
From Copycat to Metacat:

Developing a Self-Watching Framework

for Analogy-Making

James B. Marshall

Center for Research on Concepts and Cognition

Department of Computer Science

Indiana University

Bloomington, Indiana 47408 USA

marshall@cs.indiana.edu

Abstract

This paper describes Metacat, an extension of the Copycat computer model of
uid

concepts, high-level perception, and analogy-making. Copycat models the complex

interplay between concepts and perception that gives rise to the
exible human abil-

ity to see apparently-dissimilar situations as being \the same". A key feature of the

architecture is the emergence of statistically robust high-level behavior from the inter-

actions of many small, low-level, nondeterministic processing agents. Metacat focuses

on extending the architecture in a way that permits it to create rich representations

of the analogies it makes. This involves incorporating a long-term memory into the

architecture, along with a \self-watching" ability, so that the program can recognize,

remember, and recall patterns that occur in its own processing as it solves analogy

problems. Using this higher-order \meta-level" information, analogies can be com-

pared and contrasted in an insightful way, allowing Metacat to understand and explain

its answers in a way that Copycat cannot.

1 Introduction

This paper describes Metacat, an extension of the Copycat computer model of analogy-

making and high-level perception originally developed by Hofstadter & Mitchell [Hofstadter,

1984, Mitchell, 1993, Hofstadter and FARG, 1995]. The main goal of the Copycat project

was to develop a computational model of cognition in which
uid concepts play a central

role. Metacat builds on Copycat's
uid conceptual machinery by incorporating mechanisms

for self-watching and episodic memory into Copycat's architecture. The goal of Metacat is to

increase the program's \awareness" of its own behavior as it solves analogy problems, which

1

in turn allows it to gain deeper insights into the analogies it makes. A detailed exposition

of the Copycat program can be found in [Mitchell, 1993] and [Hofstadter and FARG, 1995].

In this paper, we give just a brief summary of Copycat and then outline the main ideas of

Metacat, illustrating them in more detail by way of several examples.

Copycat operates within a restricted, yet surprisingly rich, microdomain consisting of

short strings of letters, where each letter-string can be thought of as representing some ab-

stract, idealized situation. The program perceives analogies between di�erent situations by

building up an understanding of the situations in terms of various concepts about the letter-

string world that it understands. Copycat's concepts are not static entities with sharply

delineated boundaries. Rather, their boundaries are inherently fuzzy, overlapping each other

to varying degrees, and changing according to the contextual pressures at hand. The dy-

namic,
uid nature of Copycat's concepts is intended to model the remarkably
exible human

ability to perceive apparently dissimilar things as being in fact \the same" when viewed at

some appropriate level of description.

2 The Copycat Model

Consider the following typical Copycat problem: \If abc changes to abd, how does mrrjjj

change in an analogous way?" There are many defensible answers to this problem, includ-

ing mrrkkk, mrrjjk, mrrjjd, mrrddd, mrrjjj, mrsjjj, mrdjjj, mrrjjjj, mrrkkkk, or

even abd or abbddd. Clearly, some of these answers are more obvious than others, and the

obvious ones may not be the most aesthetically satisfying ones, but there is no single demon-

strably \correct" answer. In fact, a range of answers is possible for almost any imaginable

problem in this microworld. The apparent simplicity of Copycat's domain is deceptive, for

it remains a formidable challenge to develop a computational model capable of exhibiting a

level of
exibility and creativity comparable to human behavior even in this tiny, restricted

domain.

When Copycat is given an analogy problem to work on, it starts out with the letter-

strings in its Workspace, the architectural component of the program in which all perceptual

processing occurs. Small, nondeterministic processing agents called codelets notice relations

among the individual letters, and build new structures around them that serve to organize

the letters into a coherent high-level picture. All processing occurs through the collective

actions of many codelets working in parallel, at di�erent speeds, on di�erent aspects of an

analogy problem, without any centralized executive process controlling the course of events.

The stochastic behavior of codelets is dynamically biased by the time-varying pattern of

activation in the program's network of concepts, called the Slipnet, that it uses to build

up an understanding of an analogy problem. In turn, this context-dependent pattern of

conceptual activity in the Slipnet is itself an emergent consequence of codelet processing.

2

For example, in order to discover an answer to the problem \abc) abd; mrrjjj)

?", codelets work together to build up a strong, coherent mapping between the initial string

abc and the target string mrrjjj, and also between the initial string and the modi�ed string

abd. Within each letter-string, codelets attempt to build hierarchical groups, e�ectively

organizing the strings (that is, the raw perceptual data) into coherent, chunked wholes. In

mrrjjj, for example, codelets might build the \sameness-groups" rr and jjj, causing the

sameness-group concept in the Slipnet to become activated, which in turn makes it more

likely for the program to regard m as a \sameness-group" of length one within the context

of the other groups in its string. A higher-level \successor-group" comprised of m, rr,

and jjj encompassing the entire string can then be built based on the concept of length

(i.e., 1{2{3) rather than on letter-category (i.e., m{r{j). Consequently, the letter-category-

based successor-group abc can be mapped as a whole onto the length-based successor-group

mrrjjj, representing the recognition of these strings as instances of the same concept, even

though their surface resemblance is negligible. The distributed nature of codelet processing

interleaves the chunking process with the mapping process, and as a result each process

in
uences and drives the other.

A mapping consists of a set of bridges between corresponding letters or groups that play

respectively similar roles in di�erent strings. Each bridge is supported by a set of concept-

mappings that together provide justi�cation for perceiving the objects connected by the

bridge as corresponding to one another. For example, a bridge might be built between c

in abc and jjj in mrrjjj, supported by the concept-mappings rightmost) rightmost and

letter) group, which represents the idea that both objects are rightmost in their strings,

and that one is a letter and the other a group. Non-identity concept-mappings such as

letter) group are called slippages, and form the basis of Copycat's ability to perceive

super�cially-dissimilar situations as being the same.

Once a strong, coherent mapping has been built between the initial string and the mod-

i�ed string, another type of structure, called a rule, may get created based on this mapping

that succinctly describes the way in which the initial string changes into the modi�ed string.

There are often several possible ways of describing this change, some more abstract than oth-

ers. For example, two possible rules for abc)abd are Change letter-category of rightmost

letter to successor and Change letter-category of rightmost letter to d.

Di�erent ways of looking at the initial/modi�ed change, combined with di�erent ways

of building the initial/target mapping, give rise to di�erent answers. The con�guration of

structures in the Workspace collectively represents the way in which a given analogy problem

is interpreted; that is, the way in which its strings are perceived in relation to one another. A

particular interpretation implies a particular answer for the problem. To produce an answer,

the slippages underlying the initial/target mapping are used by codelets to \translate" the

rule describing the initial/modi�ed change into a new rule that applies to the target string.

For example, if the abc)abd change is described according to the �rst rule above, and

3

the abstract successor-group similarity between abc and mrrjjj has been noticed, then the

rule will be translated as Change length of rightmost group to successor, yielding the answer

mrrjjjj. On the other hand, if this similarity has not been noticed, the answers mrrkkk,

mrrjjk, mrrddd, or mrrkkd may be found instead, depending on the rule chosen and

whether or not c in abc is seen as corresponding to the jjj group or to just the rightmost

letter j in mrrjjj.

As this example suggests, Copycat's stochastic processing mechanisms enable it to �nd a

range of di�erent answers for a given analogy problem. For many problems, the distribution

of answers that it �nds agrees reasonably well with the answers typically found by people.

Furthermore, Copycat attaches a rough numerical measure of \quality" to the answers it

�nds, which, for many problems, corresponds reasonably well to human judgments of relative

answer quality. But the program has very little awareness of how it actually �nds the

answers that it �nds. It has almost no insight into its own processing mechanisms|
uid and

exible though they may be|which guide it through the \space" of possible interpretations

of an analogy problem (i.e., the possible ways of building up the mappings between the

strings). This is not too surprising, however, since Copycat was intended to be a model of the

subcognitive mechanisms underlying cognition. All of the nondeterministic codelet activity

occurring in the Workspace|the building of bridges and groups, the making of slippages,

and so on|is intended to represent perceptual activity carried out at the subcognitive level,

below the level of \conscious awareness". In contrast, the focus of Metacat is on developing

mechanisms that support a higher \cognitive" level on top of Copycat's subcognitive level.

To do this, Metacat needs to be able to \watch" and remember what happens while its

subcognitive mechanisms are building, destroying, and recon�guring Workspace structures

in pursuit of an answer to the problem at hand, and to build explicit representations of this

lower-level perceptual activity.

3 The Main Objectives of Metacat

In Chapter 7 of [Hofstadter and FARG, 1995], Hofstadter outlines several important objec-

tives for Metacat. Here we brie
y review some of these objectives and then discuss in greater

detail how they are addressed in the current Metacat architecture.

3.1 Comparing and contrasting answers

The central objective of Metacat is to increase the program's understanding of its answers

to the point where it can give at least a limited explanation of an answer's strengths and

weaknesses relative to other answers it has previously found. Metacat should be able to

4

recognize and explicitly represent the most important issues involved in an answer. For

example, the essence of the mrrjjjj answer for the problem \abc) abd; mrrjjj) ?"

lies in seeing both abc and mrrjjj as successor-groups, one based on the idea of letter-

category and the other based on the idea of group-length. The recognition of such an abstract

similarity between the strings is what fundamentally distinguishes the answer mrrjjjj from

other, more straightforward answers such as mrrkkk, mrrjjk, or mrrddd, in which the

hidden \successorship fabric" ofmrrjjj remains unnoticed. Although Copycat ratesmrrjjjj

substantially higher on its numerical answer-quality scale than it rates the other answers,

it nevertheless remains unable to explain why it judges this answer to be better than the

others. It simply has no insight into what makes mrrjjjj a better answer. Metacat needs to

be able to create rich characterizations of its answers that can serve as a basis for comparing

and contrasting them in an insightful way.

The ability to compare answers based on their key underlying similarities and di�erences

essentially amounts to the ability to make analogies between analogies, since each answer

itself represents an analogy between a particular set of situations (i.e., letter-strings). With

rich enough answer characterizations, Metacat ought to be able to notice when two answers

resemble one another in the same way that two other answers resemble each other, thereby

creating a higher-order \meta-level" analogy involving four \�rst-order" analogies.

3.2 Remembering answers

In order to compare and contrast answers, Metacat necessarily needs to be able to remember

more than one at a time. In Copycat, answers are not retained after they are found. When

Copycat discovers an answer to a problem, it simply reports the answer, along with the

answer's numerical measure of quality, and then quits. On subsequent runs of the same

problem, no recollection of previous answers is possible, so there is no way for the program to

bring its past experience to bear on its current situation. This makes comparison of di�erent

answers impossible, either within a single analogy problem or across di�erent problems. In

contrast, Metacat should remember the answers it �nds, along with the characterizations of

their key underlying ideas, gradually building up in its memory a repertoire of experience

on which it can draw when confronted with new situations. A new analogy problem, if

su�ciently similar to some other problem already stored in memory, should remind Metacat

of the previously encountered problem. Once activated, the previous situation can then

be compared with the current one, possibly in
uencing the interpretation of the current

situation as a consequence.

5

3.3 Self-watching

In addition to remembering the individual answers it �nds, Metacat should keep track of

patterns that occur in its own processing while it is trying to discover new answers. As it

works on an analogy problem, it should create an explicit sequential trace of its own behavior

as it searches through the space of possible interpretations leading to di�erent answers. This

type of memory is of a more short-term, temporal nature than that just described for the

answers themselves. Such a self-watching ability would enable Metacat not only to remember

the important events that led it to �nd an answer, but also to recognize when it has fallen

into a repetitive or otherwise unproductive pattern of behavior. Recognizing that it is in a

\rut" should enable it to subsequently \jump out of the system" by explicitly focusing on

ideas other than the ones that seem to be leading it nowhere. This type of self-awareness

pervades human cognition. People can easily pay attention to patterns in their own thinking

[Chi et al., 1989, VanLehn et al., 1992].

3.4 Understanding a given answer

Finally, once Metacat has the ability to characterize the answers it �nds in terms of their key

underlying ideas, it ought to be able to characterize other answers suggested to it by some

outside agent. In other words, Metacat should not only be able to come up with answers to

analogy problems on its own, it should also be able to justify answers on their own terms,

even if the program itself didn't come up with them. This constitutes an ability to \work

backwards" from a given answer toward an insightful characterization of the answer, in order

to understand why it makes sense. Once an answer has been understood in this way, it can

then be compared and contrasted with other answers that the program has either itself

discovered previously, or been shown by someone else.

4 From Copycat to Metacat

The remainder of this paper describes the general framework in which the preceding ideas

are addressed in the current Metacat architecture. Metacat is an extension of the Copycat

model|not an alternative model designed to supplant it. Consequently, Metacat's archi-

tecture includes all of Copycat's main architectural components, such as the Workspace,

the Slipnet, and the mechanisms that support distributed, nondeterministic codelet process-

ing. Furthermore, the mechanisms for building bridges and creating rules have been greatly

extended and generalized in Metacat. Unlike Copycat, however, Metacat incorporates a

memory for its answers, which allows it to remember several di�erent answers during a sin-

gle run on a given analogy problem. Whenever it �nds a new answer, instead of simply

6

quitting, Metacat pauses temporarily to display the answer along with the groups, bridges,

rules, slippages, and other Workspace structures that gave rise to it. Together these struc-

tures represent a way of interpreting the analogy problem that yields the answer just found.

All of this information, including the problem itself, is then packaged together and stored

in Metacat's memory, after which the program continues searching for alternative answers

to the problem. Gradually, over time, a series of answers accumulates in memory, each one

containing much more information than just the answer string itself. Each stored answer

represents a di�erent way of looking at or making sense of an analogy problem.

The most important auxiliary information stored with answers, however, consists of other

types of structures called themes. Themes reside in Metacat's Themespace, and represent

key concepts underlying the mappings created between letter-strings. They serve as the

basis for Metacat's high-level characterizations of its answers, which it uses to compare and

contrast answers with each other. Themes are comprised of Slipnet concepts, and can take

on various levels of activation, depending on the extent to which the ideas they represent

are present or absent in a particular con�guration of Workspace structures.

As an example of how the similarities and di�erences between analogy problems can be

characterized in terms of Metacat's themes, consider the problem \abc) abd; xyz) ?".

In the letter-string domain, a has no predecessor and z has no successor. The alphabet

is explicitly designed not to \wrap around" from z back to a, so a straightforward answer

based on taking the successor of z in xyz is impossible. One is forced to adopt a di�erent

strategy as a result of this constraint. One way out is simply the literal-minded answer xyd.

On the other hand, if the symmetry between the \opposite" letters a and z is noticed, then

the answer wyz suggests itself, based on seeing abc and xyz as \mirror images" of each

other starting at opposite ends of the alphabet, with abc going to the right based on the

idea of successorship and xyz going to the left based on predecessorship. This answer is very

elegant, and most people see it as being strongly analogous to abd, even though it is not at

all obvious at �rst.

Figure 1 shows Metacat's �nal Workspace con�guration after it has found the answer xyd.

In this interpretation of the problem, the strings abc and xyz are seen as mapping onto

each other in a straightforward, left-to-right fashion: letters with identical string-positions

are linked by vertical bridges supported by the concept-mappings leftmost) leftmost, mid-

dle)middle, and rightmost) rightmost. Furthermore, the strings abc and abd are mapped

onto each other in a similar fashion, as shown by the horizontal bridges across the top. The

literal-minded way of viewing the abc)abd mapping is represented by the rule Change

letter-category of rightmost letter to d. In the absence of any conceptual slippages, this rule

gets applied unchanged to xyz, yielding the answer xyd. This interpretation of the problem

relies on (1) seeing abc and xyz as going in the same direction; (2) seeing abc and abd as

going in the same direction; and (3) seeing abc as changing to abd in a literal way rather

than in a more abstract way (i.e., such as Change letter-category of rightmost letter to suc-

7

Figure 1: Metacat's interpretation of the problem \abc) abd; xyz) ?" yielding the

answer xyd, showing the various Workspace structures involved.

8

cessor). These are the central ideas underlying the answer xyd. Metacat represents these

ideas explicitly as themes in its Themespace (not shown). The �rst idea is represented by a

\vertical" Direction:Same theme; the second idea by \top" Direction:Same theme; and the

third idea by a Rule:Literal theme. These themes get created in the Themespace|and then

activated|by structure-building activity occurring in the Workspace as Metacat gradually

builds up its interpretation of the problem. For example, as more vertical bridges are built

in support of a same-direction mapping between abc and xyz, the vertical Direction:Same

theme becomes more strongly activated. Once the xyd answer has been found, the most

strongly-activated themes get stored in memory along with the answer, and together they

constitute the answer's high-level thematic characterization.

In contrast, Figure 2 shows the Workspace after the answer wyz has been found. In this

interpretation, abc and xyz are mapped onto each other in a crosswise fashion. The strings

are thus seen as going in opposite directions, one starting with a and the other starting

with z. In addition, a �rst) last slippage supports the a{z bridge, which represents the

idea that the alphabetic-�rst letter a is seen as corresponding to the alphabetic-last letter z.

The abc)abd mapping, however, is the same as before, except that it is now described by

the more abstract rule Change letter-category of rightmost letter to successor. The crosswise

vertical mapping causes this rule to be translated as Change letter-category of leftmost letter

to predecessor, yielding the answer wyz. The crux of interpreting the problem this way

involves (1) noticing the alphabetic-position symmetry between the letters a and z; (2)

seeing abc and xyz as going in opposite directions, which is a consequence of (1); (3)

seeing abc and abd as going in the same direction; and (4) seeing abc as changing to

abd in an abstract, non-literal way. The thematic characterization of wyz thus consists

of the vertical themes Alphabetic-position:Opposite and Direction:Opposite, the top theme

Direction:Same, and the rule theme Rule:Abstract.

A related problem is \rst) rsu; xyz) ?". Essentially the same arguments that applied

in the previous problem can be applied to this problem, yielding the answers xyu and wyz.

Seeing the answer xyu is based in part on seeing rst and xyz as going in the same direction,

while the answer wyz depends on seeing them as going in opposite directions. However,

in this problem there really is no compelling justi�cation for seeing rst and xyz as going

in opposite directions, unlike in the previous case of abc and xyz, with their strong a{z

symmetry. Indeed, the presence or absence of alphabetic-position symmetry is the crucial

di�erence between the two wyz answers. Everything else about them is the same: both

involve (1) seeing abc and xyz (or rst and xyz) as going in opposite directions; (2) seeing

abc and abd (or rst and rsu) as going in the same direction; and (3) seeing the abc)abd

(or rst) rsu) change in an abstract, non-literal way. The relative lack of justi�cation for

seeing the answer wyz in the second problem tends to diminish its overall quality. While

arguably better than xyu, wyz is not nearly as superior to xyu as was wyz to xyd in

the �rst problem. In short, xyd and xyu play essentially identical roles in their respective

9

Figure 2: Metacat's Workspace after having found the answer wyz

10

Problem/Answer Vertical Themes Top Themes Rule Theme

abc) abd; xyz) wyz Alpha-Pos:Opposite Direction:Same Rule:Abstract

Direction:Opposite

rst) rsu; xyz) wyz Direction:Opposite Direction:Same Rule:Abstract

abc) abd; xyz) xyd Direction:Same Direction:Same Rule:Literal

rst) rsu; xyz) xyu Direction:Same Direction:Same Rule:Literal

abc) abd; xyz) dyz Alpha-Pos:Opposite Direction:Same Rule:Literal

Direction:Opposite

rst) rsu; xyz) uyz Direction:Opposite Direction:Same Rule:Literal

Table 1: Six answers and their associated thematic characterizations.

problems, and are thus of comparable quality, while the two wyz answers are quite di�erent,

even though on the surface they appear to be identical.

In addition to these four answers, there are two other possibilities worth mentioning. The

answer dyz, although perhaps a bit far-fetched, is certainly possible for the problem \abc

) abd; xyz) ?". Seeing this answer depends on noticing the abstract \mirror image"

symmetry between abc and xyz, yet|somewhat ironically|taking a very literal-minded

view of the way in which c changes to d. Thus, making the \analogous" change to xyz

involves changing its leftmost letter simply to d. The answer uyz for the problem \rst)

rsu; xyz) ?" arises in a similar manner, except that here there is of course no good reason

to see rst and xyz as mirror images of each other in the �rst place. Just as for the two

wyz answers, the key di�erence between the answers dyz and uyz lies in the presence or

absence of the idea of alphabetic-position symmetry. In other words, the way in which the

two wyz answers are analogous to each other is exactly like the way in which the dyz and

uyz answers are analogous to each other. Here we have a simple example of a \meta-level"

analogy in the letter-string microworld.

Table 1 shows these six answers along with their associated thematic characterizations.

These characterizations bring out very clearly the similarities and di�erences among the

various answers to the two problems. For example, it is clear from examining the themes

that the crucial distinction between the �rst wyz answer and dyz is whether abc)abd

is perceived abstractly or literally (as indicated by the rule theme). The thematic charac-

terizations of xyd and xyu are identical, revealing the deep underlying similarity between

these two literal-minded answers. The di�erence between the two wyz answers rests on the

presence or absence of the idea of alphabetic-position oppositeness. Furthermore, the way in

which these answers di�er is precisely the same as the way in which dyz di�ers from uyz.

This example, although somewhat simpli�ed, gives the
avor of how Metacat's thematic

11

characterizations allow it to compare and contrast its answers in an insightful way, even to

the point of being able to see higher-level analogies among the analogies it makes. Such

an ability lies far beyond that of Copycat, which has only a crude numerical measure of

\quality" available as a basis for answer comparison. In addition, answers can be retrieved

from memory on the basis of their stored thematic characterizations. For example, suppose

that Metacat �nds the answer xyu for the \rst) rsu; xyz) ?" problem. If it has

previously encountered the answer xyd for the \abc) abd; xyz) ?" problem, �nding

xyu may remind it of the xyd answer it has already seen|based on the strong similarity

between xyu's thematic characterization and the stored characterization of xyd|prompting

Metacat to \comment" on the similarity between the two answers.

As mentioned earlier, themes take on varying levels of activation during the course of

processing. At any given moment, a theme's activation level represents an estimate of the

importance of its role in characterizing the program's understanding of the situation at hand.

Thus, themes are �rst and foremost representational structures. But under certain condi-

tions, when highly activated, they can also exert powerful top-down pressure on Metacat's

subcognitive processing mechanisms, strongly biasing the stochastic behavior of codelets in

favor of particular outcomes. For example, in the \abc) abd; xyz) ?" problem, a

highly active Direction:Opposite vertical theme will strongly promote the creation of struc-

tures that support the idea of mapping abc onto xyz in a crosswise fashion|and will sup-

press structures that are incompatible with this idea. The creation of rightmost) leftmost

or leftmost) rightmost vertical bridges, for instance, will become extremely likely, whereas

leftmost) leftmost or rightmost) rightmost bridges will be inhibited. Active themes can

be thought of as Metacat's way of \seizing on" certain key ideas implicit in an analogy

problem and making them explicit, driving the program toward an interpretation of the

problem organized around these key ideas. Di�erent con�gurations of active themes in the

Themespace will guide Metacat to di�erent interpretations of an analogy problem, which

consequently may cause di�erent answers to be discovered for the problem.

In fact, themes can assume both positive and negative levels of activation (ranging from

�100 to +100). Positively-activated themes exert \positive thematic pressure" as just de-

scribed, encouraging the building of Workspace structures compatible with the themes.

Negatively-activated themes, on the other hand, exert \negative thematic pressure". Their

e�ect is to discourage the creation of compatible structures, promoting instead the creation

of structures incompatible with the themes. For example, a strongly-negative Direction:Same

vertical theme will discourage the creation of a straightforward left-to-right vertical map-

ping between abc and xyz. This in turn will \push" the program into other regions of

\interpretation space", encouraging it to explore alternative ways of creating this mapping.

The ability to steer away from certain interpretations of an analogy problem, by nega-

tively activating the themes characterizing their key ideas, o�ers a way for Metacat to avoid

falling into mindlessly-repetitive patterns of behavior, or at least to be able to \jump out of

12

the system" when it does end up falling into one. Copycat is plagued by such \loopy" behav-

ior on certain problems, for it has no way of noticing patterns in its own processing. When

it �rst tries to solve \abc) abd; xyz) ?", for example, it almost invariably perceives

abc and xyz as going in the same direction. This is certainly a reasonable predisposition.

However, such an interpretation of the situation leads inevitably to an attempt to take the

successor of z, since under this interpretation c and z are seen as corresponding. This at-

tempt fails, and Copycat \hits a snag". Rather than falling back on seeing abc)abd

literally, which would give the answer xyd, it typically tries to recon�gure the vertical abc{

xyz mapping, breaking bridges or other structures in the process. Unfortunately, it usually

just ends up rebuilding the same left-to-right mapping and consequently hitting the snag

again, sometimes going round and round in circles hitting the snag over and over, until it

�nally stumbles on the rule Change letter-category of rightmost letter to d. In fact, Copycat

hits the snag an average of nine times per run on this problem|sometimes even as many as

twenty or thirty times on certain runs. This is quite unlike typical human behavior. People

tend to \get the message" after attempting some unsuccessful strategy a few times. They

are able to recognize that their strategy isn't working and that they should try something

di�erent.

Themes o�er a way to address this problem. In addition to storing answers in its memory,

Metacat maintains, seperately, an explicit temporal record (called the Trace) of the important

events that occur while it works on some analogy problem. One type of important event

that may occur during a run, of course, is the discovery of an answer. But hitting a snag is

also important, and Metacat notes this type of event in its temporal trace as well. Another

type of \failure event", although less dramatic than hitting a snag, is the case in which the

program has simply ceased to make any progress in its attempt to build up a strong, coherent

interpretation of the analogy problem at hand. At some point a \no progress" threshold is

reached, and the situation is explicitly noted in the trace.

Whenever an event is added to the Trace, the themes most active at the time of the event

are also noted along with it. These themes serve as the event's thematic characterization. In

the case of an answer event, the answer and its characterization are also stored in Metacat's

answer memory, as described earlier. In the case of a snag event, the snag's thematic

characterization represents a way of interpreting the analogy problem that leads to failure.

If Metacat continues to hit the same snag several times in succession, a series of failure

events gets created in the Trace, all with very similar thematic characterizations. Since these

processing events are now represented in the Trace as explicit, tangible structures, they are

subject to examination and manipulation by codelets in a natural way. That is, the thematic

similarity between failure events in the Trace can be noticed by codelets in much the same way

that similarity between letters or groups in the Workspace is noticed. By monitoring its own

behavior in this way, Metacat can recognize when it is stuck in an ongoing, repetitive pattern

of behavior. Furthermore, once a particular thematic con�guration has been recognized as

13

snag snag snag

Dir:same Dir:sameDir:same

wyz

Time

Dir:same

Common Theme(s)

Negative thematic pressure

Figure 3: Schematic diagram showing how themes common to several snag events can trigger

negative thematic pressure, subsequently steering Metacat away from the problematic inter-

pretation (i.e., seeing abc and xyz as going in the same direction), and eventually towards

alternative interpretations.

leading to failure, the themes comprising it can be clamped with strong negative activation,

e�ectively steering the program away from the unproductive interpretation leading to the

snag. In this way, Metacat can both recognize and subsequently break out of, its repetitive

behavior. Figure 3 shows this idea schematically.

Metacat's thematic framework also allows it to e�ectively work backwards from a given

answer to an understanding of why the answer makes sense, even if the program hasn't

actually discovered the answer on its own. For example, when the program is given the

answer wyz to the problem \abc) abd; xyz) ?" and asked to justify it, it typically

begins by building straightforward, left-to-right mappings between the strings, seeing all

four of them as going in the same direction. Seeing abc{abd and xyz{wyz in this way may

prompt it to create the \top" rule Change letter-category of rightmost letter to successor

and the \bottom" rule Change letter-category of leftmost letter to predecessor. However, the

same-direction mapping between abc and xyz is inconsistent with this way of looking at

things, because the rightmost letter in abc does not map onto the leftmost letter in xyz.

Comparing the two rules to each other, however, suggests the idea of rightmost/leftmost

symmetry, as well as successor/predecessor symmetry. As a result, Metacat strongly activates

vertical-mapping themes representing these ideas, causing the vertical mapping between abc

14

and xyz to be reorganized in a crosswise fashion. Seeing abc and xyz in this way yields an

overall interpretation that makes sense.

5 Summary

Themes in Metacat can be viewed as a kind of intermediate level between \subcognitive"

structure-building activity in the Workspace and higher-level \cognitive" activity associated

with events in the Trace. They provide a medium through which ideas made explicit at the

cognitive level (i.e., the explicit thematic characterizations of events in the Trace) can actively

in
uence and guide the course of subcognitive processing. In e�ect, themes are a \tool" used

by the cognitive level to explore the rami�cations of particular ideas. By strongly activating

di�erent patterns of themes and observing the results, the program can systematically try

out di�erent ideas as it solves analogy problems, some of which may lead it to answers,

others of which may lead it to confusion. Furthermore, once an answer has been found, the

themes associated with the answer represent a characterization of the key ideas and events

that led to the answer's discovery. This characterization can subsequently be used as the

basis for comparing and contrasting the answer with other previously-encountered answers.

To summarize, enriching Metacat's understanding of its answers by incorporating higher-

order thematic information gleaned through self-watching enables it to perceive abstract

similarities and di�erences among the analogies it makes. By applying the same process-

ing mechanisms used to perceive relationships in its perceptual input to the more abstract

task of perceiving relationships among the key ideas and events involved in the process of

answer discovery, Metacat is able to recognize and possibly avoid certain types of behavior

in its own processing, and to create rich representations of the answers it eventually �nds.

Metacat's thematic machinery provides a general framework in which to address the idea

of self-watching, and represents a logical next step along the road to understanding and

capturing the full richness of high-level perception and analogy-making in a computational

framework.

6 Acknowledgements

This research is supported in part by Sun Microsystems Co.Academic Equipment Grant

#EDUD-NAFO-960418 and by grants to the Center for Research on Concepts and Cognition

from the College of Arts and Sciences of Indiana University.

15

References

Chi, M., Bassok, M., Lewis, M., Reimann, P., and Glaser, R. (1989). Self-

explanations: How students study and use examples in learning to solve problems.

Cognitive Science, 13:145{182.

Hofstadter, D. R. (1984). The Copycat Project: An experiment in nondeterminism and

creative analogies. AI Memo 755, MIT Arti�cial Intelligence Laboratory.

Hofstadter, D. R. and FARG (1995). Fluid Concepts and Creative Analogies: Computer

Models of the Fundamental Mechanisms of Thought. Basic Books, New York.

Mitchell, M. (1993). Analogy-making as Perception. MIT Press/Bradford Books, Cam-

bridge, MA.

VanLehn, K., Jones, R., and Chi, M. (1992). A model of the self-explanation e�ect.

The Journal of the Learning Sciences, 2(1):1{59.

16

