamental properties of matter.

Is one of the models that Man Ray photographed relevant to 
string theory?
Indirectly, yes. "e Kummer surfaces [#g. 66] that Man Ray 
photographed belong to a class of algebraic surfaces called K3 
surfaces.5 "is class has been further generalized to a family of 
six-dimensional objects called Calabi-Yau spaces. According to 
string theory, there are supposed to be six curled-up dimensions in 
addition to the four dimensions of space-time that exist in the world, 
and these extra dimensions are occupied by Calabi-Yau spaces. 
At the time Man Ray was photographing, this was certainly very 
far from people’s minds. But the idea that geometric things were 
fundamental to the universe has been around for a very long time.

At least as early as the ancient Greek era.
Plato was fascinated by geometry, especially with the regular 
solids—the Greeks knew that there are exactly #ve: the cube, the 
triangular pyramid, the octahedron, the dodecahedron, and the 
icosahedron [#g. 85]. In the Timaeus, the dialogue in which Plato 
gives his version of the origin of the universe, he speculated that the 
four “elements” out of which the world was thought to be made—
#re, air, earth, and water—were composed of bodies shaped like 
one of these—for example, earth was composed of cubes. "e one 
regular solid that was le' over was subsumed by Aristotle’s #'h 
element, “aether,” a substance that was conveniently to be found only 
in the celestial realm. Aristotle derived some properties of matter 
from the belief that everything was made of triangles. Now we 
would, of course, consider these incorrect derivations of properties, 

4 "e square root of –1 is usually 
denoted by the symbol i. For 
example, the equation 1 = z4 has two 
real number solutions z = –1 and 
z = 1 and two “hidden” imaginary 
solutions z = –i and z = i. 

5 For an example and more detail 
about K3 surfaces, see “A Kummer 
Surface,” p. 100.

1 Man Ray, 1961 Interview.

[ fig. 85 ] !e "ve Platonic solids: tetrahedron, cube, octahedron, dodecahedron, 
icosahedron

2 "ink of the surface from the 
point of view of a golfer on a rolling, 
treeless green. Typically, the green 
will bend away from the golfer by 
di(erent degrees depending on what 
direction he or she is looking. "e 
directions in which the bending 
or curvature is maximized or 
minimized are called the principal 
directions. A line of curvature is a 
path in the surface that at all times 
travels in a principal direction. For 
example, the lines of curvature of 
a cylinder consist of the straight 
lines in the cylinder that are parallel 
to the axis of the cylinder and the 
circles forming the circumference of 
the cylinder. 

3 See #g. 61 for an illustration 
of a minimal surface known as 
Enneper’s minimal surface. Another 
way to model examples of minimal 
surfaces is to dip a bent wire into 
soapy water. "e #lm stretching 
across the wire when it is li'ed out 
of the water will approximate a 
minimal surface. 

[ fig. 84 ] Mathematical Objects, 1934–35. Gelatin silver print
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but the idea that geometry lay behind fundamental properties of 
the universe has come back, big time, over the years, for example in 
the theory of general relativity and string theory where it is quite 
fundamental. I consider it a great irony that while the universe 
that we all live in is not directly made of triangles as far as we 
know, almost all the things we construct in the virtual world in the 
computer are made of triangles. So, perhaps Plato is somewhere 
feeling very ful#lled about having been right.

It is surprising to hear that you see these models as relevant to 
research today. !e impression I’ve gotten from seeing them 
gather dust in various mathematics libraries and departments 
is that they are obsolete. Have you ever used them in your own 
research or teaching?
When I was young, I used to spend some time as a visitor in the 
math department at Harvard, and I was sharing an o.ce with a 
bunch of these models, and they do gather dust. I don’t think I’ve 
used them in a course. Today, one can draw them on the computer 
and animate their motion so that you can see them reasonably well 
without physically rendering them. So in that sense, the technology 
is obsolete, but the objects themselves have become, if anything, 
more fundamental.

If physical models no longer serve a role in the professional 
training of a mathematician, how are students expected to develop 
their geometric intuition? As graduate students we became 
familiar with particular images here and there, but it wasn’t 
systematic in any way. We were never advised to learn computer 
graphics programming, for example.
Certain courses, like di(erential geometry, have traditionally served 
this role. My experience of di(erential geometry was through a very 
abstract formalization, which was the popular way to learn it when I 
was a graduate student at Princeton. When I went to Berkeley, where 
Shiing-Shen Chern was, the much more traditional presentation 
involving curves and surfaces in Euclidean three-dimensional 
space was the norm.6 And I got to teach that course, and it had a 
lasting impact on me in terms of how I could see things and think 
about things. Now, I think the use of geometric visualization in 
graph theory, or the mathematical study of networks, has become 
very important. For example, in bioinformatics you will see many, 
many pictures that are just ways of visualizing interrelationships 
between many, many things there, whether it is the reconstructions 
of phylogenetic trees, the microarray data relating di(erent genes to 
di(erent tumors or di(erent types of cell cycle. . .

So, would you say visualization has become a discipline in its  
own right?
Well, it is a discipline in its own right. Of course it is used in 
many di(erent ways, but, yes, there are visualization centers. It’s 
unquestionable that the ability to visualize certain things has 
allowed discovery, and when you can’t do it, you’ve hindered your 
discovery. I think in some ways visualization is more alive and well 

6 Shiing-Shen Chern (1911–2004) 
was a leading #gure in the #eld of 
di(erential geometry, which applies 
concepts of calculus to studying 
problems of shape. His work has had 
lasting impact in both pure mathe-
matics and theoretical physics.

in applied math. When you have data that really sits in thousands 
of dimensions, you can’t visualize it initially. You have to #gure out 
a way to reduce the dimensionality, or #nd some properties in an 
automatic way. On the pure side, a group at MIT recently achieved a 
sort of visualization of a complex form of mathematical symmetry, 
known as the exceptional simple Lie algebra E8.7

Man Ray is rather explicit about his not having any particular 
interest or expertise in mathematics. But an awareness of 
mathematical questions seems to have found its way into his 
subconscious. He told an interviewer, “One day I had a dream I 
had discovered the solution of the squaring of the circle. How to 
transform a square into a circle. I made a circle from string and 
then I pulled on it with four "ngers to make four corners and it 
became a square. Mathematically it’s not possible. Except: I won’t 
justify my dream through logic! It must remain mysterious.” 8
Early in my career, I was one of the people my department knew 
would be willing to talk to people who called about geometry, and 
some very nice guy who—I think he was working at an aerospace 
company—had thought he had trisected an angle.9 I tried to explain 
what the question meant. "at there are these certain rigid rules, 
and if you broke the rules, it wasn’t hard to trisect an angle. But if 
you didn’t break them, then it was just known to be theoretically 
impossible. At some point he said to me, “But I’ve been working on 
it so long.” I felt really terrible. I think when mathematicians say 
that something is impossible, there’s this certain kind of person who 
really wants to rise to the challenge, and, of course, sometimes the 
rules are very arti#cial.

Are there mathematical "elds or points in their historical 
development of mathematics that from your perspective function 
in ways similar to the avant garde or Surrealism? 
"e advent of truly abstract mathematics in the early twentieth 
century created a very di(erent way of looking at things and a 
di(erent sense of what was important. It brought about a newfound 
sense of freedom. Being really original was valued in Surrealism 
perhaps more than in almost any other movement. Overall, in 
mathematics we value originality greatly, but at certain times and 
certain places it’s been especially valued. I think some of the more 
uncharted areas of mathematics now, like machine learning or 
complex systems, have more the feeling of Surrealism. "e ability to 
build a machine to learn to do important things yet without being 
able to know how the computer does it and what it was exactly that 
it learned, these have a little bit the !avor of Surrealism. Cantor’s 
theory of in#nity is probably another good analogy to Surrealism.10 
"e idea that there are distinct levels of in#nity, that, for example, 
the numbers corresponding to the points along a number line are 
more numerous than the counting numbers 1, 2, 3, . . . At #rst sight, 
it’s so counterintuitive.

7 Somewhat surprisingly, this 
achievement was picked up by the 
mainstream media. "e New York 
Times characterized E8 as an object 
that “describes the symmetries of a 
57-dimensional object that can in es-
sence be rotated in 248 ways without 
changing its appearance.” Kenneth 
Chang, “"e Scienti#c Promise of 
Perfect Symmetry,” New York Times, 
March 20, 2007.

8 Irmeline Lebeer, “Man Ray 
Fautographe,” L’Art vivant, no. 44 
(November 1973), 24; translation by 
the author. "e problem of “squar-
ing the circle” is to construct, by 
means of (mathematically idealized) 
compass and straightedge, a square 
that is equal in area to a given circle. 
In 1882, the challenge was proven to 
be impossible.

9 Another geometry challenge from 
the Ancients, trisecting (dividing 
equally in three) an arbitrary angle 
by compass and straightedge was 
proven to be impossible in 1837.

10 A leading mathematician 
of the early modern era, Georg 
Cantor (1845–1918) believed that 
the “essence of mathematics lies 
entirely in its freedom.”


