
Lab 6 – The Function of Functions The Way of the Program - Fall 2023

Part 1: Building a Town

1. Download and unzip lab06_files.zip from our class web page (under Labs). Open the file startcode.py in
IDLE and run house(), which creates a new GraphWin window and draws a pink house in it 200 pixels
wide and 100 pixels high, with the bottom left corner at (50, 300). We will use this code as our starting point
to develop a program to draw an entire “town” containing many houses of different shapes, colors, and sizes.

2. The house function does two things: (1) it creates a GraphWin, and (2) it draws a pink house at (50, 300).
We will start by breaking this function into two separate functions called town and drawHouse that together
do exactly the same thing as house. The town function is already written for you, but you need to complete
the drawHouse function, which takes six parameters: win, x1, y1, houseWidth, houseHeight, and houseColor.
The win parameter will be a GraphWin object in which to draw a house of the specified width, height, and
color at location (x1, y1). To complete drawHouse, cut-and-paste the code that appears below the dashed line
in house directly into drawHouse. The town function has no parameters. It simply creates a GraphWin
object and then call drawHouse with the appropriate values to draw the house.

3. Your drawHouse function can now be used as a building-block to draw houses of arbitrary sizes and
locations. Add two more houses to the scene by adding two more lines of code to town, one that draws
a white house 60 pixels wide and 80 pixels high at location (275, 225), and one that draws a salmon-colored
house 50 pixels wide and 30 pixels high at location (150, 100).

4. Modify the town function so that it uses a for-loop to draw 30 houses of random sizes and colors at locations
specified by the user repeatedly clicking the mouse in the window. Choosing house widths and heights from
a random range of 20-50 pixels tends to give good results. For the colors, try picking randomly from a list of
earth-tone colors such as “white”, “pink”, “salmon”, “bisque”, “coral”, “tan”, and “wheat”.

5. Now change the width of the GraphWin from 400 to 800 pixels, to make more room for houses. Also modify
town so that all houses are drawn automatically instead of using mouse clicks. All houses should be drawn
along the bottom edge of the window. To do this, just make each house's y coordinate be 300 (the height of
the window). The x coordinate can be chosen randomly from the range 0-800. Your program should now
draw an entire “street” of randomly arranged houses along the bottom of the window.

6. Next, define a new function called drawStreet that draws an entire horizontal “street” of houses, all with
the same y coordinate value for the house base. You should move most of your code from town directly into
your new drawStreet function. This function should take three parameters: win, y, and numHouses, which
specifies the number of houses to draw along the horizontal “street”. Rewrite town so that it uses
drawStreet to draw one street at y coordinate 300 and another one at 225. Each street should contain 30
houses each.

7. Finally, modify town so that it uses a for-loop to draw several streets at regular intervals from the top of the
window to the bottom. One approach is to first divide the total pixel height of the window by the number of
desired streets, which will give the amount to increment the y value by on each loop cycle. Drawing the
streets starting from the top of the window and going down will give better results than starting from the
bottom and going up, because the houses in the “foreground” at the bottom will appear in front of the houses
in the “background” at the top. What number of streets seems to give the best-looking results overall?

Lab 6 – The Function of Functions The Way of the Program - Fall 2023

Part 1: Building a Town

1. Download and unzip lab06_files.zip from our class web page (under Labs). Open the file startcode.py in
IDLE and run house(), which creates a new GraphWin window and draws a pink house in it 200 pixels
wide and 100 pixels high, with the bottom left corner at (50, 300). We will use this code as our starting point
to develop a program to draw an entire “town” containing many houses of different shapes, colors, and sizes.

2. The house function does two things: (1) it creates a GraphWin, and (2) it draws a pink house at (50, 300).
We will start by breaking this function into two separate functions called town and drawHouse that together
do exactly the same thing as house. The town function is already written for you, but you need to complete
the drawHouse function, which takes six parameters: win, x1, y1, houseWidth, houseHeight, and houseColor.
The win parameter will be a GraphWin object in which to draw a house of the specified width, height, and
color at location (x1, y1). To complete drawHouse, cut-and-paste the code that appears below the dashed line
in house directly into drawHouse. The town function has no parameters. It simply creates a GraphWin
object and then call drawHouse with the appropriate values to draw the house.

3. Your drawHouse function can now be used as a building-block to draw houses of arbitrary sizes and
locations. Add two more houses to the scene by adding two more lines of code to town, one that draws
a white house 60 pixels wide and 80 pixels high at location (275, 225), and one that draws a salmon-colored
house 50 pixels wide and 30 pixels high at location (150, 100).

4. Modify the town function so that it uses a for-loop to draw 30 houses of random sizes and colors at locations
specified by the user repeatedly clicking the mouse in the window. Choosing house widths and heights from
a random range of 20-50 pixels tends to give good results. For the colors, try picking randomly from a list of
earth-tone colors such as “white”, “pink”, “salmon”, “bisque”, “coral”, “tan”, and “wheat”.

5. Now change the width of the GraphWin from 400 to 800 pixels, to make more room for houses. Also modify
town so that all houses are drawn automatically instead of using mouse clicks. All houses should be drawn
along the bottom edge of the window. To do this, just make each house's y coordinate be 300 (the height of
the window). The x coordinate can be chosen randomly from the range 0-800. Your program should now
draw an entire “street” of randomly arranged houses along the bottom of the window.

6. Next, define a new function called drawStreet that draws an entire horizontal “street” of houses, all with
the same y coordinate value for the house base. You should move most of your code from town directly into
your new drawStreet function. This function should take three parameters: win, y, and numHouses, which
specifies the number of houses to draw along the horizontal “street”. Rewrite town so that it uses
drawStreet to draw one street at y coordinate 300 and another one at 225. Each street should contain 30
houses each.

7. Finally, modify town so that it uses a for-loop to draw several streets at regular intervals from the top of the
window to the bottom. One approach is to first divide the total pixel height of the window by the number of
desired streets, which will give the amount to increment the y value by on each loop cycle. Drawing the
streets starting from the top of the window and going down will give better results than starting from the
bottom and going up, because the houses in the “foreground” at the bottom will appear in front of the houses
in the “background” at the top. What number of streets seems to give the best-looking results overall?

Part 2: Returning Values From Functions

For these exercises, you can use the autotester by typing test(function_name) at the Python prompt.

8. Another important use of functions is to return values to other functions, which may use the values as part of
some bigger computation. For example, the function below computes and returns the factorial value n!

def factorial(n):
 product = 1
 for num in range(1, n+1):
 product = product * num
 return product

The mathematical function choose(n, k) is defined as n! / (k! × (n – k)!). For example, choose(10, 3) equals
10! / (3! × 7!), or 120, and choose(6, 4) equals 6! / (4! × 2!), or 15. Write a function called choose(n, k) that
takes parameters n and k as input and uses the above factorial function as a “helper” to compute the value
of choose(n, k). Your function should use a return statement to return its answer, rather than printing it out.

9. Write a function called addup(values) that takes a list of values as an input parameter, and returns the sum of
all of the values in the list. For example, calling addup([1,2,3]) should return 6. Make sure that typing
2*addup(range(10)) at the Python prompt gives 90. If you get an error message that refers to
“NoneType”, you probably used a print statement instead of return in your function.

10.The mean of a list of numbers is simply the average of all of the numbers in the list, which is just the sum of
the numbers divided by the length of the list. Define a function mean(values) that takes a list of values as an
input parameter and uses your addup function as a “helper” to compute and return the mean value. For
example, mean([1,1,2,3]) should return 1.75, and mean(range(10)) should return 4.5.

11.Write a function called squares(values) that takes a list of values as an input parameter and returns a new list
containing the squares of the original values. For example, typing squares([1,2,3,4]) should return the
list [1, 4, 9, 16], and typing mean(squares([1,2,3,4])) should return 7.5.

12. Using your functions addup, mean, and squares as helpers, write a function called standardDev(values)
that takes a single list containing two or more values as an input parameter and returns the standard
deviation of the values. The standard deviation of the values v1 , v2 , … , vN is defined to be:

where m is the mean of the values, and N is the total number of values in the list.* Hint: first compute the
mean value m by calling mean(values). Then use a for-loop to build a new list of the differences between
each vi value and the mean m. You can then create a list of the squares of the differences by calling
squares(differences). Then add up these squares by calling addup(squares(differences)).
For example, the standard deviation of the list [1,2,3,4] is a little over 1.29.
*Technically, this version of the definition is known as the corrected sample standard deviation.

13. Write a function called flip(s) that takes a string s as an input parameter and constructs and returns a new
string that is the reversal of the input string. For example, flip("apple") should return (but not print) the
string “elppa”. Typing flip("ah")*2 should return the string “haha”. Then write another function called
palindrome(s) that returns the string “yes” or “no” depending on whether s equals flip(s). For example,
palindrome("lever") should return “no”, whereas palindrome("level") should return “yes”.

Part 2: Returning Values From Functions

For these exercises, you can use the autotester by typing test(function_name) at the Python prompt.

8. Another important use of functions is to return values to other functions, which may use the values as part of
some bigger computation. For example, the function below computes and returns the factorial value n!

def factorial(n):
 product = 1
 for num in range(1, n+1):
 product = product * num
 return product

The mathematical function choose(n, k) is defined as n! / (k! × (n – k)!). For example, choose(10, 3) equals
10! / (3! × 7!), or 120, and choose(6, 4) equals 6! / (4! × 2!), or 15. Write a function called choose(n, k) that
takes parameters n and k as input and uses the above factorial function as a “helper” to compute the value
of choose(n, k). Your function should use a return statement to return its answer, rather than printing it out.

9. Write a function called addup(values) that takes a list of values as an input parameter, and returns the sum of
all of the values in the list. For example, calling addup([1,2,3]) should return 6. Make sure that typing
2*addup(range(10)) at the Python prompt gives 90. If you get an error message that refers to
“NoneType”, you probably used a print statement instead of return in your function.

10.The mean of a list of numbers is simply the average of all of the numbers in the list, which is just the sum of
the numbers divided by the length of the list. Define a function mean(values) that takes a list of values as an
input parameter and uses your addup function as a “helper” to compute and return the mean value. For
example, mean([1,1,2,3]) should return 1.75, and mean(range(10)) should return 4.5.

11.Write a function called squares(values) that takes a list of values as an input parameter and returns a new list
containing the squares of the original values. For example, typing squares([1,2,3,4]) should return the
list [1, 4, 9, 16], and typing mean(squares([1,2,3,4])) should return 7.5.

12. Using your functions addup, mean, and squares as helpers, write a function called standardDev(values)
that takes a single list containing two or more values as an input parameter and returns the standard
deviation of the values. The standard deviation of the values v1 , v2 , … , vN is defined to be:

where m is the mean of the values, and N is the total number of values in the list.* Hint: first compute the
mean value m by calling mean(values). Then use a for-loop to build a new list of the differences between
each vi value and the mean m. You can then create a list of the squares of the differences by calling
squares(differences). Then add up these squares by calling addup(squares(differences)).
For example, the standard deviation of the list [1,2,3,4] is a little over 1.29.
*Technically, this version of the definition is known as the corrected sample standard deviation.

13. Write a function called flip(s) that takes a string s as an input parameter and constructs and returns a new
string that is the reversal of the input string. For example, flip("apple") should return (but not print) the
string “elppa”. Typing flip("ah")*2 should return the string “haha”. Then write another function called
palindrome(s) that returns the string “yes” or “no” depending on whether s equals flip(s). For example,
palindrome("lever") should return “no”, whereas palindrome("level") should return “yes”.

