
Lab 10 – Transforming Your Image The Way of the Program - Fall 2023

Download lab10_files.zip from the class web page under Labs and unzip it on your Desktop. The folder
contains a collection of GIF files that you can use for image transformations, as well as the pix graphics module.
The starting code for the lab is in startcode.py, which contains the functions we wrote in class yesterday.

1. Using these functions as a guide, write a new function darken(img) that takes an image and darkens each

pixel by multiplying each RGB value by 0.5. Also write a function called lighten(img) that lightens each
pixel by doubling the RGB values. You will need to use the clip function to make sure that the doubled
values stay within the range 0-255.

2. Next, write a general-purpose function called brightness(img, factor) that changes the brightness of an image
by multiplying each RGB value by the factor parameter. For example, you should be able to achieve the
same effect as darken and lighten by calling brightness(img, 0.5) and brightness(img, 2), respectively.

3. Write a function addnoise(img) that takes an image and adds some random noise to each color channel—that
is, to each RGB value. There are many ways you could do this. For example, you could generate a single
random number in the range -100 to +100, and add it to the three RGB values (make sure to use clip to keep
the values in the range 0-255), or you could generate three different random numbers and add each one
separately to R, G, and B. Try it both ways to see which way looks “noisier”. What if you use a different
random number range, or add noise to just one color channel instead of all three?

4. In class we wrote the reflectLeft function that “reflects” an image horizontally by copying the pixels in the
left half of each horizontal row to their symmetric positions in the right half of the row. Write a new function
called reflectRight(img) that copies the pixels in the opposite direction, from the right half of each row to the
left half. For this version, have x start in the middle of the row and go to the right, while oppositeX starts
in the middle and goes left. Try out your program on santa.gif. Do you like this version of Santa any better?

5. The red(img) function currently sets all of the pixels of an image to red. Modify it so that it sets only the
top half of the image to red. Hint: you will need to modify one of the nested for-loops appropriately, using
integer division (//) to avoid introducing floating-point values into the range.

6. Modify red so that it sets only the left half of the image to red.

7. Modify red so that it sets only the bottom half of the image to red. Hint: you’ll need to specify a different
starting value in one of the for-loops, in addition to an ending value.

8. Modify red so that it sets only the right half of the image to red.

9. Now change red back to the original version, so that it sets the entire image to red, before going on to the
exercises below. Do these exercises in the order shown. Also make sure to use the square test image slc2.gif.

a) Modify red so that it sets the “southwest triangular” region to red, as shown in figure (a) below.
b) Modify red so that it sets the “northeast triangular” region to red, as shown in (b).
c) Modify red so that it sets the “northwest triangular” region to red, as shown in (c).
d) Modify red so that it sets the “southeast triangular” region to red, as shown in (d).

 (a) (b) (c) (d)

10. Write a function called hflip(img) that takes an image and flips it horizontally. For example:

One way to do this is to use a nested loop structure that loops through each row of the image, starting with
the top row and working down to the bottom row. For each row, the outermost two pixels are swapped, then
the next two inner pixels, then the next two, and so on until we come to the middle of the row. Then the
outer loop continues with the next row. To aid debugging, it might help temporarily to include a call to
img.update() immediately after changing each pixel, so that you can see the order that the pixels get
updated. After you are sure your loop works correctly, you can move the update call to the end of your
function, if you prefer, so that all the pixels get updated at once, right before the function terminates.

11. Write a function called vflip(img) that takes an image and flips it vertically. For example:

This function will be similar in structure to hflip, except that this time we will process the image column by
column. For each column, we swap the top and bottom pixels in the column, then the next two inner pixels,
and so on, until we reach the middle of the column. Then we continue with the next column.

12. Next, write a function called enlarge(img) that creates a new enlarged version of the given image. To do
this, first construct a new blank image with a width and height twice as big as the original. You can find out
the dimensions of an image by calling img.getWidth() and img.getHeight(). Then go through the
original image pixel by pixel: for each pixel p at location (x, y) in the original, you will need to color four
pixels in the new image the same color as p. See the diagram below. After all of the pixels in the new image
have been initialized, the new image should be returned.

13. The method img.getMouse() returns a Point corresponding to the location clicked by the mouse in a
Picture window. Using getMouse, write a function called crop(img) that waits for the user to click on two
points, then creates and returns a new image consisting of the pixels within the rectangular region delimited
by the mouse clicks. For example, typing img2 = crop(img) at the Python prompt and then clicking on
the upper left and lower right corners of a rectangular region within img should create a new image img2
containing just that region.

14. Write a function soften(img) that creates and returns a new image of the same size and sets each pixel in the
new image to be the average color of the surrounding pixels in the original image. More precisely, the new
pixel’s R value should be the average of the R values of the pixels to the north, south, east, and west in the
original image; the new G value should be the average of the original neighboring G values, and so on.

Þ

Þ

