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THE OZSVÁTH-SZABÓ AND RASMUSSEN CONCORDANCE
INVARIANTS ARE NOT EQUAL

By MATTHEW HEDDEN AND PHILIP ORDING

Abstract. In this paper we present several counterexamples to Rasmussen’s conjecture that the
concordance invariant coming from Khovanov homology is equal to twice the invariant coming from
Ozsváth-Szabó Floer homology. The counterexamples are twisted Whitehead doubles of (2, 2n + 1)
torus knots.

1. Introduction. In [18] Ozsváth and Szabó defined a smooth concordance
invariant, denoted τ (K), whose value for the (p, q) torus knot provided a new
proof of Milnor’s famous conjecture on the unknotting number of torus knots.
Rasmussen independently discovered this invariant in his thesis, [25]. Milnor’s
conjecture has a long history in gauge theory, and its original proof is due to
Kronheimer and Mrowka, [9]. Recently, however, Rasmussen [26] discovered
another smooth concordance invariant whose value for torus knots proves the
conjecture. Denoted s(K), the invariant is defined using a refinement, due to Lee
[10], of the purely combinatorial knot (co)homology theory introduced by Kho-
vanov [7]. Rasmussen’s proof of the Milnor conjecture using s is the first proof
which avoids the analytical machinery of gauge theory. It was noted immediately
that the two invariants share several formal properties (e.g. an inequality relating
the invariants of knots which differ by a crossing change) which in turn imply
that they agree (or more precisely, that s(K) and 2τ (K) agree) for many knots.
For instance, s(K) = 2τ (K) for the following families of knots:

(1) Torus knots: s(K) = 2τ (K) = 2g(K) where g(K) denotes the Seifert genus
of K. This is due to Rasmussen [26] for s and Ozsváth and Szabó [21] for τ .

(2) Alternating knots: s(K) = 2τ (K) = σ(K) where σ(K) is the classical
Murasugi-Trotter signature of K. This is due to Lee [10] for s, and Ozsváth and
Szabó [17] for τ .

(3) Strongly quasipositive knots, in particular positive knots: s(K) = 2τ (K) =
2g(K). This is due to Livingston, [11]. See also [28].

(4) Quasipositive knots: s(K) = 2τ (K) = 2g4(K), where g4(K) denotes the
smooth slice genus of K. This follows from work of Plamenevskaya [23] for τ
and from Plamenevskaya [24] and Shumakovitch [30] for s. See also [5].
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t – 3

Figure 1. The t-twisted positive Whitehead double of the right-handed trefoil. The box indicates the number
of full right-handed twists to insert.

(5) Knots with up to 10 crossings. See [4], [25], [18].
(6) “Most” twisted Whitehead doubles of an arbitrary knot, K. This is due to

Livingston and Naik [13].
(7) Fibered knots with τ (K) = g(K). This follows from work of the first

author [5].
Indeed, it was conjectured that the two invariants always coincide:

Conjecture. (Rasmussen [26]) s(K) = 2τ (K) for any knot K.

In light of the above list, the formal properties that the two invariants share,
and several other striking connections between Khovanov’s homology theory and
Ozsváth-Szabó theory [14], [22], [27], [29], there was justified hope that the above
conjecture could be true. However, we will demonstrate a counterexample:

THEOREM 1.1. Let D+(T2,3, 2) denote the 2-twisted positive Whitehead dou-
ble of the right-handed trefoil knot (see Figure 1). Then τ (D+(T2,3, 2)) = 0 while
s(D+(T2,3, 2)) = 2.

Livingston and Naik [13] calculate τ and s for all but finitely many twisted
Whitehead doubles of a knot, K, in terms of the maximal Thurston-Bennequin
number of K, TB(K), and its reflection, K. In particular, they show that τ (D+(K, t))
= s(D+(K, t))/2 = 1 if t ≤ TB(K) and τ (D+(K, t)) = s(D+(K, t))/2 = 0 if
t ≥ −TB(K). In light of an inequality satisfied by τ and s under the opera-
tion of a crossing change, they define an invariant (which the results of this
paper indicate is actually two invariants) tτ (K) (resp. ts(K)) which is the greatest
integer t such that τ (D+(K, t)) = 1 (resp. s(D+(K, t)) = 2). Using the techniques
for the calculation above, we are able to determine tτ (K) for the (2, 2n + 1) torus
knots:
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THEOREM 1.2. Let D+(T2,2n+1, t) denote the t-twisted positive Whitehead double
of the the (2, 2n + 1) torus knot. Then we have:

τ (D+(T2,2n+1, t)) =

{
0 for t > 2n− 1

1 for t ≤ 2n− 1.

Thus, tτ (T2,2n+1) = 2n − 1. In fact, the above knots provide further coun-
terexamples, as was shared with us by Jake Rasmussen, who used Bar-Natan’s
program [1] for computing Khovanov homology to calculate s for the knots in the
above family which are not covered by Livingston and Naik’s result. In particular,

s(D+(T2,5, 5)) = s(D+(T2,5, 4)) = s(D+(T2,7, 8))

= s(D+(T2,7, 7)) = s(D+(T2,7, 6)) = 2,

while Theorem 1.2 implies that τ = 0 for these knots. It seems likely that White-
head doubles of the (2, 2n + 1) torus knots provide an infinite family of coun-
terexamples. Indeed, it would be reasonable to guess that ts(T2,2n+1) = 3n− 1.

In another direction, by taking connected sums of the above examples and
performing a band modification of the natural Seifert surface, Livingston was
able to obtain an example of a topologically slice knot, K, for which the two
invariants disagree, thus proving the following:

COROLLARY 1.3. (Livingston [12]) Let Cts denote the subgroup of the smooth
concordance group of knots consisting of those knots which are topologically slice.
Then the homomorphisms

s, τ : Cts → Z

are independent.

We prove the above results first by calculating the knot Floer homology
groups of a specific twisted Whitehead double which happens to be a (1, 1) knot. A
general technique for calculating the Floer homology of such knots was developed
by Goda, Morifuji, and Matsuda [4] and we apply their technique here. We then
use results of Eftekhary [3] for the 0-twisted Whitehead double of T2,2n+1, together
with properties of the skein exact sequence for knot Floer homology to calculate
τ for the examples above. The techniques here will be refined and generalized
in [6] to calculate τ and the Floer homology of an arbitrarily twisted Whitehead
double of an arbitrary knot (in fact, [6] will prove that tτ (K) = 2τ (K) − 1). We
also remark that (1, 1) satellite knots were classified by Morimoto and Sakuma
in [15], and it was in the context of a more general study of these knots that this
work arose. We hope to return to this study (see also [16]).

There is a beautiful conjectural picture due to Dunfield, Gukov, and Ras-
mussen, [2] of a triply graded homology theory which would unify Khovanov
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homology, knot Floer homology, and the various sl(n) link homology theories
of Khovanov and Rozansky [8]. It would be very interesting to understand this
conjecture for the above examples—in particular it would be useful to calculate
the sl(n) link homology.

Acknowledgments. We are very grateful to Hiroshi Goda, Charles Liv-
ingston, Hiroshi Matsuda, Peter Ozsváth, Zoltán Szabó, and Jake Rasmussen
for many stimulating discussions during the course of this work. We owe special
thanks to Jake for computing s for the examples in this paper.

2. Computation. In this section we compute s and τ for the examples dis-
cussed in the introduction. Before beginning, we remark that for the purposes
of demonstrating a counterexample to Rasmussen’s conjecture, the computation
of s is much simpler. Indeed, Bar-Natan and Shumakovitch [1], [31] have in-
dependently developed computer programs which can compute the unreduced
Khovanov homology of D+(T2,3, 2) without difficulty. Using their programs we
obtained the following Poincaré polynomial for this homology (where the t vari-
able corresponds to the homological grading and the q variable to the Jones, or
quantum, grading):

PKh(q, t) = q−5t−4 + q−1t−3 + q−1t−2 + qt−1 + q3t−1 + 2q + q3 + q5 + 2q5t

+ q5t2 + q9t2 + q7t3 + q9t3 + q7t4 + q11t4 + q9t5 + q11t5 + q13t6

+ q13t7 + q15t8 + q17t8 + q19t9.

The only homology in homological grading 0 is supported in q gradings
1, 3, 5. It follows from the definition of s that s(D+(T2,3, 2)) is equal to 2 or 4.
However, the fact that the genus of D+(T2,3, 2) is equal to one and |s(K)| ≤ 2g4(K)
implies s(D+(T2,3, 2)) = 2.

Thus the difficulty lies in the computation of τ (D+(T2,3, 2)) and this task will
occupy the remainder of the paper. Our strategy will readily extend to compute τ
for all twisted doubles of the (2, 2n + 1) torus knots. We find it interesting to note
that while the computation of s(D+(T2,3, 2)) was easily handled by computer we
see no way to approach a general computation of s for arbitrary twisted doubles
of the (2, 2n + 1) torus knots. Hence the results of the present paper serve to
highlight the dichotomy between the quantum and gauge theoretic invariants.

2.1. Computation of τ . Recall that the knot Floer homology groups are
a collection of abelian groups graded by two variables, i and t, indexed by the
integers. The t variable is the homological, or Maslov grading and is analogous
to the t grading for the Khovanov homology discussed above. The i variable
is the Alexander, or filtration grading and is analogous to the q grading above.
Its name stems from the fact that if one restricts one’s attention to a single i
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grading, the Euler characteristic of the knot Floer homology of K will be the i-th
coefficient of the symmetrized Alexander-Conway polynomial. See [19] for more
details. Throughout the rest of the paper all homology will be taken with Z/2Z-
coefficients, and we will denote this coefficient field by F. Hence all homology
groups will be vector spaces and this will simplify some of the discussion. We
use the notation Fk

(t) to denote a Z/2Z vector space of dimension k, supported

in homological grading t. The symbol ĤFK(K, i) denotes the direct sum over all
homological gradings of the knot Floer homology groups supported in Alexander
grading i.

In the following proposition we calculate the knot Floer homology groups of
D+(T2,3, 6), the 6-twisted positive Whitehead double of the right-handed trefoil.
For notational simplicity we use D(t) to mean the t-twisted positive Whitehead
double of the right-handed trefoil.

PROPOSITION 2.1.

ĤFK(D(6), i) ∼=


F4

(1) ⊕ F2
(−1) for i = 1

F9
(0) ⊕ F4

(−2) for i = 0

F4
(−1) ⊕ F2

(−3) for i = −1

Remark. Note that τ (D(6)) = 0. There is simply no homology in grading 0
supported in filtration grading 1 or −1.

Proof. We first apply the technique developed in [4] for obtaining a genus one
doubly-pointed Heegaard diagram from a (1, 1) presentation to the knot at hand,
D(6). This is illustrated in Figure 2. Following the technique which Ozsváth and
Szabó introduced in Section 6 of [19] (and which was further developed by [4]),
we lift this genus one diagram to the universal cover, Figure 3, and compute the
boundary map:

∂[x1, i, i] = 0

∂[x2, i, i + 1] = [x1, i, i] + [x5, i− 1, i− 1]

∂[x3, i, i] = [x2, i− 1, i] + [x4, i, i− 1]

∂[x4, i, i− 1] = [x1, i− 1, i− 1] + [x5, i− 2, i− 2]

∂[x5, i, i] = 0

∂[x6, i, i + 1] = [x5, i, i] + [x9, i, i]

∂[x7, i, i] = [x6, i− 1, i] + [x8, i, i− 1]

∂[x8, i, i− 1] = [x5, i− 1, i− 1] + [x9, i− 1, i− 1]

∂[x9, i, i] = 0

∂[x10, i, i + 1] = [x9, i, i] + [x13, i, i]
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α

β

α

α α

(a) (b)

(c)

(f)

(d)

(e)

Figure 2. Construction of a doubly-pointed Heegaard diagram (f) for the Whitehead double D(6) of the trefoil,
from a (1, 1) presentation (a).

∂[x11, i, i] = [x10, i− 1, i] + [x12, i, i− 1]

∂[x12, i, i− 1] = [x9, i− 1, i− 1] + [x13, i− 1, i− 1]

∂[x13, i, i] = 0

∂[x14, i, i + 1] = [x13, i, i] + [x17, i, i]

∂[x15, i, i] = [x14, i− 1, i] + [x16, i, i− 1]

∂[x16, i, i− 1] = [x13, i− 1, i− 1] + [x17, i− 1, i− 1]
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x1 x3 x5 x22 x24

x2 x4 x25x23x21

α~

β~

Figure 3. The Heegaard diagram of the previous figure, lifted to the universal cover of the torus. We have
chosen a particular lift of α and β, as indicated. The open circles denote lifts of the basepoint z while the
black circles denote lifts of w.

∂[x17, i, i] = 0

∂[x18, i, i + 1] = [x17, i, i] + [x21, i, i]

∂[x19, i, i] = [x18, i− 1, i] + [x20, i, i− 1]

∂[x20, i, i− 1] = [x17, i− 1, i− 1] + [x21, i− 1, i− 1]

∂[x21, i, i] = 0

∂[x22, i, i + 1] = [x25, i, i] + [x21, i− 1, i− 1]

∂[x23, i, i] = [x22, i− 1, i] + [x24, i, i− 1]

∂[x24, i, i− 1] = [x25, i− 1, i− 1] + [x21, i− 2, i− 2]

∂[x25, i, i] = 0.
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Table 1.

−3 −2 −1 0 1

1 x2, x22 x6, x10,
x14, x18

0 x1, x3, x5, x7, x9, x11, x13,
x23, x25 x15, x17, x19, x21

−1 x4, x24 x8, x12,
x16, x20

Using our knowledge of the differential, it is easy to separate the generators of
the chain complex into their respective filtration and homological gradings. In
Table 1 the vertical (horizontal) direction indicates the filtration (homological)
grading. The proposition follows immediately.

Next we recall the following result of Eftekhary:

THEOREM 2.2. (Eftekhary [3])

ĤFK(D(0), 1) ∼= F2
(t) ⊕ F2

(t−1),

where the subscript (t) indicates that the homological grading is known only as a
relative Z-grading.

By performing six successive crossing changes to the twisting region of the
knot diagram shown in Figure 1, we can change D(6) into D(0). Each of these
operations changes a negative crossing to a positive crossing. Recall that Theorem
10.2 of [19] (see also [25]) asserts that associated to a crossing change there are
skein exact sequences for knot Floer homology (for each i):

· · · −→ ĤFK(K−, i)
f1−→ ĤFK(S1 × S2,κ(K0), i)

f2−→ ĤFK(K+, i)
f3−→ · · · ,

where the maps f1 and f2 lower homological grading by one-half and f3 is non-
increasing in the homological grading. Here K− is the knot with negative crossing,
K+ is the knot with positive crossing, and K0 is the two-component link obtained
by resolving the crossing. More precisely, Section 2 of [19] describes a well-
defined way to associate a knot (S1 × S2,κ(L)) to a two-component link (S3, L)
and (S1 × S2,κ(K0)) is this “knotification” of the link obtained from resolving
the crossing. We also note that Ozsváth and Szabó define an absolute Z/2Z
homological grading on the groups in the above sequence which is simply the
parity of the homological grading. With respect to the Z/2Z grading, the maps
f1 and f3 are grading-preserving, while f2 is grading-reversing. Note that the
underlying three-manifold in the middle term is S1×S2, which has Floer homology
graded by half integers, {−1

2 + n}n∈Z. The absolute Z/2Z grading for ĤFK(S1×
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S2,κ(K0)) is determined by the convention that 1
2 + 2n is odd while −1

2 + 2n is
even.

Thus the remaining step in our computation of τ (D(2)) will be to study the
skein exact sequences associated to the six aforementioned crossing changes.
These exact sequences relate the Floer homology groups of D(t), D(t−1) and the
two-component link obtained from the oriented resolution of the crossing which
we change. For each t, this link is the positive Hopf link, which we denote by
H. The Floer homology of the knotification of H is given by:

PROPOSITION 2.3.

ĤFK(S1 × S2,κ(H), i) ∼=



F( 1
2 ) if i = 1

F2
(− 1

2 )
if i = 0

F(− 3
2 ) if i = −1

0 otherwise.

Proof. This was originally proved in Proposition 9.2 of [19], but also fol-
lows easily from [17], whose main theorem determines the Floer homology of
alternating links in terms of their Alexander polynomial and signature.

In light of the above, we see that the exact sequence for the top filtration
level takes the following form:

· · · −−−→ ĤFK(D(t), 1)
f1

−−−→ F( 1
2 )

f2
−−−→ ĤFK(D(t − 1), 1)

f3
−−−→ · · ·

It follows at once that there are two options for each skein sequence:
(1) f2 = 0, f1 
= 0
(2) f2 
= 0, f1 = 0
We make the following claim:

PROPOSITION 2.4. In the exact sequence above relating D(t), D(t − 1) and H,
f2 
= 0 if and only if τ (D(t − 1)) = 1. Otherwise τ (D(t − 1)) = 0.

Remark. It follows independently from the work of Livingston and Naik [13]
that τ (D(t)) is equal to 0 or 1.

Proof. The proposition will follow from the fact that f2 is the lowest order term
in a filtered chain map, f̃2, between chain complexes which are chain homotopy
equivalent to ĈF(S1 × S2) and ĈF(S3), respectively.

To begin, note that the Floer homology groups for H (resp. D(t − 1)) are
endowed with an induced differential which gives them the structure of a filtered
chain complex. Moreover, this differential strictly lowers the filtration index. In
the case of H, the homology of this filtered chain complex is ĤF(S1 × S2) ∼=
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F(− 1
2 ) ⊕ F( 1

2 ). In the case of D(t − 1), the homology is ĤF(S3) ∼= F(0). The

filtration on the knot Floer homology of D(t − 1) induces a filtration on ĤF(S3)
in the standard way, i.e. the filtration level of any cycle, z = Σnxx, is by definition
the maximum filtration level of any chain x which comprises z. Now τ (D(t− 1))
is defined to be the minimum filtration grading of any cycle z ∈ ĤFK(D(t − 1))
which is homologous to a generator of ĤF(S3).

It follows from the proof of the skein sequence (Theorem 8.2 of [19]) that
there is a filtered chain map

f̃2: ĤFK(S1 × S2,κ(H))→ ĤFK(D(t − 1)).

The map f̃2 decomposes as a sum of homogeneous pieces, each of which lower
the filtration by some fixed integer. The map in the skein sequence is the part of
f̃2 which preserves the filtration.

From Proposition 2.3 we see that a chain generating ĤFK(S1×S2,κ(H), 1) ∼=
F( 1

2 ) is a cycle under the induced differential, and hence the above discussion

implies that f̃2 maps this chain to a cycle, z ∈ ĤFK(D(t − 1)). Now if f2 is non-
trivial, z contains nontrivial chains with filtration index 1. The definition of τ ,
together with the fact that ĤFK(D(t−1), i) ∼= 0 for i > 1 implies τ (D(t−1)) = 1.

Now on the level of homology, f̃2 induces a map:

ĤF(S1 × S2) ∼= F(− 1
2 ) ⊕ F( 1

2 )

(f̃2)∗
−−−→ ĤF(S3) ∼= F(0)

which sends the space supported in grading one-half to the generator. If τ (D(t−
1)) = 1, the cycle generating ĤF(S3) contains nontrivial chains in filtration level
1. It follows that f2—the part of f̃2 which preserves the filtration—is nontrivial.

Finally, if τ (D(t)) = −1, a similar analysis shows that f̃1 restricted to
ĤFK(D(t),−1) would raise the filtration grading, contradicting the fact that this
map respects the filtration.

The above proposition shows that the map f2 in the skein sequence con-
trols the behavior of τ (D(t − 1)). We determine when f2 is nontrivial in the six
applications of the sequence:

LEMMA 2.5. The map f2: ĤFK(H, 1) → ĤFK(D(t − 1), 1) is trivial for t =
6, 5, 4, 3 and nontrivial for t = 2, 1.

Theorem 1.1 will follow immediately from the above lemma and Proposi-
tion 2.4. Indeed, it follows easily from the proof that τ (D(t)) = 0 if t > 1 and
τ (D(t)) = 1 if t ≤ 1.
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Proof. We study the function

e(t) = rkevenĤFK(D(t), 1)

which measures the rank of the Floer homology in top filtration level supported
in even homological grading.

We claim that if f2 is nontrivial then e(t − 1) = e(t) + 1 and if f2 is trivial
then e(t − 1) = e(t). This follows from the form of the skein sequence at hand,
together with the knowledge that f1 and f3 preserve the Z/2Z-grading while f2
reverses it. From Proposition 2.1 and Theorem 2.2 we have e(6) = 0 and e(0) = 2.
Thus our claim shows that among the six applications of the skein sequence, f2
is nontrivial exactly twice.

Next, recall that τ (and s) satisfy the following inequality under the operation
of changing a crossing in a given knot diagram (see [11] or [18] for a proof):

τ (K+)− 1 ≤ τ (K−) ≤ τ (K+),

where K+ (resp. K−) denotes the diagram with the positive (resp. negative) cross-
ing. Now each application of the skein sequence arose from changing a single
negative crossing to a positive crossing. Hence the above inequality becomes (for
k > 0):

τ (D(t − k))− k ≤ τ (D(t)) ≤ τ (D(t − k)).

If f2 were nontrivial for some t and trivial for t − k, then Proposition 2.4
would imply τ (D(t−1)) = 1 and τ (D(t− k−1) = 0 violating the inequality. Thus
f2 is trivial for t = 6, 5, 4, 3 as stated, and nontrivial for t = 2, 1.

2.2. Twisted Whitehead doubles of (2, 2n+1) torus knots. Let D+(T2,2n+1, t)
denote the t-twisted positive Whitehead double of the right-handed (2, 2n+1) torus
knot. Results of [15] indicate that the D+(T2,2n+1, 4n+2) is a (1, 1) knot, and indeed
we can repeat the calculation of Proposition 2.1 to yield:

PROPOSITION 2.6.

ĤFK(D+(T2,2n+1, 4n + 2), i)

∼=


F2n+2

(1) ⊕ F2
(−1) ⊕ F2

(−3) · · · ⊕ F2
(−2n+1) for i = 1

F4n+5
(0) ⊕ F4

(−2) ⊕ F4
(−4) · · · ⊕ F4

(−2n) for i = 0
F2n+2

(−1) ⊕ F2
(−3) ⊕ F2

(−5) · · · ⊕ F2
(−2n−1) for i = −1.

In addition, Eftekhary’s [3] results in this case yield:
THEOREM 2.7.

ĤFK(D+(T2,2n+1, 0), 1) ∼= F2n
(t) ⊕ F2

(t−1) ⊕ F2
(t−3) . . .⊕ F2

(t−2n+1).
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The technique for computing τ in the case of the trefoil can now be applied
to yield Theorem 1.2.
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