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Abstract

A goal of epigenetic robotics is to design
a control architecture that implements an
ongoing, autonomous developmental process
which is unsupervised, unscheduled, and task-
independent. The developmental process we
are currently exploring contains three essen-
tial mechanisms: categorization, prediction,
and intrinsic motivation. In this paper we
describe a hybrid approach that uses Grow-
ing Neural Gas for categorization, neural net-
works for prediction, and Intelligent Adaptive
Curiosity for intrinsic motivation. We apply
this system to a physical robot operating in a
dynamic visual environment and analyze the
types of categories it forms.

1. Introduction

In a realistic environment, a robot is flooded with a
constant stream of perceptual information. In order
to use this information effectively for determining ac-
tions, a robot must have the ability to categorize its
experience. Based on these categories, a robot must
be able to predict how the environment will change
as a result of its actions. Most importantly, this pro-
cess of development should be driven by an intrinsic
motivation to explore the categories of its experi-
ence where it can make the most learning progress.
The developmental process we are currently explor-
ing contains these three essential mechanisms: cate-
gorization, prediction, and intrinsic motivation.
Psychologists Ryan and Deci define intrinsic moti-
vation as “the inherent tendency to seek out novelty
and challenges, to extend and exercise one’s capaci-
ties, to explore, and to learn” (Ryan and Deci, 2000,
p. 70). In order to determine what to explore, an
organism must compare the incoming stimuli from
the environment to its internal memory to discover
differences and similarities. This collative process,
a term coined by the psychologist Berlyne, is neces-
sary to evaluate the degree of novelty or incongruity
of the current stimuli with respect to the organism’s
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past experiences or expectations (Berlyne, 1966). By
categorizing its experience, an organism can more
effectively decide which aspects of its environment
are novel and should be explored. In a recent sur-
vey of developmental robotics, Lungarella et. al.
state that categorization “is of such fundamental
importance for cognition and intelligent behavior
that a natural organism incapable of forming cat-
egories does not have much chance of survival”
(Lungarella et al., 2003, p. 161).

Although intrinsic motivation and categorization
are clearly intertwined, recent work in epigenetic
robotics has focused primarily on intrinsic motiva-
tion alone (Barto et al., 2004, Marshall et al., 2004,
Schmidhuber, 2006).  One approach to intrinsic
motivation, known as Intelligent Adaptive Curios-
ity (IAC), employs a limited form of categoriza-
tion that divides the sensorimotor space into a set
of similarity-based regions (Oudeyer et al., 2007).
However, no abstractions of the sensorimotor data
are formed, and this top-down approach may take a
long time to create categories that accurately reflect
the structure of the sensorimotor space. In addition,
category formation is triggered by the number of ex-
emplars and not by the uniqueness of the exemplars,
which can lead to an excessive number of similar cat-
egories. Finally, TAC’s memory grows linearly with
each additional experience.

In this paper we propose a hybrid system that
combines TAC’s approach to intrinsic motivation
with a mechanism known as Growing Neural Gas
(GNG), which discovers relevant categories in sen-
sorimotor data (Fritzke, 1995). GNG’s bottom-up
approach to category formation quickly matches the
structure of the sensorimotor space and only forms
new categories when the existing ones are sufficiently
different from the current data. We call this sys-
tem Category-Based Intrinsic Motivation (CBIM).
We apply CBIM to a physical robot operating in a
dynamic visual environment and analyze the types of
categories it forms. First, we summarize GNG, TAC,
and introduce our hybrid system CBIM. Next, we
describe the physical robot and the experiment. Fi-



nally, we present the results and discuss implications
and future work.

1.1 Growing Neural Gas

GNG is an unsupervised learning method for dimen-
sionality reduction (Fritzke, 1995). Given some high
dimensional distribution of data, such as the sensori-
motor data of a robot, a GNG will find a topological
structure that closely matches the given distribution.

A GNG consists of a network of units and edges
that are used to characterize the topological space
in which its input vectors reside. Each unit contains
a model vector that characterizes a portion of the
overall distribution. Taken together, the units and
edges of the GNG serve as a representative summary
of the given distribution. The dimensionality of the
network itself is not fixed in advance. The resulting
graph is able to expand or contract as necessary by
adding or deleting units and edges.

A given input vector is matched to the nearest
and next-nearest GNG units based on FEuclidean dis-
tance. This distance is also used as a measure of er-
ror, which the GNG stores in the nearest unit. All
units connected to the nearest unit are moved to-
ward the input vector by a fraction of the error. In
this way, the GNG dynamically adapts to slight vari-
ations in the input signal that do not require the
addition of new units.

Each edge in the GNG is assigned an age that is
initially set to 0. If the nearest unit and the next-
nearest units are not connected, an edge is placed
between them; if they are connected, the age of the
edge between them is reset to 0. Edges throughout
the GNG above a given age threshold are pruned;
if this results in isolated units, those units are also
removed from the GNG.

A GNG begins with two units that are assigned
random initial model vectors. In the original GNG
(Fritzke, 1995), a new unit is added after a fixed
number of time steps determined by the user. This
unit’s model vector is placed between the unit with
the greatest accumulated error and its neighbor
with the greatest accumulated error. In an alter-
native implementation called an Equilibrium GNG
(Provost et al., 2006), units are only added when the
average error of the GNG’s units exceeds a given
threshold. This approach makes it possible to grow
the GNG in response to new data that doesn’t fit
the current topology of the network, but prevents
the addition of unnecessary units when the incoming
data is similar to existing model vectors.

Because a GNG is able to autonomously grow and
adapt over time, it is a suitable categorization mech-
anism for the open-ended learning system we propose
in this work.

1.2 Intelligent Adaptive Curiosity

TAC is a method for implementing intrinsic motiva-
tion. TAC has been successfully tested on a Sony
AIBO robot operating on a baby play mat with
various toys that can be bitten, swatted, and ob-
served (Oudeyer et al., 2007). Using IAC as its con-
trol mechanism, the AIBO clearly exhibited a de-
velopmental progression, first learning about simpler
aspects and later focusing on more complex aspects
of its environment.

The key idea of TAC is that the drive to learn
is based on maximizing learning progress. This is
achieved by creating a memory of all the experiences
encountered by the robot and subdividing this mem-
ory into similarity-based regions. Each region con-
tains an “expert” that is trying to learn to predict
the effect of taking actions in particular sensory sit-
uations. More formally, the expert is trying to map
the sensorimotor information at time ¢ to the sensory
outcome at time t 4+ 1: SM(t) — S(t+1). Each
region monitors the errors of the expert over time
and generates a measure of learning progress, which
is essentially the change in the current mean error
rate with respect to an earlier mean error rate.

On each time step the robot consults this memory
in order to determine which action to take. First the
robot senses the world. Next, it generates a set of
candidate actions, either by enumerating all possibil-
ities or, if the space of actions is continuous, by gen-
erating a random sample of possible actions. Then
it concatenates each candidate action with the cur-
rent sensory information and probes the memory to
find all matching regions. With some high probabil-
ity it selects the candidate action associated with the
region with the maximal learning progress. Other-
wise it chooses a random region from the matched
set. It then executes the selected action, observes
the outcome, and uses this data to train the expert
associated with the selected region.

When a region’s sensorimotor context is pre-
dictable, initially its expert will make good progress
and be chosen frequently. As the expert succeeds
in learning, its progress will slow, and the learning
progress of other regions will surpass it. In this way,
TAC guides the robot to explore its environment in a
sensible way, focusing on those aspects where it can
make the best gains, and ignoring aspects that have
already been learned or are unlearnable.

Although each region of TAC is in a limited sense
a category, there is no abstraction taking place. Ev-
ery experience the robot has had (SM(t) paired with
S(t + 1)) is explicitly stored within the appropriate
region. Each region is limited to a fixed maximum
size (usually 250 exemplars). Once this maximum is
exceeded the region is split into two new sub-regions.
If the robot continues to experience very similar situ-
ations it will repeatedly form additional regions, even



though they may not represent any significant dif-
ferences from existing regions. This excess region
formation will limit the effectiveness of TAC as it is
applied to richer, more complex domains.

1.8 Category-based Intrinsic Motivation

CBIM is an open-ended learning system that com-
bines GNG’s flexibility and power of abstraction
with TAC’s notion of region-based maximal learn-
ing progress. We use the Equilibrium GNG, which
only adds units based on accumulated error. Each
TAC region is associated with one GNG unit. Each
GNG unit model vector is determined by all of the
sensorimotor exemplars that have been mapped to
it. Each region stores a fixed number of exemplars,
only enough to calculate learning progress; the old-
est exemplars are removed as newer exemplars are
encountered.

Unlike TAC, the growth of CBIM’s memory is
bounded by the complexity of the robot’s sensory
and motor capabilities as well as the environment
because categories in CBIM are formed based on er-
ror and not simply on the quantity of experience. If
the robot repeatedly experiences very similar situa-
tions, the associated GNG model vectors will adjust
slightly to each experience. However, a new model
vector will only be created when the error across the
GNG grows too high. Then the new unit will be
added at precisely the point in the GNG where the
model vectors are least representative of the robot’s
experiences. In this way, CBIM’s categories mirror
the robot’s experiences, growing to handle new in-
formation or shrinking to remove spurious categories
that are not consistent with later experiences.

In the original TAC model, the region experts
were implemented as k-nearest neighbors (with k=1).
In CBIM, the region experts are implemented as
feed-forward neural networks with a single layer of
weights. Every time a sensorimotor vector is mapped
to a particular GNG unit, in the associated region
the weights of the neural network expert are updated
using standard backpropagation with SM(t) as the
input and S(¢ 4+ 1) as the target. By using neural
networks as the experts, CBIM incorporates another
form of abstraction not found in IAC. Each neural
network expert makes generalizations of the sensori-
motor data in the process of learning to predict the
outcomes of actions. These generalizations are likely
to provide more robust behavior throughout the de-
velopmental process.

2. Experiments

In order to demonstrate the viability of CBIM, we
designed a physical environment for a robot to do
open-ended learning. For these experiments we used
a Rovio, which is a consumer-level robot equipped

Figure 1: The experimental environment with the devel-

oping Rovio robot in the center, a larger static red robot,
and a smaller moving blue robot.

with a camera. We wrote a Python interface us-
ing the open source Rovio API. The Python inter-
face allowed us to control the Rovio through Py-
robot, a robotics control platform that implements
a common API for both real and simulated robots
(Blank et al., 2006). Image processing was also han-
dled in Pyrobot.

The environment consisted of the Rovio in the cen-
ter of a green inflatable pool as shown in Figure
1. This provided a uniform backdrop, limiting the
robot’s vision to the arena, thus simplifying the vi-
sual stimulus. In addition to the green background,
two robots were placed within the arena to serve as
other objects of focus. A large, inactive red robot
was placed to one side of the environment, but close
enough to completely fill Rovio’s somewhat narrow
field of vision when the Rovio looked directly at it.
A smaller blue robot continuously moved back and
forth on a track, using sensors to move from wall to
wall. The Rovio was placed in the middle of this
environment, capable only of rotating left or right.
The Rovio could also choose not to move at all.

The developing Rovio robot experienced the world
through vision, receiving sensory input extracted
from its camera images. The Pyrobot vision system
was configured to filter images from the Rovio’s cam-
era to find the particular colors associated with each
object in the environment: the green walls, the blue
robot, and the red robot. However, due to variabil-
ity in lighting conditions, the filters were not com-
pletely accurate. For example, a particular object
might be present in the image, but its color might
not be recognized by any of the filters. Each color
channel was further filtered into a blob—a bounding
box surrounding the largest mass of the respective
color in the image. Figure 2 shows an image of the
blue robot from the Rovio’s camera that has been
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Figure 2: A camera image from the Rovio robot to which
a blue blobify filter has been applied.

filtered for blue and then blobified.

The filter results were summarized in the sensory
data as follows. Binary inputs indicated whether
each color channel was active, meaning that an ob-
ject of the specified color was present in the current
image. Additionally, the robot received information
about the color channel it chose to focus on. In other
words, on each time step the robot could only attend
to one of the color channels. This choice was part of
its action decision. The area and relative position
of the largest blob in this chosen channel were pro-
vided. The area was scaled to a value between 0 and
1, normalized by the size of the entire camera image.
The relative position was represented as 0 for left,
0.5 for centered, and 1 for right. In summary, the
Rovio had access to five sensory inputs:

S(t) = (red, green, blue, blobArea, blobPosition)

It was frequently the case in this environment that
multiple color channels were active simultaneously.
For instance, if the robot was facing the upper-left
section of the environment (see Figure 1), it often
had all three color channels active: it could see the
red robot on its right, the blue robot on its left and
the green background in between. Because the green
background was almost always present in the camera
image, the green channel tended to be active most of
the time. Only when the Rovio was looking directly
at the red robot, which tended to fill its entire camera
image, would the green background not be seen. On
rare occasions (about 1% of the time) none of the
color channels were active due to the color variability
caused by lighting conditions.

The Rovio had two output commands: which color
channel to focus on and how much to rotate. The
color channel choice was a value between 0 and 1
that was divided into three equal bins. For values in
the range [0.0,0.33] the choice was red; for values in
the range [0.34, 0.66] the choice was green; for values
in the range [0.67, 1.0] the choice was blue. Rotation

was a value between 0 and 1 that was divided into
seven equal bins, ranging from a hard left, to staying
still, to hard right. Thus the Rovio’s motor action
consisted of two values:

M(t) = (channel Focus, rotation)

For CBIM, this framework results in sensorimo-
tor vectors of 7 dimensions. Therefore each GNG
unit contains a 7-dimensional model vector. Each
TAC region expert tries to predict the mapping from
7-dimensional sensorimotor vectors to 5-dimensional
sensory vectors.

The goal of the experiment is for the robot to cat-
egorize its world, learning and making progress in
predicting how the objects in this environment be-
have. Each object in the environment is brightly and
evenly colored, so as to provide clear visual stimulus
for the Rovio. Because each object in the environ-
ment has a unique color, each color channel can view
only one object, eliminating possible confusion be-
tween objects.

In addition to its distinguishing color, each object
offers unique learning opportunities with varying lev-
els of predictability. The green walls offer a constant,
large background making them quite predictable.
For example, if on the current time step only the
green channel is active and the Rovio chooses to fo-
cus on green and make a small turn to either the
left or the right, it is highly likely that on the next
time step the green channel will remain active and
its area and relative position will be nearly identical
to the previous time step. The red, static robot is
also predictable, but is visible in only a few positions.
For example, if the Rovio is directly facing the red
robot with only the red channel active and chooses
to focus on red and turn right, on the next time step
it is likely that both the red and green channels will
be active, and the red blob will be positioned to the
left and be half the size it was previously. The blue
robot is much harder to predict because it is con-
stantly moving.

In this environment the robot must learn to predict
the relative position and size of the objects in its
visual field. What it will see at the next time step
depends both on what it is currently seeing and what
action it chooses to take. Over time, the developing
robot should focus on all three objects, associating
each object with a particular color channel.

Experiments lasted for 5000 time steps and took
approximately 2 hours. We conducted 10 CBIM
experiments using the Rovio. The TAC parameter
settings were: 10 randomly generated candidate ac-
tions; 15% chance of selecting a random action; mean
error rate was smoothed over 15 time steps; learn-
ing progress was calculated by comparing mean er-
ror rates separated by 10 time steps; and experts
were feed-forward neural networks with a single layer
of weights using a learning rate of 0.5 and no mo-
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Figure 3: The number of units in the GNG of a typical

CBIM run. In this run, after 210 time steps no additional

units were inserted.

mentum. The Equilibrium GNG parameter settings
were: error threshold of 0.5 to add a new unit; win-
ning unit learning rate of 0.2; and neighbor unit
learning rate of 0.006.

At the beginning of each experiment, the Rovio
was positioned in an initial pose, facing away from
the red and blue robots in the environment. This was
done so as not to bias the early category formation
toward either red or blue. If the developing robot ini-
tially decides to turn right, it will see the blue robot
first and form categories to cover this situation. If
instead, it initially decides to turn left, it will see the
red robot first and form a different sequence of cate-
gories. The Rovio rapidly explored the world early in
the experiment, forming many categories in the first
few hundred time steps. The Rovio then attended
to particular features of the environment. Common
behaviors included investigating the bounds of the
red robot, attempting to track the blue robot, and
focusing on the area in which the blue robot occu-
pied the same field of view as the red robot. Each
experiment varied in the order that CBIM created
categories and in the amount of time the developing
robot spent focusing on each color channel. The next
section analyzes the results in depth.

3. Results

Because categorization is of such fundamental im-
portance to CBIM, we will first focus our analysis
on how the GNG evolves over time. Then we will
discuss the role that intrinsic motivation plays in the
robot’s choice of actions in its vision-based environ-
ment.

3.1 GNG categories

Although results differ from run to run, there are
clear GNG formation trends that directly correspond

to the robot encountering new sensory experiences
in its environment. Recall that the GNG begins
with two units which are assigned random model
vectors. Once the robot senses the world for the
first time, these initial units immediately accumu-
late enough error to trigger the formation of new
units. At the beginning of the run, only the environ-
ment’s green background is within the robot’s cam-
era view. Therefore, the first new GNG units are
added to reflect that the green channel is active. As
the robot begins to turn, it will either turn to the left
and encounter the red robot or turn to the right and
encounter the blue robot. As soon as one of these
robots is in view, again the GNG immediately re-
sponds by constructing new units to represent that
a new color channel has been activated for the first
time. As the run continues, the robot will eventually
see both the red and blue robot simultaneously. The
first time this occurs, the GNG creates new units to
represent this unfamiliar event.

Early on, much of the incoming sensorimotor data
is novel, thus the bulk of new GNG units are added
in the first 100 time steps and taper off rather quickly
after that. Figure 3 shows how fast the GNG grows
at the start of one particular run. In this case the
GNG ceases to add more units by time step 210; in
other runs, the last unit is added between time steps
250 and 400. This is a clear improvement on the
linear growth of IAC regions.

Figure 7 shows a series of two-dimensional repre-
sentations of the GNG model vectors and edges at
different time steps during the run. To create these
plots, a principal component analysis was performed
on the final configuration of the 7-dimensional GNG
model vectors from the last time step (step 5000).
The projections of the model vectors onto the first
two principal components were then plotted for each
of the time steps shown, with respect to the com-
puted eigenbasis. The plots show the evolution of
the model vectors and edges of the GNG in more
detail.

In Figure 7, the GNG model vectors are repre-
sented by the large points that are connected via
edges. The clusters of small points show the sensori-
motor inputs presented to the GNG during the run,
with the input on the current time step indicated by
a small circle. Each cluster of points represents a
similar set of sensorimotor contexts experienced by
the robot. The labels represent which color channels
are active.

At time step 0, the two random initial model vec-
tors happen to both represent having the red and
blue channels active simultaneously. All of the initial
experiences of the robot have only the green chan-
nel active, and new GNG model vectors are added
to try to reduce the error between the existing units
and the new sensory data. By time step 5, it is clear
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Figure 4: Results of a typical random controller.

that the GNG is growing to try to accommodate the
repeated green channel exemplars near the center.
By time step 25, a number of GNG units are now
covering the green channel exemplars. At time step
35, the robot has turned enough to see both the blue
robot and red robot simultaneously (with the green
walls) for the first time. The GNG is again growing
to accommodate this new event. Because the GNG
always adds units between existing units, it can cre-
ate intermediate model vectors that may not be rep-
resentative of any of the data encountered so far.
By time step 65, the model vectors at the exterior
of the GNG are well matched with the data, while
those at the center are not. Near the end of the run,
at time step 4000, many of these intermediate units
and edges have been removed, and the structure of
the GNG more closely matches the underlying data
representation.

In the original IAC model, regions are sub-divided
based only on the quantity of exemplars. Initially ev-
ery experience is grouped within a single IAC region.
Once this region grows beyond the size limit, it splits
into two sub-regions. It can take quite a long time
before the repeated splitting of IAC regions begins to
accurately reflect the sensorimotor data. In contrast,
CBIM’s GNG regions are formed based on encoun-
tering novel experiences. Each unfamiliar event en-
countered by the robot is immediately marked by a
new category, and only novel experiences will trigger
the formation of categories.

3.2 Intrinsically motivated behavior

In order to demonstrate that CBIM categorizes its
sensorimotor space appropriately and uses these cat-
egories to effectively select learning experiences, a
series of control experiments were executed for com-
parison. In the control experiments, actions were
simply selected randomly without the use of cate-
gorization, prediction, or intrinsic motivation. We
will refer to occasions when the Rovio selects a color
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Figure 5: Results of a typical CBIM controller.

channel while an object of the corresponding color is
in its camera view as a matched selection. Figure 4
shows the results of a typical control run. The cor-
relation coeflicient between the percentage of time
when the blue channel is chosen and when the blue
channel is actually matched is only 0.17.

However, in Figure 5, the channel choice and
matched selection for CBIM is much more tightly
coupled, with a correlation coefficient of 0.57. When
this run is divided into thirds, the correlation coef-
ficients for each third improves from 0.42, to 0.59,
ending at 0.65. This increase in correlation between
choosing the blue channel and seeing the blue ob-
ject indicates that Rovio was progressively learning
to track the movement of the small blue robot over
time.

Based on the predictability of each object, we ex-
pected that CBIM would cause the Rovio to first
focus on the red stationary robot and then on the
moving blue robot. Figure 6 shows the same CBIM
run from Figure 5 in which a shift in focus from the
red object to the blue object can be seen. In the
first 1500 steps, the Rovio was not very successful at
finding either the red or blue object. Then, in the
middle of the run, it was able to find and focus on
both the red and blue objects in turn, with a peak
in finding the red object at about 2800 steps. After
about 4300 steps, there is a clear shift in focus away
from the red object and toward the blue object. This
provides evidence of a developmental trajectory.

In the five control experiments done, the random
action selection led to a focus of 33% on each of the
three color channels, as expected. In contrast, in the
10 CBIM experiments done, the intrinsically moti-
vated action selection led to a more varied focus. In
three of the experiments, blue was the primary focus
37% of the time on average. In three of the experi-
ments, red was the primary focus 37% of the time on
average. Finally, in the remaining four experiments,
both blue and red were the primary focus 34% of the
time on average for each. In a statistical analysis of



re‘d matched ------- i
[ blue matched

60 [

50 |-

40

30 [

20 |

Percentage of time red or blue channel matched

10

vl

‘O 1(;00 20‘00 3(;00 4(;00 50‘00
Time step

Figure 6: Evidence of a developmental shift from focus-

ing on the more predictable red object to the harder to

predict blue object.

the focus data, CBIM’s green focus was significantly
lower (p < .01) than either its red or blue focus across
all of the experiments. Given that the green back-
ground was visible on nearly every time step, and was
the easiest of the color channels to predict, the fact
that CBIM’s overall focus is primarily on the other
two channels indicates that the intrinsic motivation
is pushing the robot to explore the more challenging
aspects of its environment.

4. Discussion

The results of our experiment suggest that the cat-
egorizational power of the GNG combined with the
strength of TAC’s measure of learning progress is ef-
fective at developing a useful set of categories that
allow the robot to maximize its learning potential
in the given environment. The set of model vectors
developed by the GNG is a reflection of the particu-
lar characteristics of the sensorimotor stream expe-
rienced by the robot, which grows only as much as
is necessary to capture the topological relationships
between the data. This approach avoids the use of ad
hoc mechanisms such as region-splitting and the ad-
dition of unnecessary model vectors at fixed time in-
tervals that were present in earlier models. Recently
a new variation of IAC has been developed to address
some of the inefficiencies of the region-splitting ap-
proach (Baranes and Oudeyer, 2009). Yet even this
improved version could benefit from the bottom-up
categorization approach used in CBIM.

One remaining challenge for CBIM is its limited
ability to handle time-dependent relationships in the
robot’s sensorimotor stream. Each expert bases its
response only on the sensorimotor input at the cur-
rent time step, without taking into account the re-
cent past experiences of the robot. One possible di-
rection of future work would be to incorporate recur-
rent neural networks into the model in order to take

advantage of temporal information.
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Figure 7: A 2-dimensional visualization of the 7-dimensional GNG model vectors and edges as they evolve over time
in one CBIM run. The labels indicate which color channels are active for each sub-group of GNG units.



