
Making Sense of Analogies in Metacat

James B. Marshall

Douglas R. Hofstadter

Center for Research on Concepts and Cognition

Indiana University

Bloomington, Indiana 47408 USA

fmarshall,dughofg@cogsci.indiana.edu

Abstract

This paper outlines the main ideas and

objectives of the Metacat project, an ex-

tension of the Copycat computer model of

analogy-making and high-level perception.

The principal features of Metacat that al-

low it to make sense of analogies suggested

to it by the user are described using a simple

example.

Introduction

The Copycat computer model of analogy-

making and high-level perception was orig-

inally developed by Hofstadter & Mitchell

as a computational model of subcognitive

mechanisms underlying human cognition, in

which the notion of uid concepts plays

a central role. Copycat models the pro-

cess of analogy-making within a stripped-

down microworld of tiny, idealized situa-

tions represented as short strings of let-

ters. For example, a typical Copycat prob-

lem is the following: \If abc changes to

abd, how does mrrjjj change in an anal-

ogous way?" This microworld, though aus-

tere, harbors a surprisingly rich variety of

subtle problems in which a wide range of

answers is almost always possible|often

including deeply elegant but non-obvious

ones. For example, there are many defen-

sible answers to the above problem, includ-

ing mrrkkk, mrrjjk, mrrjjd, mrrddd,

mrrjjj (in which only c's are seen as chang-

ing), mrsjjj, mrdjjj, mrrjjjj, mrrkkkk,

or even abd or abbddd. The apparent sim-

plicity of Copycat's domain is deceptive, for

it remains a formidable challenge to develop

a computational model exhibiting a level of

creative and exible behavior comparable to

that of humans even in this tiny, restricted

domain of letter-strings.

Copycat discovers analogies between dif-

ferent situations by building up an under-

standing of the situations in terms of con-

cepts that it understands about the letter-

string world. Representations of these con-

cepts are hard-wired into the program, yet

they are not static entities with sharply de-

�ned boundaries. Rather, their boundaries

are inherently fuzzy, overlapping each other

to varying degrees and changing in response

to competing contextual pressures that arise

during the course of processing. The dy-

namic, \uid" nature of Copycat's concepts

is intended to model the extremely exible

human ability to perceive dissimilar things

as being in fact \the same" when viewed at

some appropriate level of description.

A detailed exposition of the Copycat pro-

gram can be found in [Mitchell, 1993] and

[Hofstadter and FARG, 1995]. In this pa-

per, we give just a brief summary of Copy-

1



cat and then discuss in more detail recent

work aimed at extending the model. The

goal of the current project, dubbed Meta-

cat, is to increase the program's \aware-

ness" of its own behavior as it solves anal-

ogy problems, so that it may gain deeper

insights into the analogies it makes.

The Copycat Model

When Copycat is given an analogy problem

to work on, it starts out with the letter-

strings in its Workspace, the architectural

component of the program in which all per-

ceptual processing occurs. Small, nonde-

terministic processing agents called codelets

notice relations among the individual let-

ters and build new structures around them,

organizing them into a coherent high-level

picture. All processing occurs through the

collective actions of many codelets working

in parallel, at di�erent speeds, on di�er-

ent aspects of an analogy problem, with-

out any centralized executive process con-

trolling the course of events. The stochas-

tic behavior of codelets is dynamically bi-

ased by the time-varying pattern of activa-

tion in the program's network of concepts,

called the Slipnet, that it uses to build up

an understanding of an analogy problem. In

turn, this context-dependent pattern of con-

ceptual activity in the Slipnet is itself an

emergent consequence of codelet processing

in the Workspace.

For example, in order to discover

an answer to the problem \abc) abd;

mrrjjj)?", codelets work together to

build up a strong, coherent mapping be-

tween the initial string abc and the tar-

get string mrrjjj, and also between the

initial string and the modi�ed string abd.

Within each letter-string, codelets attempt

to build hierarchical groups, e�ectively or-

ganizing the strings (the raw perceptual

data) into coherent, chunked wholes. In

mrrjjj, for example, codelets might build

the \sameness-groups" rr and jjj, causing

the sameness-group concept in the Slipnet

to become activated, which in turn makes

it more likely for the program to regard m

as a sameness-group of length one within

the context of the other groups in its string.

A higher-level \successor-group" comprised

of m, rr, and jjj encompassing the entire

string can then be seen based on the con-

cept of group-length (i.e., 1{2{3) rather

than on letter-category. Consequently, the

letter-category-based successor-group abc

can be mapped as a whole onto the length-

based successor-group mrrjjj, representing

the recognition of these strings as instances

of the same concept, even though their sur-

face resemblance is negligible. The dis-

tributed nature of codelet processing inter-

leaves the chunking process with the map-

ping process, and as a result, each process

inuences and drives the other.

A mapping consists of a set of bridges be-

tween corresponding letters or groups that

play respectively similar roles in di�erent

strings. Each bridge is supported by a

set of concept-mappings that together pro-

vide justi�cation for perceiving the objects

connected by the bridge as corresponding

to one another. For example, a bridge

might be built between c in abc and jjj in

mrrjjj, supported by the concept-mappings

rightmost) rightmost and letter) group,

representing the idea that both objects are

rightmost in their strings, and that one is a

letter and the other a group. Non-identity

concept-mappings such as letter) group

are called slippages, and form the basis of

Copycat's ability to perceive super�cially-

dissimilar situations as being identical at a

deeper level.

Once a strong, coherent mapping has

been built between the initial string and the

modi�ed string, another type of structure,

called a rule, may get created based on this

mapping, which succinctly describes the

way in which the initial string changes into

the modi�ed string. There are often sev-

eral possible ways of describing this change,

2



some more abstract than others. For ex-

ample, two possible rules for abc) abd

are Change letter-category of rightmost let-

ter to successor and Change letter-category

of rightmost letter to d.

Di�erent ways of looking at the ini-

tial/modi�ed change, combined with di�er-

ent ways of building the initial/target map-

ping, give rise to di�erent answers. The con-

�guration of structures in the Workspace

collectively represents the way in which a

given analogy problem is interpreted. A

particular interpretation implies a partic-

ular answer for the problem. To produce

an answer, the rule describing the way the

initial string changes is translated into a

new rule that applies to the target string,

based on the slippages underlying the ini-

tial/target mapping. For example, if the

abc) abd change is described according

to the �rst rule above, and the abstract

successor-group similarity between abc and

mrrjjj has been noticed, then the rule will

be translated as Change length of right-

most group to successor, yielding the answer

mrrjjjj. On the other hand, if this deep

similarity has not been noticed, the answers

mrrkkk, mrrjjk, mrrddd, or mrrkkd

may be found instead, depending on the rule

chosen and whether or not c in abc is seen

as corresponding to the jjj group or to just

the rightmost letter j in mrrjjj.

As this example suggests, Copycat's

stochastic processing mechanisms enable it

to �nd a range of di�erent answers for a

given analogy problem. Copycat attaches

a rough numerical measure of \quality" to

the answers it �nds, which, for many prob-

lems, corresponds reasonably well to hu-

man judgments of relative answer quality.

But the program has very little awareness

of how it actually �nds the answers that

it �nds. It has almost no insight into its

own processing mechanisms|uid and ex-

ible though they may be|which guide it

through the \space" of possible interpreta-

tions of an analogy problem. This is not

too surprising, however, given that Copy-

cat was intended primarily as a model of

subcognitive mechanisms. All of the non-

deterministic codelet activity occurring in

the Workspace|the building of bridges and

groups, the making of slippages, and so on|

is intended to represent perceptual activ-

ity carried out below the level of \conscious

awareness". In contrast, the focus of Meta-

cat is on developing mechanisms that sup-

port a higher \cognitive" level on top of

Copycat's subcognitive level. To do this,

Metacat needs to be able to remember what

happens while its subcognitive mechanisms

are building, destroying, and recon�guring

Workspace structures in pursuit of an an-

swer to the problem at hand, and to build

explicit representations of this activity.

Metacat's Objectives

Hofstadter has outlined several impor-

tant objectives for the Metacat project

[Hofstadter and FARG, 1995, Chapter 7].

First of all, the program should be able

to explicitly characterize the essence of an

answer|the core idea or cluster of ideas un-

derlying the answer that fundamentally dis-

tinguishes it from other possible answers.

The ability to perceive what a given an-

swer is really \about" should enable the

program to give at least a limited expla-

nation of the answer's strengths and weak-

nesses compared to other answers it may

have previously found. For example, the

essence of themrrjjjj answer described ear-

lier lies in seeing both abc and mrrjjj as

successor-groups, one based on the concept

of letter-category and the other based on

the concept of group-length. The recog-

nition of this abstract similarity between

the strings is what fundamentally distin-

guishes the answermrrjjjj from other, more

straightforward answers such as mrrkkk,

mrrjjk, or mrrddd, in which the hidden

\successorship fabric" of mrrjjj remains

unnoticed.

3



The ability to compare and contrast an-

swers, however, implies the ability to re-

member more than one at a time. In Copy-

cat, answers are not retained after they are

found. When Copycat discovers an answer

to a problem, it simply reports the answer,

along with the answer's numerical measure

of quality, and then stops. No recollection

of previously found answers is possible on

subsequent runs of the program, so there is

no way for the program to bring its past

experience to bear on its current situation.

This makes comparison of di�erent answers

impossible, either within a single analogy

problem or across di�erent problems. In

contrast, Metacat should remember the an-

swers it �nds, along with characterizations

of the key ideas involved, gradually building

up in its memory a repertoire of experience

on which it can draw when confronted with

new situations.

In addition to remembering the answers it

�nds, Metacat should also keep track of pat-

terns that occur in its own processing while

it is trying to discover new answers. As it

works on an analogy problem, it should cre-

ate an explicit sequential trace of its own

behavior as it searches through the space

of possible interpretations leading to di�er-

ent answers. This type of memory is of

a more short-term, temporal nature than

that just described for the answers them-

selves. Such a self-watching ability would

enable Metacat not only to remember the

important events that led it to �nd an an-

swer, but also to recognize when it has fallen

into a repetitive or otherwise unproductive

pattern of behavior. Recognizing that it

is in a \rut" should enable it to subse-

quently \jump out of the system" by explic-

itly focusing on ideas other than the ones

that seem to be leading it nowhere. This

type of self-awareness pervades human cog-

nition. People can easily pay attention to

patterns in their own thinking; see for exam-

ple [Chi et al., 1989, VanLehn et al., 1992].

Once Metacat has the ability to size up

the answers it �nds in terms of their essen-

tial features, it ought to be able to evaluate

other answers suggested to it by some out-

side agent. In other words, Metacat should

not only be able to come up with answers

to analogy problems on its own, it should

also be able to justify answers on their own

terms, even if the program itself didn't come

up with them. This constitutes an ability

to work \backwards" from a given answer

toward an insightful characterization of the

answer, in order to understand why it makes

sense. Once an answer has been understood

in this way, it could then be compared and

contrasted with other answers that the pro-

gram has either itself discovered previously,

or been shown by someone else.

The Metacat Model

The Metacat architecture includes all of

Copycat's main architectural components,

such as the Workspace, the Slipnet, and

the mechanisms that support distributed,

nondeterministic codelet processing. In ad-

dition, new architectural components have

been incorporated into the model, and

mechanisms for building bridges and creat-

ing rules have been extended and general-

ized. These components provide a general

framework in which to address the objec-

tives outlined in the previous section.

Unlike Copycat, Metacat incorporates a

memory for its answers, which allows it to

remember more than one answer over the

course of a run. Whenever it �nds a new

answer, instead of simply stopping, Meta-

cat pauses to display the answer along with

the Workspace structures representing the

interpretation of the problem. This infor-

mation is packaged together and stored in

Metacat's memory, after which the program

continues searching for alternative answers

to the problem. Gradually over time, a se-

ries of answers accumulates in memory, each

one representing a di�erent way of making

sense of the analogy problem at hand.

4



The most important type of auxiliary in-

formation stored with answers consists of

structures called themes. Themes reside

in Metacat's Themespace, and represent

key concepts underlying the mappings cre-

ated between letter-strings. Collections of

themes serve as high-level characterizations

of Metacat's answers, and provide a basis

on which to compare and contrast answers

with each other. Themes are comprised of

Slipnet concepts, and assume time-varying

levels of activation ranging from �100 to

+100, depending on the extent to which the

ideas they represent are present or absent

in a particular con�guration of Workspace

structures.

As an example, consider the structures

shown in Figure 1. This �gure shows the

status of the Workspace during a run on the

problem \abc) abd; xyz)?", in which

the answer wyz has already been suggested

to the program by the user. In this run,

Metacat is attempting to justify the wyz

answer by searching for an overall interpre-

tation of the problem in which this partic-

ular answer makes sense. The Workspace

shows the various structures that have been

built after several hundred codelets have

run

1

, including horizontal bridges compris-

ing the abc)abd and xyz)wyz map-

pings, and vertical bridges comprising the

mapping between abc and xyz. Concept-

mappings supporting the vertical bridges

can also be seen (concept-mappings for the

horizontal bridges are not displayed). Im-

mediately above and below the Workspace

are rules describing how abc changes to

yield the string abd (the top rule), and how

xyz changes to yieldwyz (the bottom rule).

At the top of the �gure is shown a portion

of the Themespace containing four \top-

bridge" themes characterizing the horizon-

tal abc) abd bridges. These themes are

shown as circles of di�ering sizes according

1

The dotted yz group is a \tentative" structure,

which has been proposed by codelets but has not

actually been built yet.

to the activation level of each theme. The

�rst two themes reect the ideas of letter-

category sameness and letter-category suc-

cessorship within the abc) abd mapping.

The a{a and b{b bridges both involve the

idea of letter-category sameness, while the

c{d bridge involves the idea of successor-

ship. On the other hand, all bridges map

objects of identical string-position (e.g.,

leftmost) leftmost) and object-type (e.g.,

letter) letter) onto each other, so the

string-position and object-type sameness

themes are highly active. The latter two

themes serve as an abstract characteriza-

tion of the abc) abd mapping. Other

sets of themes in the Themespace character-

ize other Workspace structures in a similar

fashion.

Thus, themes are �rst and foremost rep-

resentational structures. But under certain

conditions, when highly activated, they can

also exert powerful top-down pressure on

Metacat's processing mechanisms, strongly

biasing the stochastic behavior of codelets

in favor of particular outcomes. Active

themes can be regarded as Metacat's way of

\seizing on" certain key ideas implicit in an

analogy problem and making them explicit,

driving the program toward an interpreta-

tion of the problem organized around these

ideas.

In the Figure 1 example, Metacat has

perceived abc and xyz as successor-groups

going in the same direction (left-to-right).

This is represented by the vertical a{x and

c{z bridges, which are supported by the

concept-mappings leftmost) leftmost and

rightmost) rightmost, respectively. How-

ever, this way of interpreting the situation

doesn't make sense, because c and x are not

seen as corresponding to each other (since

there is no bridge between them), yet they

are both identi�ed by the rules as being

the objects that change in their respective

strings (the c to its successor and the x to

its predecessor).

At some point, codelets may com-

5



Figure 1: An inconsistent interpretation of the answer wyz

6



Figure 2: The �nal consistent interpretation of wyz

7



pare the two rules and notice that

taken together, they imply the concept-

mappings rightmost) leftmost and

successor) predecessor. These concept-

mappings suggest the idea of mapping the

strings abc and xyz onto each other in

a crosswise fashion, so that one group is

viewed as a successor-group and the other

is viewed as a predecessor-group, with the

rightmost letter of one corresponding to the

leftmost letter of the other, and vice versa.

This idea can be succinctly characterized

by a set of \vertical-bridge" themes repre-

senting string-position and group-direction

symmetry. These themes are then clamped

at full activation, strongly promoting the

creation of new structures compatible with

the idea of a crosswise mapping and greatly

weakening existing structures incompatible

with this idea. The net e�ect is that the

original vertical mapping shown in Figure 1

is swiftly reorganized by codelets into a

new mapping consistent with the activated

themes. The top image in Figure 2 shows

the Workspace shortly after the themes

have been clamped. The original a{x and

c{z bridges have been destroyed and new

bridges are being built in their place. A

quite di�erent interpretation of the analogy

problem is now emerging. The bottom

image shows the �nal interpretation, in

which c and x are seen as corresponding.

In this way, themes allow Metacat to

e�ectively work backwards from a given

answer to a high-level understanding of

why the answer makes sense, even if the

program would be hard-pressed on its own

to come up with the answer in question.

Conclusion

To summarize, themes in Metacat can be

viewed as a medium through which ideas

made explicit at the \cognitive" level can

actively inuence and guide the course

of processing at the \subcognitive" level.

By strongly activating di�erent patterns of

themes in the Themespace, the program can

explicitly focus on di�erent high-level ideas

as it works on understanding an analogy

problem. Furthermore, once an answer has

been understood, its associated themes rep-

resent a characterization of the key ideas

underlying the answer, which can subse-

quently be used as the basis for comparing

and contrasting the answer with other an-

swers encountered previously.

Acknowledgements

This research is supported in part by

Sun Microsystems Co.Academic Equip-

ment Grant #EDUD-NAFO-960418 and by

grants to the Center for Research on Con-

cepts and Cognition from the College of

Arts and Sciences of Indiana University.

References

[Chi et al., 1989] Chi, M., Bassok, M.,

Lewis, M., Reimann, P., and Glaser,

R. (1989). Self-explanations: How stu-

dents study and use examples in learn-

ing to solve problems. Cognitive Science,

13:145{182.

[Hofstadter and FARG, 1995] Hofstadter,

D. R. and FARG (1995). Fluid Concepts

and Creative Analogies: Computer Mod-

els of the Fundamental Mechanisms of

Thought. Basic Books, New York.

[Mitchell, 1993] Mitchell, M. (1993).

Analogy-making as Perception. MIT

Press/Bradford Books, Cambridge, MA.

[VanLehn et al., 1992] VanLehn, K., Jones,

R., and Chi, M. (1992). A model of the

self-explanation e�ect. The Journal of the

Learning Sciences, 2(1):1{59.

8


