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How to Encode a Turing Machine?

● States:  s1, s2, s3, halt →  0, 00, 000, 0000, etc.
● Symbols:  x, y, z →  0, 00, 000, etc.
● Moves:  Right, Left, None →  0, 00, 000
● Rules:

 s1  y  y  R  s3 →  0 1 00 1 00 1 0 1 000

 s2  x  z  L   halt →  00 1 0 1 000 1 00 1 0000
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Example: The “Binary Inverter” TM
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The Universal Machine

I am thinking about something much more important than 
bombs. I am thinking about computers.

—John Von Neumann, 1946

The fact that there is a universal machine to imitate all other
machines...was understood by von Neumann and a few others.
And when he understood it, then he knew what we could do.

—Julian Bigelow, chief engineer of the IAS Electronic Computer Project

Before Turing, things were done to numbers. After Turing,
numbers began doing things.

—George Dyson, Turing's Cathedral
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fundamentally different from other machines

● Computers are the only machines that can simulate any 
other machine to an arbitrary degree of accuracy

● Universality is why computers have taken over the world!
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The Universal Machine

Even the word “cellphone” is a misnomer. They could just as
easily be called cameras, video players, Rolodexes, calendars,
tape recorders, libraries, diaries, albums, televisions, maps or
newspapers.

—Chief Justice John Roberts Jr.,
June 25, 2014 Supreme Court ruling that police need
warrants to search cellphones of people under arrest
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● Are Turing Machines really as powerful as real computers?

– Unlimited memory (infinite tape)

– Speed / efficiency is irrelevant

– Any type of data can be encoded in binary
(numbers, text, pictures, sounds, movies, etc.)
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The Universal Machine

● All proposed models of computation have turned out
to be exactly equivalent to one another:

– Turing machines
– Lambda calculus
– Recursive functions
– Post production systems
– Random access machines
– All programming languages (Python, Javascript, C, ...)
– etc. etc.
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The Universal Machine

● Church-Turing Thesis:

Anything that is computable can be computed
by a suitably programmed Turing machine

● Choice of programming substrate doesn't matter

● What matters is the organization and flow of information

● You can build a computer out of Tinkertoys if you like!
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The Limits of Computation

● Is there anything a TM cannot compute, in principle?
● YES!  No TM can infallibly predict whether another TM

will get stuck in an infinite loop when run on some input

● Example: s1  0   0   R  s1 “Looper TM”
s1  1   1   L  s1
s1  _   _   *   halt

● Input:  00000 Result:  halts after 5 steps

● Input:  000111 Result:  never halts (infinite loop)
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  on that input”
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“Yes, M will halt”

“No, M will never halt”

Halt-predictor
   TM

Coded description of M

Input data for M

● The task of deciding in advance if an arbitrary computation 
will ever terminate cannot be described computationally

● This was proven by Turing in his 1936 paper

The Halting Problem

“Yes, it works perfectly”

“No, there's a bug”

Bug-detector
    program

Computer program

Input data for program

  

“Yes, M will halt”

“No, M will never halt”

Halt-predictor
   TM

Coded description of M

Input data for M

● The task of deciding in advance if an arbitrary computation 
will ever terminate cannot be described computationally

● This was proven by Turing in his 1936 paper

The Halting Problem

“Yes, it works perfectly”

“No, there's a bug”

Bug-detector
    program

Computer program

Input data for program



  

Outline of Turing's Argument

(1) Assume for now that the Halt-predictor TM actually exists
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Outline of Turing's Argument

(3) Write down the binary description P of the Paradox TM
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      If Halt-predictor says “Yes”, then P never halts

“Yes, P will halt
   on input P ”

Halt-predictor
   TM

P

Go into an
INFINITE LOOP

P

Paradox TM

P

This contradicts what Halt-predictor just said!

  

Outline of Turing's Argument

      If Halt-predictor says “Yes”, then P never halts

“Yes, P will halt
   on input P ”

Halt-predictor
   TM

P

Go into an
INFINITE LOOP

P

Paradox TM

P

This contradicts what Halt-predictor just said!



  

Outline of Turing's Argument

Halt-predictor
   TM

P

HALT

P

Paradox TM

P

   If Halt-predictor says “No”, then P halts

This contradicts what Halt-predictor just said!

“No, P will not halt
   on input P ”

  

Outline of Turing's Argument

Halt-predictor
   TM

P

HALT

P

Paradox TM

P

   If Halt-predictor says “No”, then P halts

This contradicts what Halt-predictor just said!

“No, P will not halt
   on input P ”



  

Outline of Turing's Argument

         Either way, we get a logical contradiction!

“Yes, P will halt
   on input P ”

“No, P will not halt
   on input P ”

Halt-predictor
   TM

P

Go into an
INFINITE LOOP HALT

P

Paradox TM

P

  

Outline of Turing's Argument

         Either way, we get a logical contradiction!

“Yes, P will halt
   on input P ”

“No, P will not halt
   on input P ”

Halt-predictor
   TM

P

Go into an
INFINITE LOOP HALT

P

Paradox TM

P



  

Outline of Turing's Argument

“Yes, P will halt
   on input P ”

“No, P will not halt
   on input P ”

Halt-predictor
   TM

P

Go into an
INFINITE LOOP HALT

P

Paradox TM

P

      The only possible conclusion:

     The Halt-predictor TM cannot exist

  

Outline of Turing's Argument

“Yes, P will halt
   on input P ”

“No, P will not halt
   on input P ”

Halt-predictor
   TM

P

Go into an
INFINITE LOOP HALT

P

Paradox TM

P

      The only possible conclusion:

     The Halt-predictor TM cannot exist



  

Undecidable Problems

● The Halting Problem was the first undecidable problem
to be discovered

● … but certainly not the last

● The class of undecidable problems is infinitely large

● The study of undecidable problems constitutes an
extremely rich area of theoretical computer science
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