
An Introductory CS Course for Cognitive Science Students

James B. Marshall
Computer Science Program

Pomona College
Claremont, California 91711

marshall@cs.pomona.edu

Abstract

This paper describes an introductory computer sci-
ence course recently developed at Pomona College
that is designed specifically for liberal arts stu-
dents majoring in cognitive science with no pre-
vious technical background in programming. A
key component of the course is the use of low-cost
robots to illustrate ideas about the computational
foundations of cognition in a hands-on way. We
describe the pedagogical objectives of the course
and outline the major topics covered, including the
robotics section and its relationship to the other
course topics.

Introduction
Pomona is one of a small but growing number of un-
dergraduate liberal arts colleges to offer both a ma-
jor and minor in cognitive science. The Department
of Linguistics and Cognitive Science, which adminis-
ters the major, comprises a core group of faculty with
backgrounds in linguistics, philosophy, and psychol-
ogy. Faculty from several other departments are affil-
iated with the program as well, including computer sci-
ence, neuroscience, anthropology, and music. Students
majoring in cognitive science are required to take a wide
range of courses in linguistics, psychology, and philos-
ophy, reflecting the inherently interdisciplinary nature
of the field. However, no computer science courses of
any type are presently required for the major, although
students may count certain CS courses such as Artifi-
cial Intelligence, Neural Networks, or Theory of Com-
putation as elective credit toward the major if they so
choose. Unfortunately, these CS courses are designed
primarily for upper-level CS majors, and assume a sig-
nificant amount of programming experience or mathe-
matical sophistication. Their prerequisites usually pre-
clude interested cognitive science students from taking
them.

The unavailability of a suitable CS course for cogni-
tive science majors and the consequent lack of any CS

requirement has until recently represented a serious de-
ficiency of the program. This is especially ironic given
the importance placed on the notion ofcomputationas
an organizing principle in modern cognitive science’s
conception of the mind. One could argue that the funda-
mental difference between cognitive science and other
closely related fields such as cognitive psychology is
the former’s emphasis on viewing human cognitive pro-
cesses as a type of computation, and on building explicit
models of these processes in the form of computer pro-
grams. Furthermore, computation plays an important
role in the philosophy of mind, with philosophical ar-
guments and debates about the mind-body problem of-
ten assuming a firm grasp of Turing machines and their
properties. Students graduating with a major in cogni-
tive science need to have more than just a passing ac-
quaintance with these ideas, and ought to understand,
on a basic level gained through firsthand experience,
what it means to design, implement, and evaluate com-
putational models of cognition.

With these considerations in mind, we undertook to
develop a new introductory computer science course
that would address these needs. The course would
be targeted at students with backgrounds in linguistics,
psychology, philosophy, or neuroscience who intended
to major or minor in cognitive science. Our belief was
that for students to really understand what computa-
tion is all about, they need to get their hands dirty and
learn to program. No previous programming experience
would be presumed, but the goal would be to get stu-
dents up to speed sufficiently quickly to allow them to
write and experiment with programs that model various
aspects of cognition, such as learning, memory, percep-
tion, and language. This course, entitledCS 30: Com-
putation and Cognition, was offered for the first time in
the Fall of 2002.1

1The course was originally calledProgramming Methods
in Cognitive Science, but this title was deemed too narrow and
was subsequently changed.



Course Objectives
Due to the relatively large number of courses that cogni-
tive science students must take to fulfill their major and
distribution requirements, we knew that CS 30 would
be the only computer science course that most of them
would be able to take, so we wanted to make the course
as comprehensive and self-contained as possible. Given
the non-technical backgrounds of most of the students,
however, it was also important to maintain a realistic set
of expectations as to the level of programming sophis-
tication that could be reached within a single semester.
Above all, we wanted to motivate the programming top-
ics by concepts and examples arising from cognitive sci-
ence and artificial intelligence. Some of the “big” ques-
tions that we wanted students to come to grips with are
listed below:

• What is computation, and why is it important to cog-
nitive science?

• What aretop-down symbolicmodels andbottom-up
emergentmodels of cognition, and how do they differ
from one another?

• Are there any limitations to what can be computed,
in principle?

• What might these limits imply about human or ma-
chine intelligence?

• What isembodiedcognitive science?

Scheme, a modern dialect of Lisp, was chosen as
the main programming language for the course, in part
because symbolic approaches to modeling intelligence
have traditionally played a central role in AI through-
out its history. Furthermore, the simplicity of Scheme’s
syntax, its absence of strict type checking, and the ease
of using an interpreted language make it a good choice
for teaching programming concepts to beginners. After
students have acquired some hands-on experience with
symbolic programming in Scheme, they are in a much
better position to understand many of the arguments that
lie at the heart of the AI debate, such as Newell and
Simon’s physical symbol system hypothesis (Newell &
Simon 1976) and Searle’s Chinese Room thought exper-
iment (Searle 1980), both of which revolve around the
key notions of symbol and meaning. The use of Scheme
also facilitates the presentation of Turing machines and
computability, another important course topic.

Synopsis
The format of the course consisted of two 75-minute
lectures and one 75-minute closed lab session per week.
All lectures and labs were held in a computer classroom,
making it possible to assign in-class programming ex-
ercises in order to provide immediate reinforcement of
newly-introduced concepts.

A rough breakdown of course topics by week is given
below:

• Basic Symbol Manipulation and List Processing (1
week)

• Recursion and Data Abstraction (4 weeks)

• The Turing Test (1 week)

• Nautral Language Processing (1 week)

• Turing Machines and Computability (1 week)

• Physical Symbol Systems and the Chinese Room (1
week)

• Object-Oriented Programming (2 weeks)

• Neural Network Models of Memory and Learning (1
week)

• Robotics and Embodied Cognitive Science (1 week)

• Braitenberg Vehicles (1 week)

• Subsumption Architecture (1 week)

The first five weeks of the semester focused on teach-
ing students the fundamentals of programming, with
a strong emphasis placed on recursion and data ab-
straction. Aside from its emphasis on functional pro-
gramming, this material was not that different from
what one might find in a typical introductory course
for CS majors. For this part of the course, we relied
mainly on the first half of the textbookConcrete Ab-
stractions(Hailperin, Kaiser, & Knight 1999). Dur-
ing the sixth week, however, we began discussing top-
ics more directly relevant to cognitive science, starting
with the Turing Test. Students read Turing’s classic ar-
ticle, Computing Machinery and Intelligence(Turing
1950), as well as Douglas Hofstadter’s pieceA Cof-
feehouse Conversation on the Turing Test(Hofstadter
1981a), and wrote a summary of their own reactions.
This discussion in turn provided the background for
an extended programming assignment that led students
through the development of a small rule-based natu-
ral language processing system (Hailperin, Kaiser, &
Knight 1999, section 7.6). This program, though rela-
tively simple in structure, conveyed the flavor of many
symbolic AI models in a concrete way—in addition to
being a fun programming assignment in its own right.

We turned our attention next to Turing machines and
computability, which students had already gotten a pre-
view of from reading Turing’s article. A chapter from
John Casti’s bookSearching for Certainty(Casti 1991)
served as a good accompanying reading assignment for
this segment of the course. After discussing the Halt-
ing Problem, Church’s Thesis, and the universality of
computation, we developed a Turing machine simula-
tor in Scheme, and used it to investigate the properties
of “busy beaver” Turing machines. This in itself was



a nice illustration of the idea of universal computation,
showing how one type of “machine” (i.e., our Scheme
program) could fully mimic the behavior of other ma-
chines (i.e., Turing machines) when given appropriately
encoded descriptions of them (i.e., lists of symbols rep-
resenting state transition rules).

In one of the lab exercises, students experimented
with several five-state busy beaver machines, some of
which run for tens of millions of steps before halt-
ing. The general lesson here is that very simple rules
can give rise to surprisingly complex behavior—an ex-
tremely important idea that underlies many bottom-up
emergent models of cognition. The flip side of this is
that behavior that appears to be complex or purpose-
ful does not necessarily imply the existence of complex
underlying mechanisms. This idea has important impli-
cations for intelligence, and resurfaces again later in the
course in the context of robotics and Braitenberg vehi-
cles.

At this point, students were prepared to read and
discuss two of the most famous papers in AI: Newell
and Simon’sComputer Science as Empirical Inquiry, in
which they put forth their Physical Symbol System Hy-
pothesis (Newell & Simon 1976), and Searle’sMinds,
Brains, and Programs, in which he introduces his Chi-
nese Room argument against the claims of strong AI
(Searle 1980). Just for fun, we also read Hofstadter’s
pieceA Conversation with Einstein’s Brain(Hofstadter
1981b), which adds some useful perspective to the de-
bate.

The remainder of the course focused on the idea of
emergence and bottom-up approaches to modeling in-
telligence. Approximately two weeks were devoted
to object-oriented programming, which was motivated
by the development in Scheme of some simple neural
network models of memory and learning. One pro-
gramming assignment involved implementing a simu-
lation of McClelland’s Jets and Sharks interactive acti-
vation memory model (McClelland 1981) and experi-
mentally investigating its properties. Students readThe
Appeal of Parallel Distributed Processingby McClel-
land, Rumelhart, and Hinton (McClelland, Rumelhart,
& Hinton 1986) as background preparation for this as-
signment. We also briefly covered pattern associator
networks and the delta rule learning algorithm, although
unfortunately time constraints prevented us from going
any further into learning. Had more time been available,
coverage of multi-layer neural networks and the back-
propagation learning algorithm, reinforced by a suitable
programming assignment, would have been appropriate
at this point.

The final three weeks were devoted to the general
topic of embodied cognitive science. A key objective
here was to get the students to appreciate from firsthand

experience the following very important insight: intelli-
gent behavior depends critically on theinteractionof a
physical system with its environment (Pfeifer & Scheier
1999). To explore this idea, students were provided
with Handyboard/LEGO robot kits, along with step-
by-step assembly instructions taken from Fred Martin’s
textbookRobotic Explorations(Martin 2000). Using
Handyboards, however, made it necessary for students
to learn a new programming language—Interactive C—
which differs from Scheme in several fundamental
ways. On the one hand, exposing students to a signif-
icantly different computational formalism was a good
thing, for this reinforced the view of computation as be-
ing independent of any particular computer language
(although coverage of Turing machines accomplishes
this just as well). On the other hand, shifting gears so
late in the semester meant that there was not enough
time for students to really absorb the new language.
Luckily, this turned out not to be a serious hurdle for
most of the students, but it nevertheless detracted some-
what from the continuity of the course topics.

In any case, our study of embodied cognition cen-
tered around two topics: Braitenberg vehicles and
Brooks’ subsumption architecture. We began by read-
ing and discussing the first few chapters of Braiten-
berg’s seminal bookVehicles: Experiments in Syn-
thetic Psychology(Braitenberg 1984). Lab sessions and
homework assignments were devoted to implementing
some of the simpler types of creatures described in the
book using light sensors on the Handyboard robots.
During the first lab session, students built their LEGO
robot chassis and familiarized themselves with the tech-
nical details of the Handyboard controller and its Inter-
active C software interface.

In the following week’s lab, students started with a
control program for very simple locomotion (e.g., go-
ing straight at a constant speed), and then modified it
to produce more interesting behaviors, such as having
the robot wander in different directions and at different
speeds depending on its light sensor readings, or using
its bump sensors to avoid obstacles. This lab empha-
sized experimentation, and was therefore less structured
than earlier labs. In fact, students quickly realized that
experimentation was essential in trying to program their
robots to exhibit “intelligent” behavior, such as seeking
out a light source while not getting stuck, for it was sim-
ply too hard to predict in advance with any reliability
how well a particular program would work—even one
consisting of only a few lines of code. The overall be-
havior of the robot might be profoundly influenced by
small modifications to its program, or by variations in
its surrounding environment. For instance, the sample
program shown below, taken from a follow-up home-
work assignment, results in surprisingly effective light-
seeking behavior. Simply interchanging the variables



right andleft in the last two lines, however, results
in light-avoiding behavior.

/* motor and light sensor ports */
int LEFT_MOTOR = 1;
int RIGHT_MOTOR = 3;
int LEFT_EYE = 3;
int RIGHT_EYE = 4;

void main() {

while (1) {

/* read light intensity */
int left = normalize(analog(LEFT_EYE));
int right = normalize(analog(RIGHT_EYE));

/* activate motors */
motor(LEFT_MOTOR, right);
motor(RIGHT_MOTOR, left);

}
}

In addition to Braitenberg’s work, students read the
paperIntelligence Without Representationby Brooks,
which describes the subsumption architecture and the
behavior-based approach to robotics from a somewhat
philosophical point of view (Brooks 1991). Students
experimented with different subsumption-style control
programs for their Handyboards during their last lab
session and on a subsequent homework assignment.
Many of the robot exercises assigned in CS 30 were
based on labs and assignments originally developed by
Meeden and Kumar (Kumar & Meeden 1998; Meeden
2002).

Conclusion

Having students build and program physical robots,
even those as simple as the Handyboards, reinforced in
a concrete way many of the ideas encountered through-
out the course. For example, Braitenberg in his book
emphasizes what he calls “the law of uphill analysis and
downhill invention”, meaning that synthesizing com-
plex behaviors from simple mechanisms is often much
easier than attempting to infer the nature of the mecha-
nisms underlying some observed behavior. Students en-
countered this same phenomenon when experimenting
with robots, busy beaver Turing machines, and also in
the context of neural networks, where simple intercon-
nected processing units collectively gave rise to quite
complicated and surprising observed behaviors.

Although the use of robots is not essential to the suc-
cess of a course like CS 30, our experience has con-
vinced us that they can significantly enhance its effec-
tiveness, especially as a vehicle for teaching concepts

relating to emergence and bottom-up models of intel-
ligence. However, we believe they could also be used
just as effectively to illustrate aspects of top-down sym-
bolic models. For example, we can easily imagine hav-
ing students implement a production-system or logical-
inference based controller for a robot, although we have
not yet developed such an exercise ourselves.

All of the labs and homework assignments used in
the Fall 2002 offering of CS 30 are available on-line
at http://www.cs.pomona.edu/˜ marshall/cs30. We en-
courage others to use and adapt these materials for their
own courses as they see fit, and would be especially in-
terested to see the development of similar courses for
cognitive science students at other institutions.

References

Braitenberg, V. 1984.Vehicles: Experiments in Syn-
thetic Psychology. Cambridge, MA: MIT Press.

Brooks, R. A. 1991. Intelligence without representa-
tion. Artificial Intelligence47:139–160.

Casti, J. L. 1991. Proof or consequences. InSearching
for Certainty: What Scientists Can Know About the
Future. William Morrow. Chapter 6.

Hailperin, M.; Kaiser, B.; and Knight, K. 1999.Con-
crete Abstractions: An Introduction to Computer Sci-
ence Using Scheme. Brooks/Cole Publishing.

Hofstadter, D. R. 1981a. A coffeehouse conversation
on the Turing Test.Scientific American.

Hofstadter, D. R. 1981b. A conversation with Ein-
stein’s brain. InThe Mind’s I: Fantasies and Reflec-
tions on Self and Soul. New York: Basic Books. Chap-
ter 26, 430–457.

Kumar, D., and Meeden, L. 1998. A
robot laboratory for teaching artificial intelli-
gence. In Joyce, D., ed.,Proceedings of the
Twenty-ninth SIGCSE Technical Symposium
on Computer Science Education. ACM Press.
http://mainline.brynmawr.edu/Robots/ResourceKit.

Martin, F. G. 2000.Robotic Explorations: A Hands-
On Introduction to Engineering. Prentice-Hall.

McClelland, J. L.; Rumelhart, D. E.; and Hinton, G. E.
1986. The appeal of parallel distributed processing. In
Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume 1. Cambridge,
MA: MIT Press. Chapter 1, 3–44.



McClelland, J. L. 1981. Retrieving general and spe-
cific information from stored knowledge of specifics.
In Proceedings of the Third Annual Conference of the
Cognitive Science Society, 170–172.

Meeden, L. 2002. Computer Science 63 home page.
http://www.cs.swarthmore.edu/˜ meeden/cs63/f02/cs63.html.

Newell, A., and Simon, H. A. 1976. Computer science
as empirical inquiry: Symbols and search.Communi-
cations of the ACM19:113–126.

Pfeifer, R., and Scheier, C. 1999.Understanding In-
telligence. Cambridge, MA: MIT Press.

Searle, J. R. 1980. Minds, brains, and programs.Be-
havioral and Brain Sciences3:417–424.

Turing, A. M. 1950. Computing machinery and intel-
ligence.Mind 59:433–460.


