
Lab 14 — The Tortoise and the Hair The Way of the Program – Fall 2023

1. The turtle library in Python is available for drawing pictures using turtle graphics. Imagine a robotic
“turtle” starting in the center of the x-y plane at position (0, 0), facing east. The turtle has a “pen” in its hand,
which it uses to draw lines as it moves around the plane. Start Python and type the following two commands:

from turtle import *
reset()

This creates the graphics window and centers the turtle in the window. Typing forward(100) moves the
turtle 100 pixels forward, while backward(50) moves it backward 50 pixels. To rotate the turtle left 30
degrees, type left(30). You can also abbreviate these commands as fd(100), bk(50), and lt(30).
Here is a list of the main turtle commands and their abbreviations:

Command Abbreviation Action performed
forward(distance) fd move forward
backward(distance) bk move backward
left(degrees) lt left turn (counterclockwise)
right(degrees) rt right turn (clockwise)
setheading(degrees) seth set turtle's heading to the given angle
goto(x, y) - move to position (x, y)
home() - move to position (0, 0) and set heading to 0 (east)
circle(radius) - draw a circle starting from the current position/heading
dot(size, "color name") - draw a circular dot of diameter size in the given color
penup() up lift the pen up (no drawing will occur when moving)
pendown() down put the pen down (drawing will occur when moving)
pencolor("color name") color set the color of the pen
pensize(width) width set the thickness of the pen in pixels
reset() - reset the turtle and drawing window to the initial state
showturtle() st make the turtle visible
hideturtle() ht make the turtle invisible

Experiment with these commands interactively, until you are comfortable with them.

2. Download the file lab14.py from the class web page (under Labs), open it in IDLE, and examine the spiral
function definition. Then test it out by calling spiral(10, 20) and spiral(50, 5).

3. You'll notice that it takes some time for the turtle to finish the drawing. We can speed up the turtle with the
command speed(value), where value is a number from 0 to 10. Speed 0 is the fastest, speed 1 is the
slowest, and values from 2 to 10 gradually increase in speed. Add the line speed(5) immediately after the
reset() command and run the program again. (Calling reset() automatically resets the speed to 3, so
make sure to put the call to speed after reset.) Try other speeds for comparison, including 0, 1, and 10.
You can find out more info on the speed command by typing help(speed).

4. As another example, the function drawface(x, y, diameter) will draw a simple “face” of a specified
diameter, centered at location (x, y) in the window. This program illustrates the use of the dot command to
draw circles of different sizes, and the pensize command to change the thickness of the line drawn by the
turtle. Notice also that after drawing the face, the turtle moves back to location (x, y) and leaves the pen in
the “up” state. Test out this function by calling drawface(0,0,300) and drawface(-200,-200,150).

5. We can use turtle graphics and recursion to draw some interesting geometric curves. One famous example is
the Koch curve (pronounced “coke”). The Koch curve is described in terms of “levels”. A level-0 curve is
just a straight line segment. A level-1 curve is formed by placing a “bump” in the middle of the line segment,
and a level-2 curve is formed by placing bumps on each of the level-1 segments, as shown on the next page:

Continuing this process forever produces the full Koch curve. Notice that the original straight line segment
gets replaced by four smaller pieces, each of which is 1/3 the length of the original. The bump rises at 60
degrees, and forms two sides of an equilateral triangle. Write a recursive function called drawkoch(length, n)
that draws a level-n Koch curve length pixels wide. For example, drawkoch(300, 2) should produce the
third curve shown above. Here is an outline of the recursive algorithm:

To draw a level 0 Koch curve (the base case), the turtle should just draw a single straight line of size length
by moving forward length pixels.

To draw a level n Koch curve (the general case), the turtle should:
 recursively draw a level n–1 Koch curve of size length/3
 turn left 60 degrees
 recursively draw a level n–1 Koch curve of size length/3
 turn right 120 degrees
 recursively draw a level n–1 Koch curve of size length/3
 turn left 60 degrees
 recursively draw a level n–1 Koch curve of size length/3

6. If you draw three level-n Koch curves at 120-degree angles, you get a level-n “Koch snowflake”:

Using drawkoch as a helper function, define a new (non-recursive) function called snowflake(n) that first
calls reset() and then draws a level-n Koch snowflake. For example, calling snowflake(4) should
produce the level-4 snowflake shown above. To greatly speed up the drawing process, try adding the
command tracer(0) to the very beginning of your snowflake function to turn off the little turtle icon before
drawing anything, and the command tracer(1) to the very end of the function, to turn the icon back on
after drawing is complete.

7. Another interesting recursive curve is the C-curve. It is formed in a similar way to the Koch curve except that
instead of replacing each segment by four smaller segments of length/3, the C-curve replaces each segment
by two segments of length/sqrt(2) that form a 90-degree “elbow”. The first few levels are shown below:

Here is a level-12 C-curve generated from an initial line segment of length 200:

Write a recursive function called drawC(length, n) that draws a level-n C-curve of size length. Your drawC
function should do the following:

To draw a C-curve of level 0, just draw a straight line segment length pixels long.

To draw a C-curve of level n:
 turn left 45 degrees
 recursively draw a level n-1 C-curve of size length/sqrt(2)
 turn right 90 degrees
 recursively draw a level n-1 C-curve of size length/sqrt(2)
 turn left 45 degrees

Here is a test program for testing your drawC function with different values of n. Try it out with n = 13.

def hair(n):
 tracer(0)
 reset()
 drawface(0, 0, 300)
 goto(-100, 0)
 down()
 drawC(200, n)
 tracer(1)

8. We can also draw recursive “trees”, as follows. A level-0 tree consists of a single “trunk”, with no branches.

A level-1 tree has a trunk, with two symmetric branches at the top, each of which are level-0 trees consisting
of slightly shorter line segments. The branches of a level-2 tree are slightly shorter level-1 trees, and so on:

 level 0 level 1 level 2 . . .

Write a recursive function called drawbranch(length, n) that draws a tree as follows:

To draw a level 0 tree:
 move the turtle forward to draw a line segment of size length
 move the turtle backward one length so that it returns to its starting point

To draw a level n tree:
 draw a line segment of size length (the trunk)
 turn left 15 degrees
 recursively draw a level n–1 tree of size length*0.8 (the smaller left branch)
 turn right 30 degrees
 recursively draw a level n–1 tree of size length*0.8 (the smaller right branch)
 turn left 15 degrees
 move the turtle backward one length so that it returns to its starting point

You should also define the function tree(n) shown below, which clears the drawing window and repositions
the turtle at (0, –300), near the bottom of the window, with a heading of 90 degrees (north), and then calls
drawbranch to draw a level-n tree with an initial branch length of 100 pixels.

def tree(n):
 tracer(0)
 reset() # clear drawing window
 up() # pen up
 goto(0, -300) # reposition turtle at bottom of window
 setheading(90) # point the turtle due north
 down() # pen down
 drawbranch(100, n)
 tracer(1)

9. Once your tree-drawing program works, experiment with different values for the trunk length, branching
angle, and “shrinkage” parameters (the factor 0.8 in the algorithm above). You could also try drawing more
than two branches. Also, try drawing a small green dot (a “leaf”) at the end of each level-0 line segment.

Another idea that can make your trees look much more realistic is to introduce a bit of random variation by
choosing the shrinkage factor randomly from a range of values, such as from 0.7 to 0.9, instead of always
using 0.8. You could also try adding some random variation to the turn angles, or changing the thickness of
the pen depending on the level of recursion. How lifelike can you make your recursive trees look?

