
Lab 11 – A Touch of Class The Way of the Program - Fall 2023

1. Download and unzip lab11_files.zip from the class web page and open BankAccount.py, which contains the

BankAccount definition we wrote in class. When loaded, this file creates three BankAccount objects called
b1, b2, and b3. Test out these objects in the Python shell by interactively calling their methods inquiry,
withdraw, and deposit a few times with different values.

2. Add the too-good-to-be-true method restoreBalance(self), which resets the balance of an account back to its
original opening amount. Hint: create a new instance variable called self.originalBalance to enable a
BankAccount object to remember what its opening balance was at the time it was constructed. For example:

>>> b1.inquiry()
Balance is currently $35.00
>>> b1.restoreBalance()
Balance restored to $500.00

3. Now let’s make BankAccount objects be password-protected. Modify the __init__ constructor so that it takes
an additional parameter password as input, which will be a password string. For example:

b1 = BankAccount(1001, 500.00, "open sesame")

The account should process requests only if it is accompanied by the password with which the account was
created, otherwise it should refuse the request. You’ll need to add an extra password parameter to the other
BankAccount methods, and modify their code accordingly. Be sure to test everything thoroughly. Here is a
sample interaction:

>>> b1.withdraw(100, "abracadabra")
Sorry, that password is incorrect
>>> b1.withdraw(100, "open sesame")
Withdrew $100.00 from account #1001
>>> b1.inquiry("stick em up")
Sorry, that password is incorrect
>>> b1.inquiry("open sesame")
Balance is currently $400.00

4. Open the file Coin.py, which defines a simple Coin class. Running this code constructs a new Coin object with
its self.sideup instance variable initialized to “Heads”. Add a new method called toss(self) to the Coin class
that simulates a single coin toss by randomly assigning a new value of “Heads” or “Tails” to self.sideup and
printing out the result of the toss. For example:

>>> nickel.toss()
We got Tails
>>> print(nickel)
Tails

5. Next, add two new instance variables to Coin called self.headCount and self.tailCount, to keep track of
the total number of times a Coin comes up Heads or Tails, respectively, when tossed. Also complete the method
reportStats(self), which should report the numbers of Heads and Tails obtained so far. You can test your code
by calling the program testcoin(), which simulates ten coin tosses and reports the results.

6. Open the file Student.py, which contains the outline for a Student class, and examine the teststudent() program.
Your job is to complete the class definition so that the test program works as shown below:

>>> teststudent()
Recorded a quiz score of 83 for Stu
Recorded a quiz score of 79 for Stu
Average quiz score for Stu is 81.0 (continued on next page)

Recorded a quiz score of 90 for Sue
Recorded a quiz score of 96 for Sue
Recorded a quiz score of 87 for Sue
Recorded a quiz score of 100 for Sue
Average quiz score for Sue is 93.25

A Student object should keep track of three instance variables: self.name, self.scoreTotal, and
self.count. Calling the record(self, score) method should add the given quiz score to self.scoreTotal,
increase self.count by 1, and print a message of the form “Recorded a quiz score of ___ for ___”. The
reportAverage(self) method should compute the student’s current quiz average based on self.scoreTotal and
self.count, and print a message of the form “Average quiz score for ___ is ___”.

7. Open the file Auditorium.py and complete the Auditorium class definition for managing the number of open
and filled seats in an auditorium. An Auditorium object has a seating capacity that is specified when it is
constructed. Once this capacity is reached, no more seats can be filled. An Auditorium should keep track of its
seating capacity, and the number of seats that are currently open. Write and test the following methods:

• seatsAvailable(self) returns the current number of empty seats.
• seatsOccupied(self) returns the current number of occupied seats.
• fillSeats(self, numRequested) attempts to fill up to numRequested seats. If numRequested is greater than the

number of currently available seats, all available seats are filled and a message reporting the number of
requests that could be accommodated is printed.

• lookInside(self) prints out the current number of filled and unfilled seats.

Below are some examples of interacting with an Auditorium object:

>>> carnegieHall = Auditorium(1500)
>>> carnegieHall.lookInside()
No one is inside
>>> carnegieHall.fillSeats(1000)
Filled 1000 seats
>>> carnegieHall.lookInside()
1000 people inside with 500 seats left
>>> carnegieHall.fillSeats(700)
Sorry, sold out after filling 500 seats
>>> carnegieHall.lookInside()
1500 people inside with 0 seats left
>>> carnegieHall.fillSeats(100)
Sorry, all sold out

8. Open the file PlayingCard.py, which contains the outline of a PlayingCard class for representing individual
playing cards, as well as another class called CardDeck for representing a full deck of 52 cards, and a test
program war() that simulates the card game of War. Your job is to complete the PlayingCard class. The
constructor should take two parameters: a number from 2 to 14 representing the card’s rank (with 11=Jack,
12=Queen, 13=King, and 14=Ace), and a number from 1 to 4 representing the suit (1=Clubs, 2=Hearts,
3=Diamonds, 4=Spades). PlayingCard objects should have the following methods:

• getRank(self) returns the rank as a number from 2 to 10 or the string “Jack”, “Queen”, “King”, or “Ace”

• getSuit(self) returns the suit as the string “Clubs”, “Hearts”, “Diamonds”, or “Spades”

• __str__(self) returns a string description of the card of the form “2 of Clubs”, “Ace of Spades”, etc.

• equals(self, otherCard) returns True if this card has exactly the same rank and suit as otherCard

• trumps(self, otherCard) returns True if this card has a higher rank than otherCard

Test your class definition by creating some PlayingCard objects and calling their methods interactively at the
Python prompt. When you are satisfied that your methods work, try running the test program war().

