
Lab 13 – Off to See the Wizard The Way of the Program – Fall 2023

 Keep the following guidelines in mind when writing recursive programs:
○ Base Case:

solve the simplest version (or versions) of the problem directly
○ General Case:

(a) make the problem slightly smaller
(b) let the wizard (i.e., the recursion) “magically” solve the smaller problem for you
(c) use the result of (b) to help you solve the original problem

Download and unzip lab13_files.zip from the class web page, and open lab13.py. This file is set up
to use the autotester program. For example, to test your addup function, just type test(addup).

1. Write a recursive function called addup(nums) that takes a list of numbers and returns their sum. A list
containing no numbers should sum to 0. For a non-empty list, let the recursion add up most of the
numbers for you (all of them except the first). You are not allowed to use a loop. For example:

>>> addup([5, 4, 3, 2, 1])
15
>>> addup([6, 5, 4, 3, 2, 1])
21

2. Write a recursive function called smallest(nums) that takes a list of numbers, which you may assume will
not be empty, and returns the smallest one in the list. If the list has only one number, the answer is obvious.
Otherwise, let the recursion figure out the smallest number appearing after the first number in the list, then
compare that to the first number. You are not allowed to use Python's min function. For example:

>>> smallest([5, 4, 3, 2, 1])
1
>>> smallest([2, 7, 5, 9, 3, 9])
2
>>> smallest([9])
9

3. Write a recursive function called countfives(nums) that takes a list of numbers and returns how many fives
appear in the list. An empty list contains no numbers, so the result should just be 0. For a non-empty list,
let the recursion figure out how many fives appear after the first number in the list, then test the first
number directly to see if you need to modify the recursion's answer. Example:

>>> countfives([5, 10, 5, 5, 20, 30, 5])
4
>>> countfives([10, 20, 30, 5, 40])
1

4. Write a recursive program called reverse(s) that takes a string s and returns its reversal. The reversal of the
empty string is just the empty string. For a non-empty string, remove the first letter from the string, and let
the recursion reverse the remaining portion of the string for you. Then attach the first letter to the end.

>>> reverse('')
''
>>> reverse('watermelon')
'nolemretaw'

5. Write a recursive function called double(s) that takes a string as input and returns a new string with all of
the original letters doubled. Doubling an empty string just gives the empty string. For a non-empty string,
let the recursion double most of the string for you (all letters except the first). For example:

>>> double('')
''
>>> double('watermelon')
'wwaatteerrmmeelloonn'

Lab 13 – Off to See the Wizard The Way of the Program – Fall 2023

 Keep the following guidelines in mind when writing recursive programs:
○ Base Case:

solve the simplest version (or versions) of the problem directly
○ General Case:

(a) make the problem slightly smaller
(b) let the wizard (i.e., the recursion) “magically” solve the smaller problem for you
(c) use the result of (b) to help you solve the original problem

Download and unzip lab13_files.zip from the class web page, and open lab13.py. This file is set up
to use the autotester program. For example, to test your addup function, just type test(addup).

1. Write a recursive function called addup(nums) that takes a list of numbers and returns their sum. A list
containing no numbers should sum to 0. For a non-empty list, let the recursion add up most of the
numbers for you (all of them except the first). You are not allowed to use a loop. For example:

>>> addup([5, 4, 3, 2, 1])
15
>>> addup([6, 5, 4, 3, 2, 1])
21

2. Write a recursive function called smallest(nums) that takes a list of numbers, which you may assume will
not be empty, and returns the smallest one in the list. If the list has only one number, the answer is obvious.
Otherwise, let the recursion figure out the smallest number appearing after the first number in the list, then
compare that to the first number. You are not allowed to use Python's min function. For example:

>>> smallest([5, 4, 3, 2, 1])
1
>>> smallest([2, 7, 5, 9, 3, 9])
2
>>> smallest([9])
9

3. Write a recursive function called countfives(nums) that takes a list of numbers and returns how many fives
appear in the list. An empty list contains no numbers, so the result should just be 0. For a non-empty list,
let the recursion figure out how many fives appear after the first number in the list, then test the first
number directly to see if you need to modify the recursion's answer. Example:

>>> countfives([5, 10, 5, 5, 20, 30, 5])
4
>>> countfives([10, 20, 30, 5, 40])
1

4. Write a recursive program called reverse(s) that takes a string s and returns its reversal. The reversal of the
empty string is just the empty string. For a non-empty string, remove the first letter from the string, and let
the recursion reverse the remaining portion of the string for you. Then attach the first letter to the end.

>>> reverse('')
''
>>> reverse('watermelon')
'nolemretaw'

5. Write a recursive function called double(s) that takes a string as input and returns a new string with all of
the original letters doubled. Doubling an empty string just gives the empty string. For a non-empty string,
let the recursion double most of the string for you (all letters except the first). For example:

>>> double('')
''
>>> double('watermelon')
'wwaatteerrmmeelloonn'

6. Write a recursive function called swap(letter1, letter2, s) that takes two letters and a string and returns a
new version of the string with all occurrences of letter1 and letter2 swapped. Hint: let the recursion do the
swapping in the part of the string beyond the first letter, and use if-tests to decide which letter to
attach to the front of the new string.

>>> swap('o', 'i', 'lollipop')
'lillopip'
>>> swap('l', 'p', 'lollipop')
'poppilol'
>>> swap('o', 'x', 'lollipop')
'lxllipxp'

7. Write a recursive function called commas(digits) that takes a string of digits such as “1234567” as input
and returns a new digit string with commas inserted in all the appropriate places. If the input string
contains three or fewer digits, inserting commas is not necessary. For longer strings, insert one new comma
at position -3 (third from the right), and then let the recursion insert all the other commas to the left of this
position for you.

>>> commas('123')
'123'
>>> commas('1234')
'1,234'
>>> commas('1234567')
'1,234,567'
>>> commas('123456789000')
'123,456,789,000'

8. Write a recursive function called fib(n) that returns the nth Fibonacci number. The nth Fibonacci
number is just the sum of the previous two Fibonacci numbers in the sequence. By definition, the first two
Fibonacci numbers, fib(1) and fib(2), are both 1. The beginning of the sequence is shown below:
 1 1 2 3 5 8 13 21 34 55 89 . . .
>>> fib(1)
1
>>> fib(10)
55

9. Write a recursive function called square(n), which computes n2 using only addition and subtraction.
You are not allowed to use multiplication or exponentiation. Hint: consider the picture below, in which
square(n) is equal to the number of boxes in the grid. To reduce the problem to a smaller size, consider just
the shaded area, which represents the value of (n – 1)2.

10. Write a recursive function called subsets(letters) that takes a string of letters with no duplicates as input
such as 'abc', representing a set of letters, and returns a list of strings representing all the unique subsets
that can be made from the letters. The order of the letters in a string does not matter (e.g., 'abc' and 'bac'
would represent the same subset). The order in which the strings appear in the final list does not matter,
either. The empty string has exactly one possible subset, namely the empty string itself. (Hint: to construct
the final answer from the result of the recursion, it will be helpful to use a for-loop.) Examples:

>>> subsets('bc')
['bc', 'b', 'c', '']
>>> subsets('abc')
['abc', 'ab', 'ac', 'a', 'bc', 'b', 'c', '']
>>> subsets('')
['']

6. Write a recursive function called swap(letter1, letter2, s) that takes two letters and a string and returns a
new version of the string with all occurrences of letter1 and letter2 swapped. Hint: let the recursion do the
swapping in the part of the string beyond the first letter, and use if-tests to decide which letter to
attach to the front of the new string.

>>> swap('o', 'i', 'lollipop')
'lillopip'
>>> swap('l', 'p', 'lollipop')
'poppilol'
>>> swap('o', 'x', 'lollipop')
'lxllipxp'

7. Write a recursive function called commas(digits) that takes a string of digits such as “1234567” as input
and returns a new digit string with commas inserted in all the appropriate places. If the input string
contains three or fewer digits, inserting commas is not necessary. For longer strings, insert one new comma
at position -3 (third from the right), and then let the recursion insert all the other commas to the left of this
position for you.

>>> commas('123')
'123'
>>> commas('1234')
'1,234'
>>> commas('1234567')
'1,234,567'
>>> commas('123456789000')
'123,456,789,000'

8. Write a recursive function called fib(n) that returns the nth Fibonacci number. The nth Fibonacci
number is just the sum of the previous two Fibonacci numbers in the sequence. By definition, the first two
Fibonacci numbers, fib(1) and fib(2), are both 1. The beginning of the sequence is shown below:
 1 1 2 3 5 8 13 21 34 55 89 . . .
>>> fib(1)
1
>>> fib(10)
55

9. Write a recursive function called square(n), which computes n2 using only addition and subtraction.
You are not allowed to use multiplication or exponentiation. Hint: consider the picture below, in which
square(n) is equal to the number of boxes in the grid. To reduce the problem to a smaller size, consider just
the shaded area, which represents the value of (n – 1)2.

10. Write a recursive function called subsets(letters) that takes a string of letters with no duplicates as input
such as 'abc', representing a set of letters, and returns a list of strings representing all the unique subsets
that can be made from the letters. The order of the letters in a string does not matter (e.g., 'abc' and 'bac'
would represent the same subset). The order in which the strings appear in the final list does not matter,
either. The empty string has exactly one possible subset, namely the empty string itself. (Hint: to construct
the final answer from the result of the recursion, it will be helpful to use a for-loop.) Examples:

>>> subsets('bc')
['bc', 'b', 'c', '']
>>> subsets('abc')
['abc', 'ab', 'ac', 'a', 'bc', 'b', 'c', '']
>>> subsets('')
['']

11. Write a recursive function called anyeven(nums) that takes a list of numbers and returns True if any
number in the list is even, or False otherwise. What is an appropriate answer for the empty list?
Hint: a number n is even if n % 2 == 0. Examples:

>>> anyeven([3, 5, 6, 7, 9, 10])
True
>>> anyeven([2, 3, 5, 7, 9])
True
>>> anyeven([3, 5, 7, 9, 11])
False

12. Write a recursive program called power(b, n) that computes and returns the value bn, where n is any
integer exponent > 0 and b is any base. By definition, b0 equals 1 for any b. In general, bn equals bn–1
times b. For example, to compute 24, all your program needs to do is compute 23 and then multiply that
value by 2. To compute 105, it can just compute 104 and multiply that value by 10. Examples:

>>> power(2, 4)
16
>>> power(5, 0)
1
>>> power(10, 5)
100000

13. The Fibonacci sequence of numbers described in Exercise 8 above was defined by the famous Italian
mathematician Fibonacci around the year 1200. Its recursive definition is given below:

Fib(1) = 1
Fib(2) = 1
Fib(n) = Fib(n – 1) + Fib(n – 2)

Much later, the French mathematician Lucas defined his own sequence of numbers 2, 1, 3, 4, 7, 11, 18, 29,
47, … , nowadays called the Lucas sequence, using a similar recursive rule, shown below:

Lucas(1) = 2
Lucas(2) = 1
Lucas(n) = Lucas(n – 1) + Lucas(n – 2)

Not to be outdone by Fibonacci or Lucas, the not-so-famous American computer scientist Marshall very
recently defined his own sequence of numbers with a much more impressive-looking recursive definition:

Marshall(1) = 2
Marshall(2) = 2
 (Marshall(n – 1)) 2 + (Marshall(n – 2)) 3
Marshall(n) = ————————————————
 3 × Marshall(n – 2)

Unfortunately, for some reason this sequence never really caught on, despite its obviously much more
sophisticated mathematical structure (compared to Fibonacci's and Lucas's simple formulas). Write a
recursive function called marshall(n) that computes and returns the nth Marshall number. What are the
first ten Marshall numbers? Can your code be simplified? If so, define a simpler version of your function
called marshall2(n) and explain in a comment in your code why it is equivalent to the original.

14. Since the decimal (base 10) number 970 ends in 0, it equals 10 times 97. Likewise, since the binary (base
2) number 101010 ends in 0, it equals 2 times the value of the binary number 10101. Similarly, 971 equals
10 times 97, plus 1, and 101011 equals 2 times the value of 10101, plus 1. Based on this idea, write a
recursive function called binary2decimal(binstring) that takes a non-empty string of binary digits such as
“101010” and returns its decimal equivalent. Examples:

binary2decimal('101010') => 42
binary2decimal('10101') => 21
binary2decimal('101011') => 43
binary2decimal('1111') => 15

11. Write a recursive function called anyeven(nums) that takes a list of numbers and returns True if any
number in the list is even, or False otherwise. What is an appropriate answer for the empty list?
Hint: a number n is even if n % 2 == 0. Examples:

>>> anyeven([3, 5, 6, 7, 9, 10])
True
>>> anyeven([2, 3, 5, 7, 9])
True
>>> anyeven([3, 5, 7, 9, 11])
False

12. Write a recursive program called power(b, n) that computes and returns the value bn, where n is any
integer exponent > 0 and b is any base. By definition, b0 equals 1 for any b. In general, bn equals bn–1
times b. For example, to compute 24, all your program needs to do is compute 23 and then multiply that
value by 2. To compute 105, it can just compute 104 and multiply that value by 10. Examples:

>>> power(2, 4)
16
>>> power(5, 0)
1
>>> power(10, 5)
100000

13. The Fibonacci sequence of numbers described in Exercise 8 above was defined by the famous Italian
mathematician Fibonacci around the year 1200. Its recursive definition is given below:

Fib(1) = 1
Fib(2) = 1
Fib(n) = Fib(n – 1) + Fib(n – 2)

Much later, the French mathematician Lucas defined his own sequence of numbers 2, 1, 3, 4, 7, 11, 18, 29,
47, … , nowadays called the Lucas sequence, using a similar recursive rule, shown below:

Lucas(1) = 2
Lucas(2) = 1
Lucas(n) = Lucas(n – 1) + Lucas(n – 2)

Not to be outdone by Fibonacci or Lucas, the not-so-famous American computer scientist Marshall very
recently defined his own sequence of numbers with a much more impressive-looking recursive definition:

Marshall(1) = 2
Marshall(2) = 2
 (Marshall(n – 1)) 2 + (Marshall(n – 2)) 3
Marshall(n) = ————————————————
 3 × Marshall(n – 2)

Unfortunately, for some reason this sequence never really caught on, despite its obviously much more
sophisticated mathematical structure (compared to Fibonacci's and Lucas's simple formulas). Write a
recursive function called marshall(n) that computes and returns the nth Marshall number. What are the
first ten Marshall numbers? Can your code be simplified? If so, define a simpler version of your function
called marshall2(n) and explain in a comment in your code why it is equivalent to the original.

14. Since the decimal (base 10) number 970 ends in 0, it equals 10 times 97. Likewise, since the binary (base
2) number 101010 ends in 0, it equals 2 times the value of the binary number 10101. Similarly, 971 equals
10 times 97, plus 1, and 101011 equals 2 times the value of 10101, plus 1. Based on this idea, write a
recursive function called binary2decimal(binstring) that takes a non-empty string of binary digits such as
“101010” and returns its decimal equivalent. Examples:

binary2decimal('101010') => 42
binary2decimal('10101') => 21
binary2decimal('101011') => 43
binary2decimal('1111') => 15

