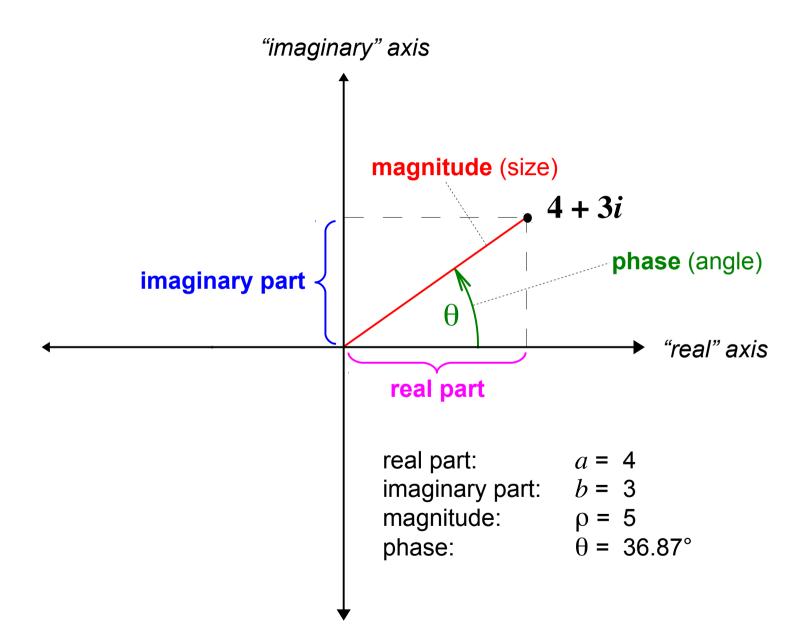
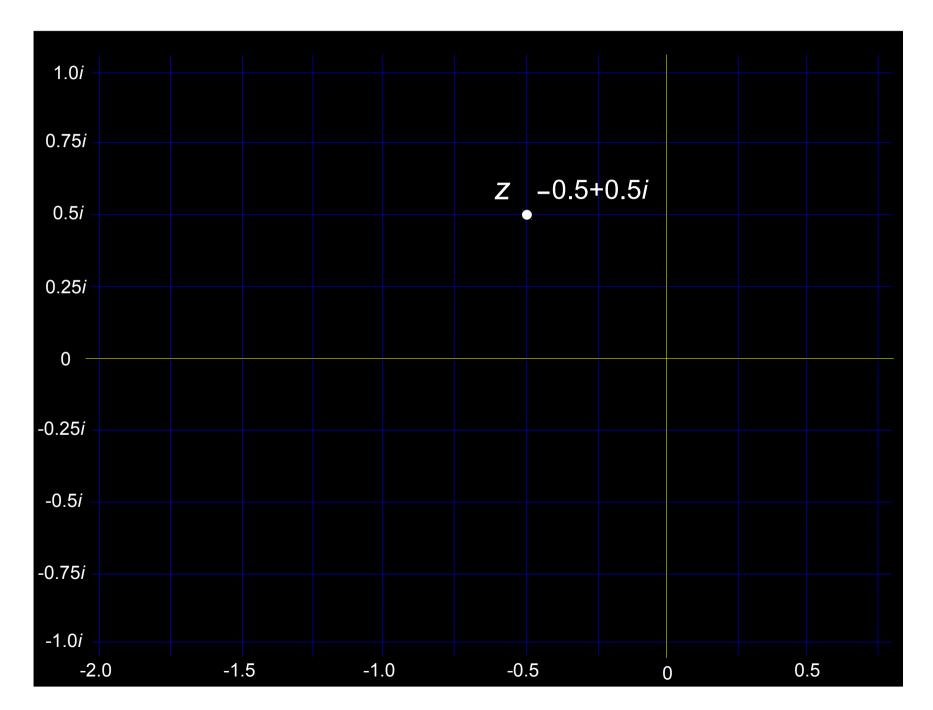
Complex Numbers



Complex Arithmetic

- To **add** two complex numbers, you just:
 - Add their real parts
 - Add their imaginary parts
- To **multiply** two complex numbers, you just:
 - Multiply their magnitudes
 - Add their phases (angles)
- To **square** a complex number, you just:
 - Square its magnitude
 - Double its phase (angle)

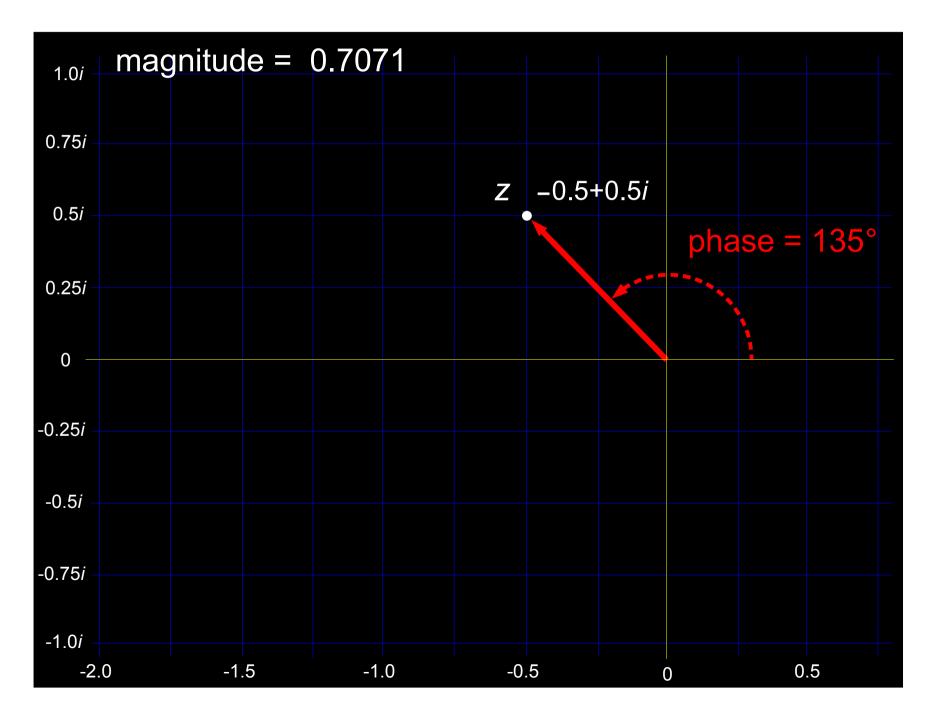
The Complex Plane



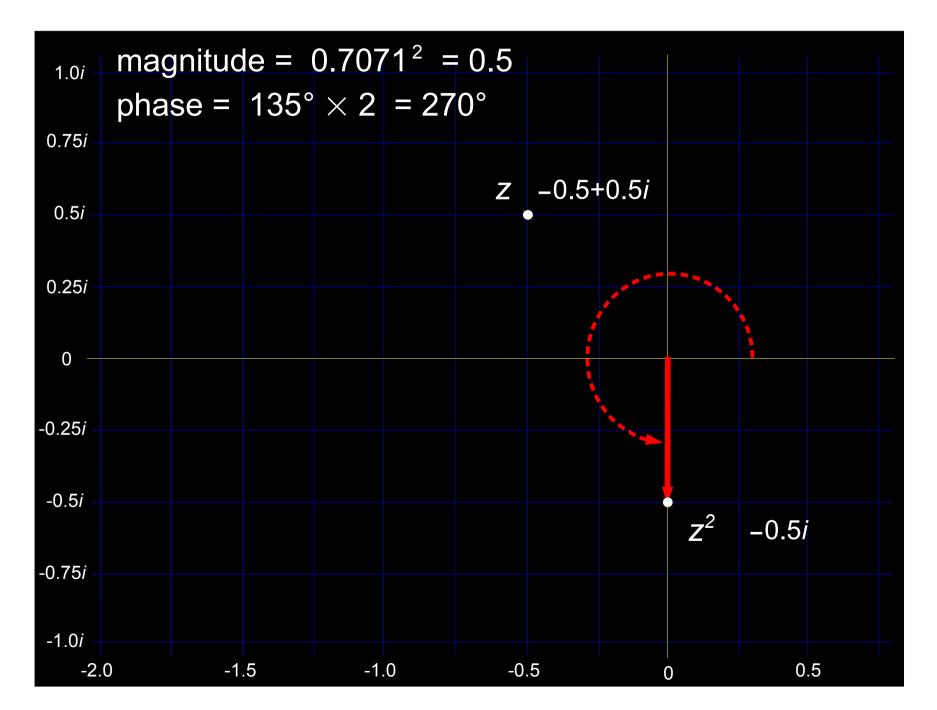
What is its Magnitude?

Square root of $(-0.5)^2 + (0.5)^2 = 0.7071$

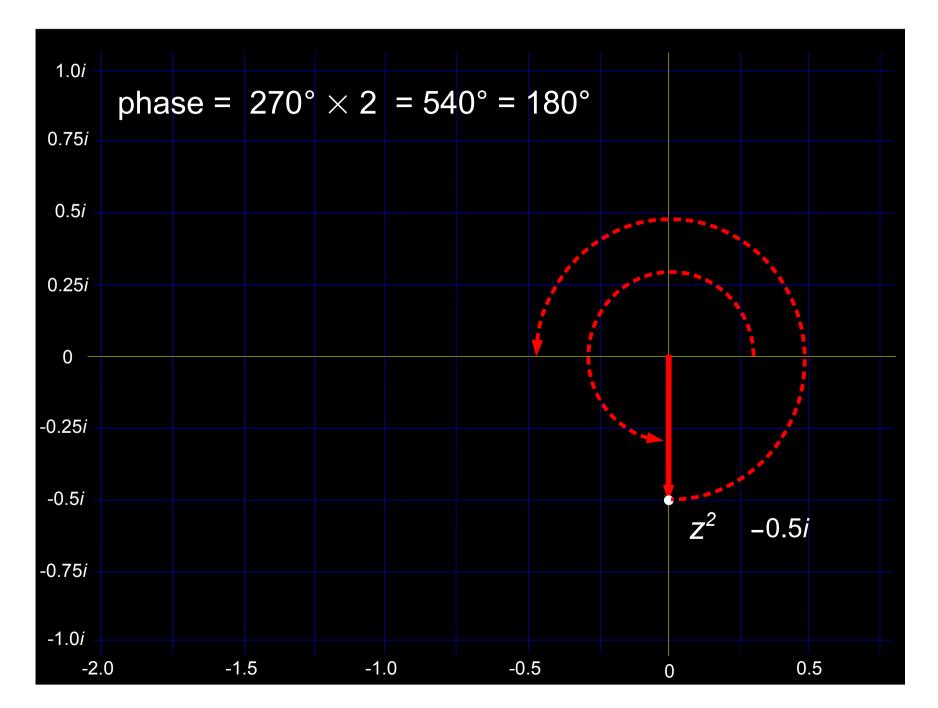
What is its Phase?



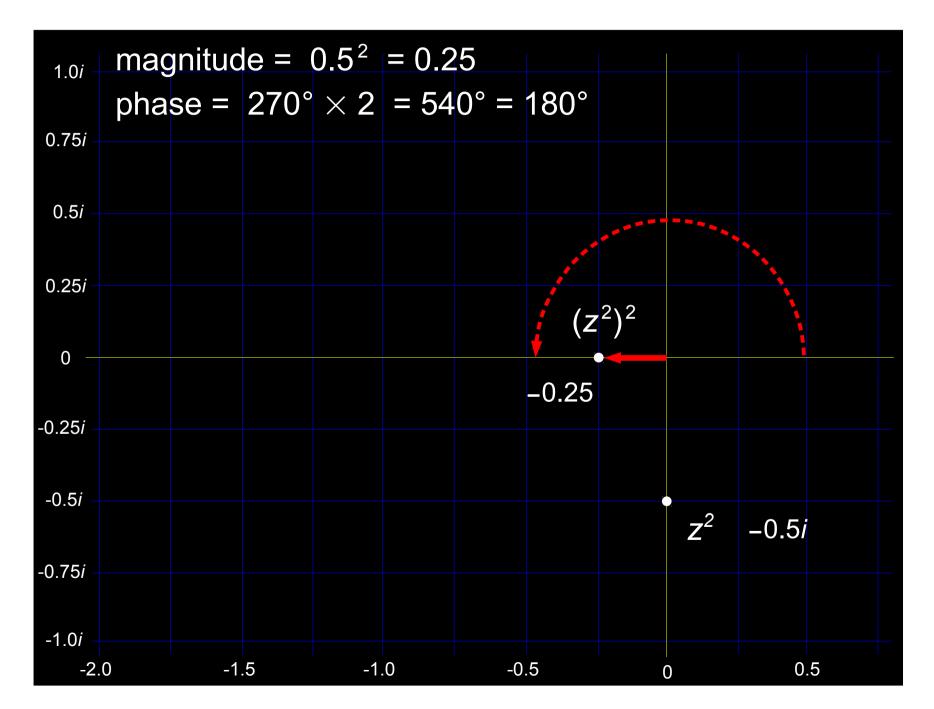
What is z^2 ?



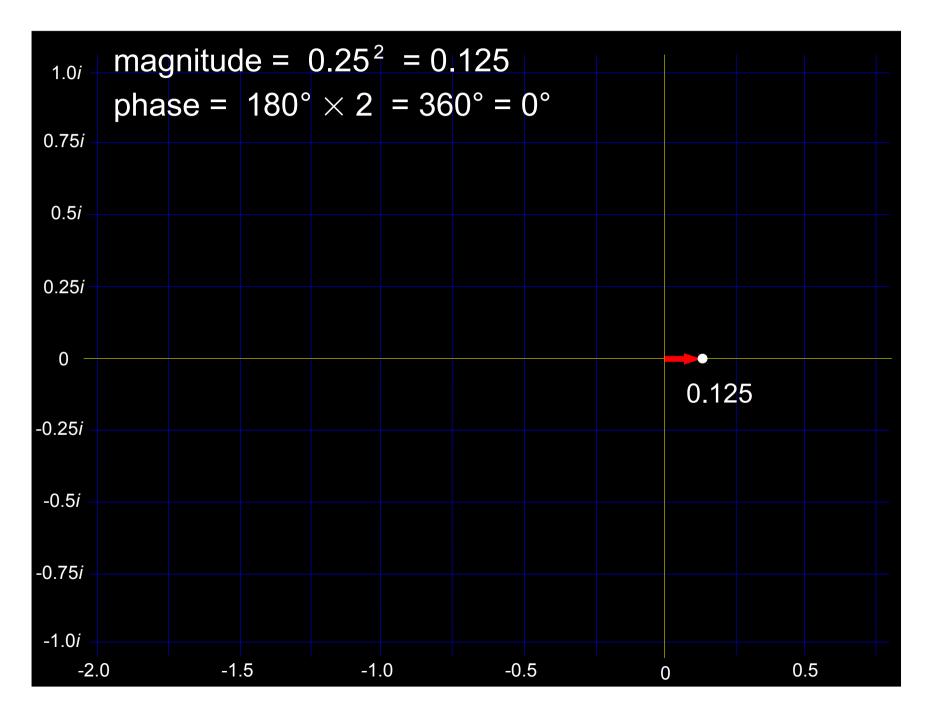
What is z^2 squared?



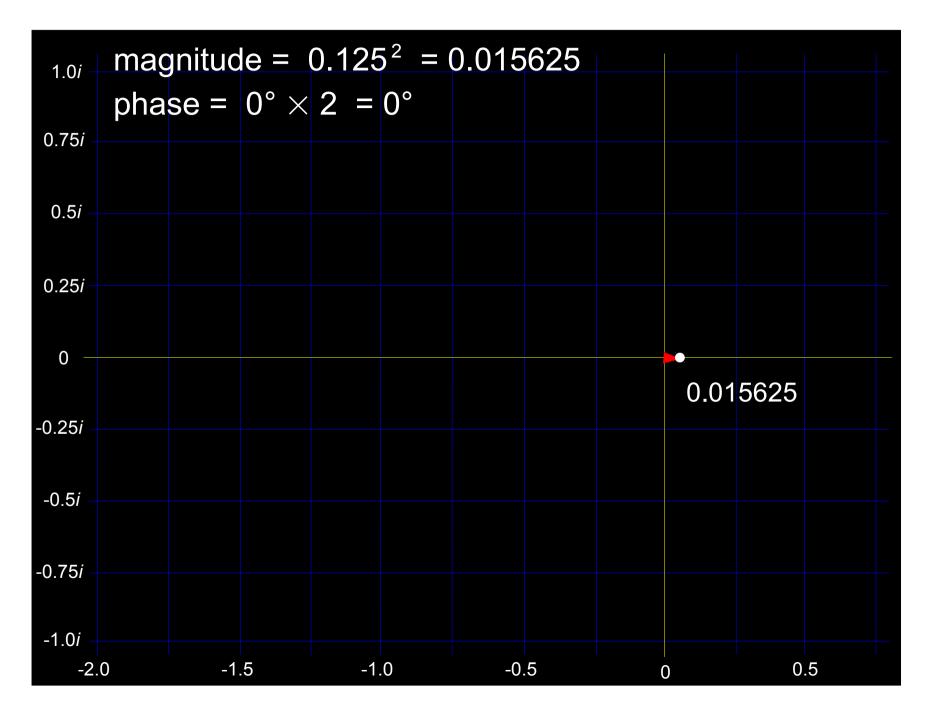
What is z^2 squared?



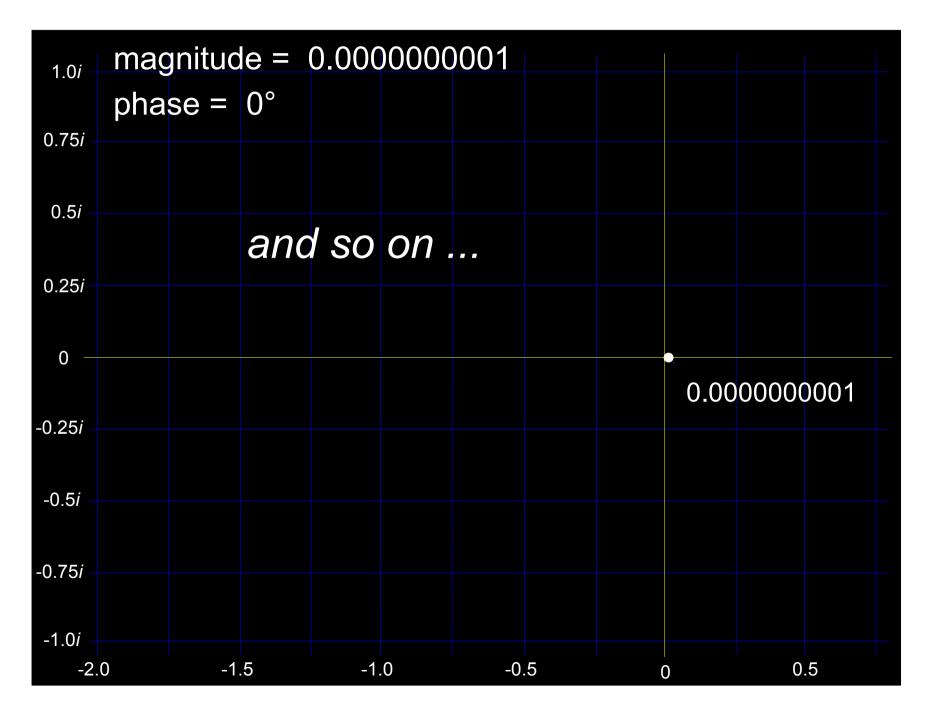
What If We Keep Going?



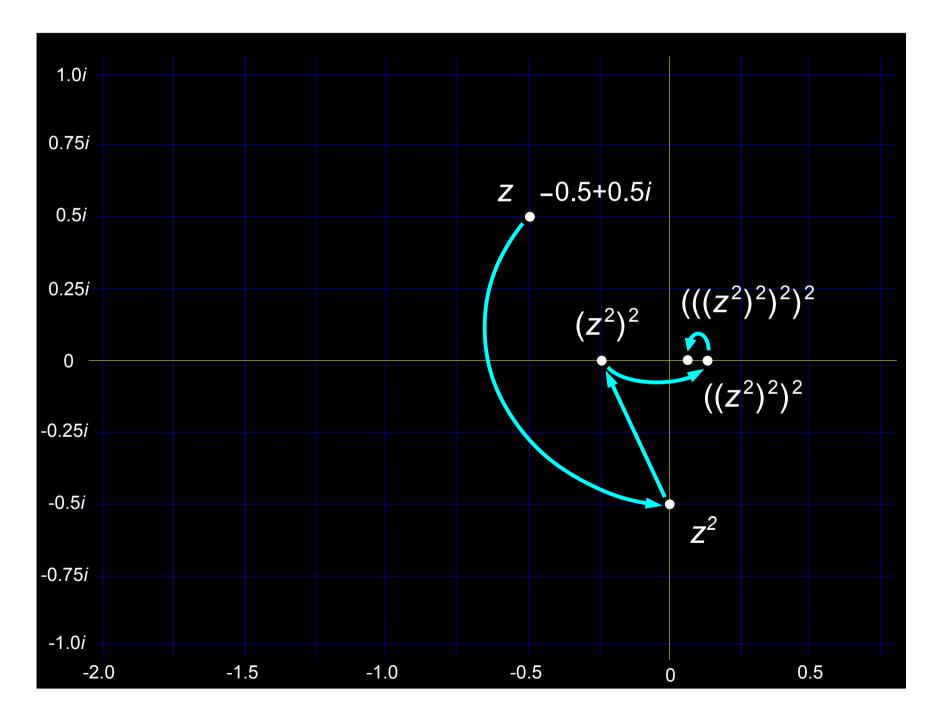
What If We Keep Going?



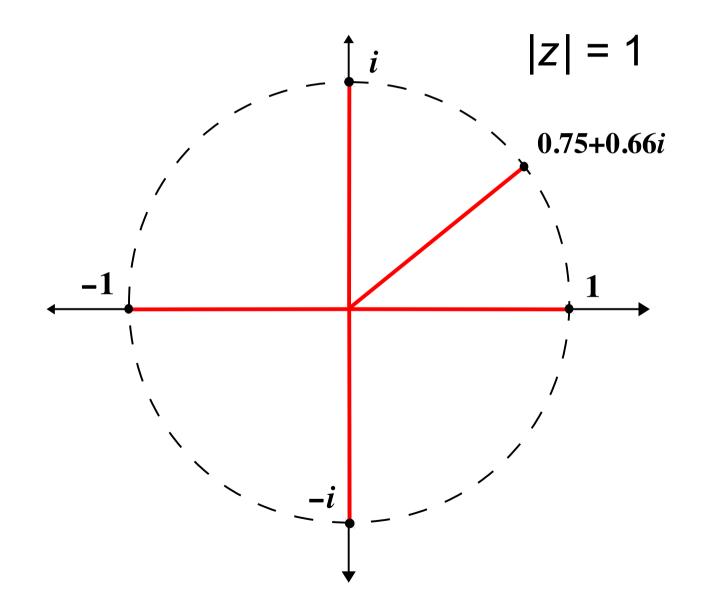
What If We Keep Going?



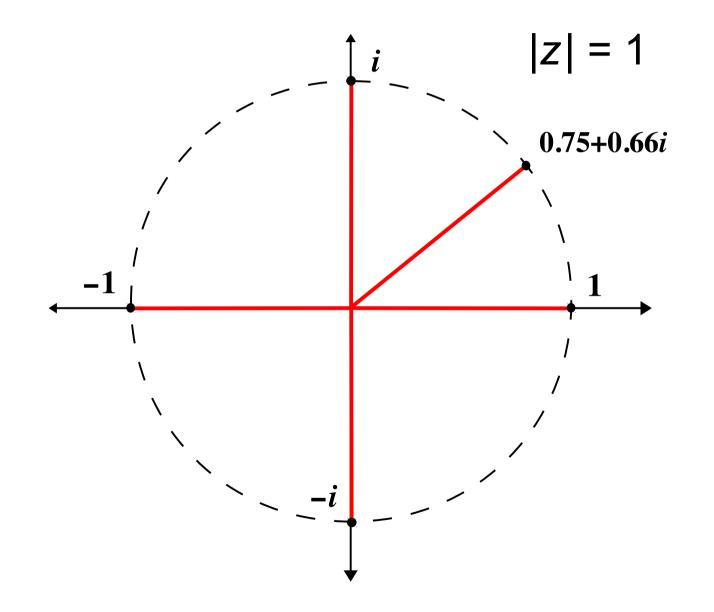
Notation:
$$z \rightarrow z^2$$



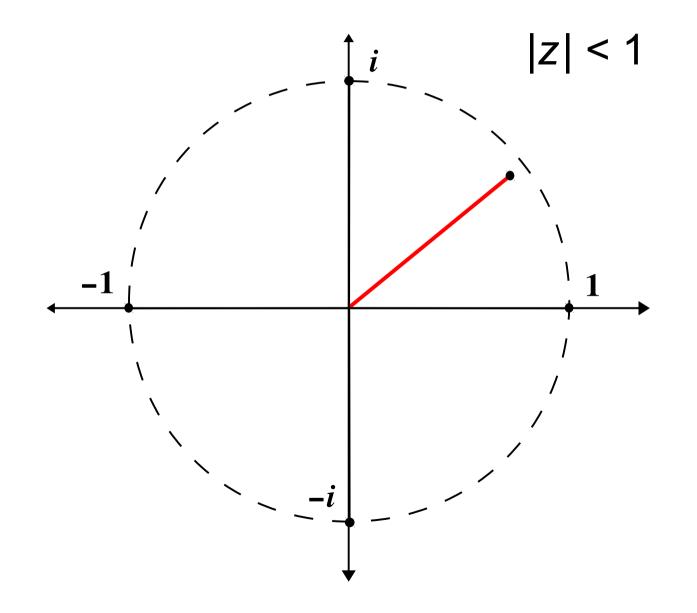
Numbers with Magnitude = 1



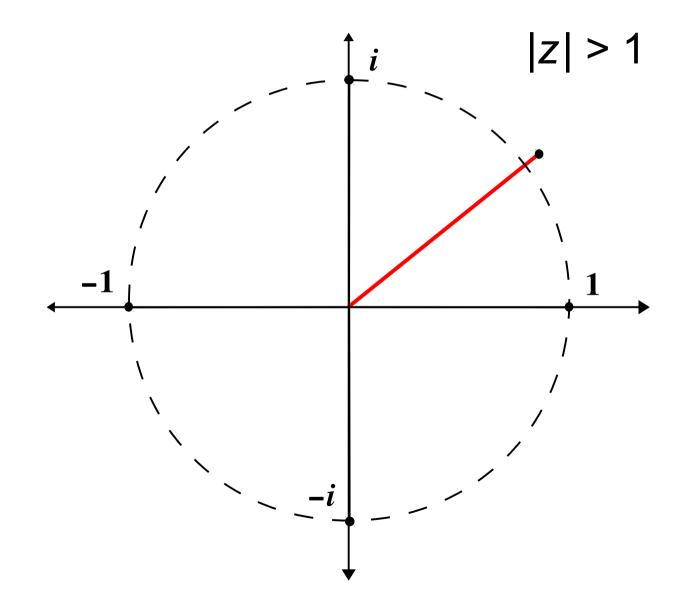
What Happens When We Repeatedly Square Numbers with Magnitude = 1?



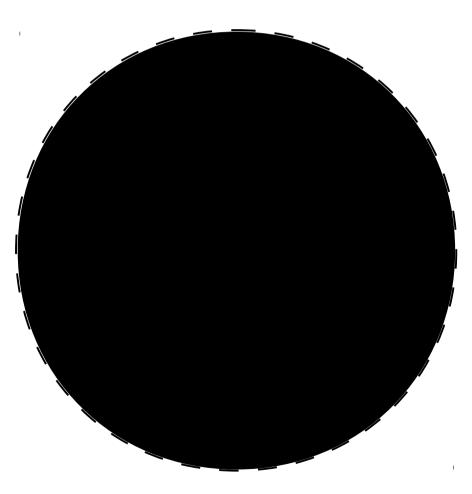
What Happens When We Repeatedly Square Numbers with Magnitude < 1 ?



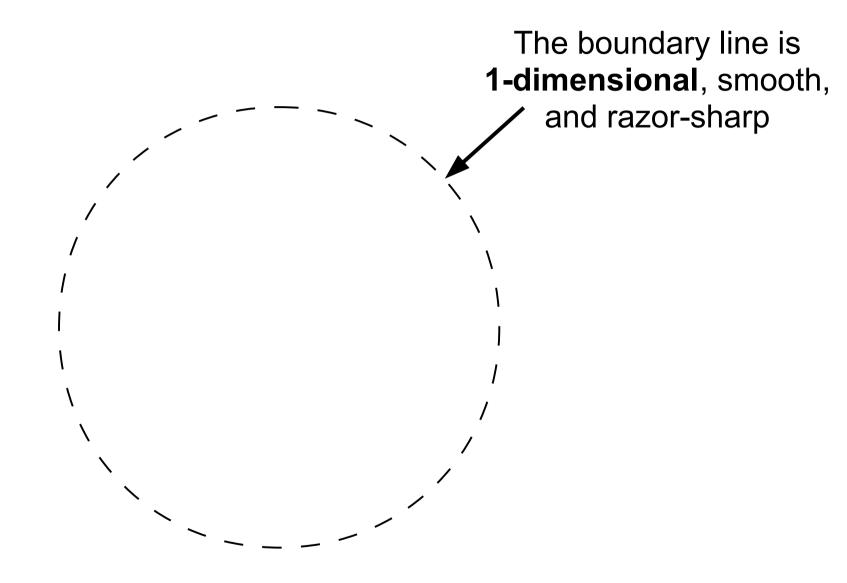
What Happens When We Repeatedly Square Numbers with Magnitude > 1 ?



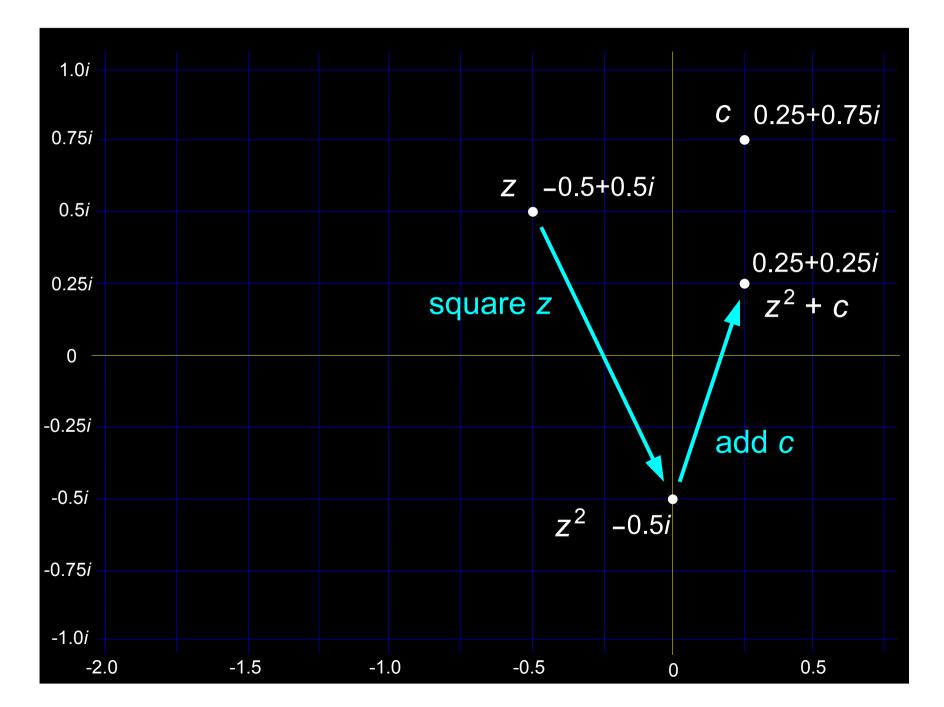
All Black Points "Converge" to Zero All White Points "Diverge" to Infinity



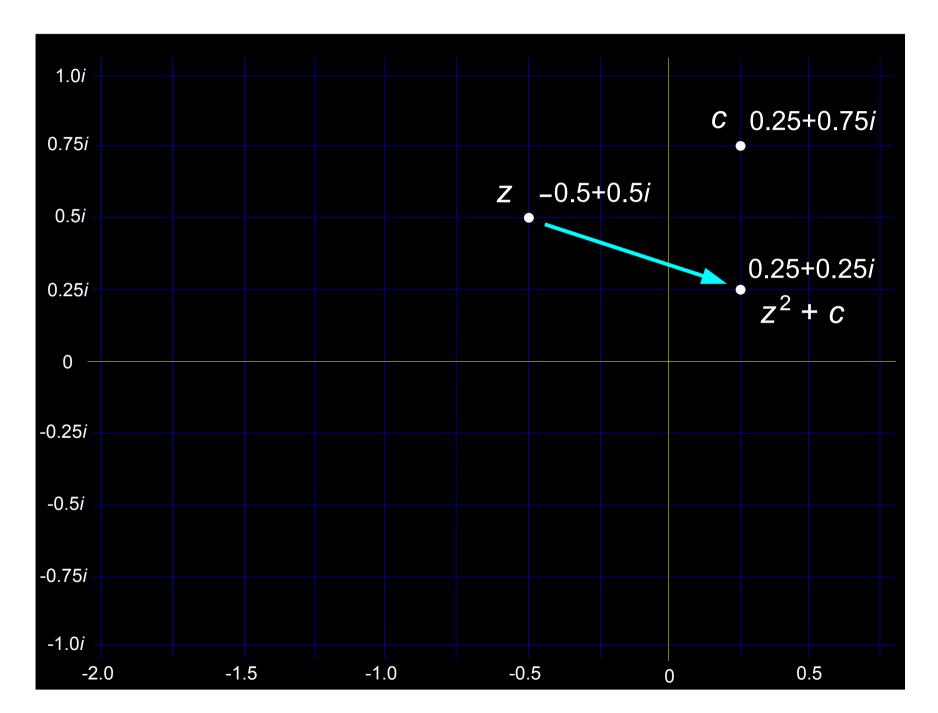
The Boundary Points Form a Perfect Circle



z = -0.5 + 0.5i c = 0.25 + 0.75i



Notation: $z \rightarrow z^2 + c$



Now, choose any complex number *c*

What happens when we repeatedly apply

$$z \rightarrow z^2 + c$$

starting with c?

 $c \rightarrow c^2 + c \rightarrow (c^2 + c)^2 + c \rightarrow ((c^2 + c)^2 + c)^2 + c$ and so on ...

Now, choose any complex number *c*

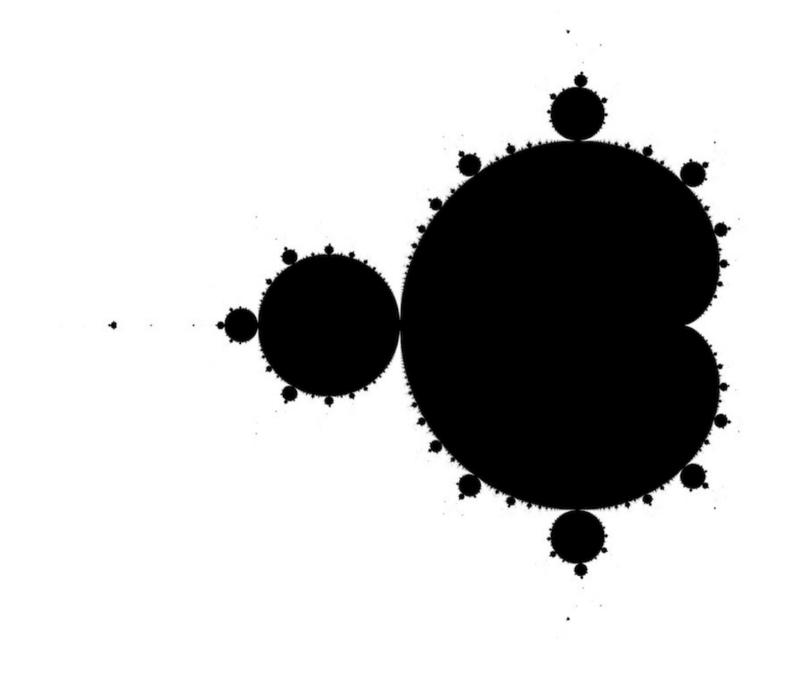
What happens when we repeatedly apply

$$z \rightarrow z^2 + c$$

starting with zero ?

$$0 \rightarrow c \rightarrow c^2 + c \rightarrow (c^2 + c)^2 + c \rightarrow \dots$$

The process is the same

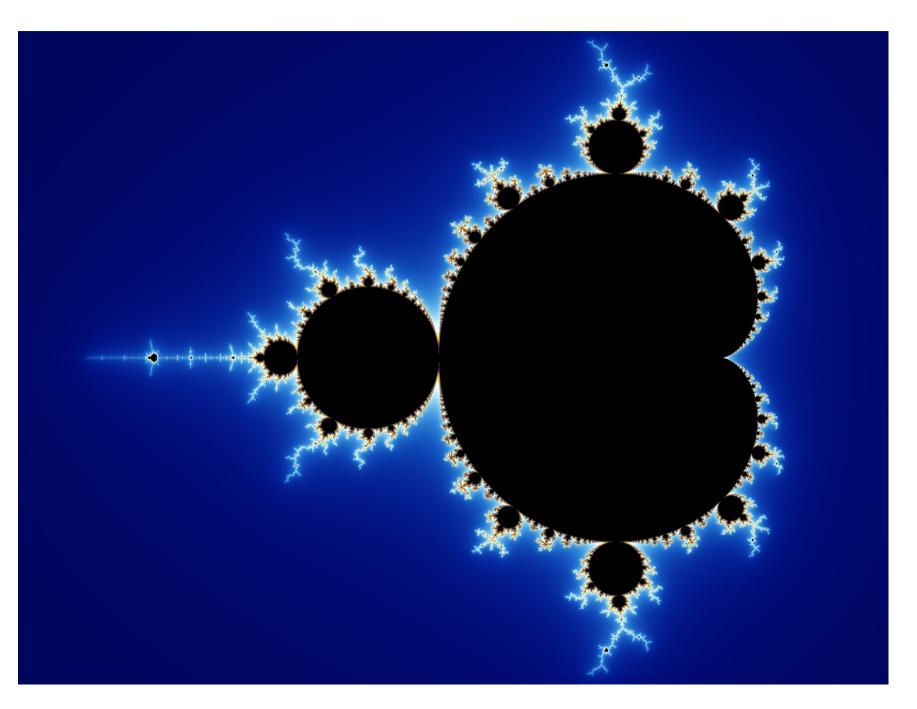


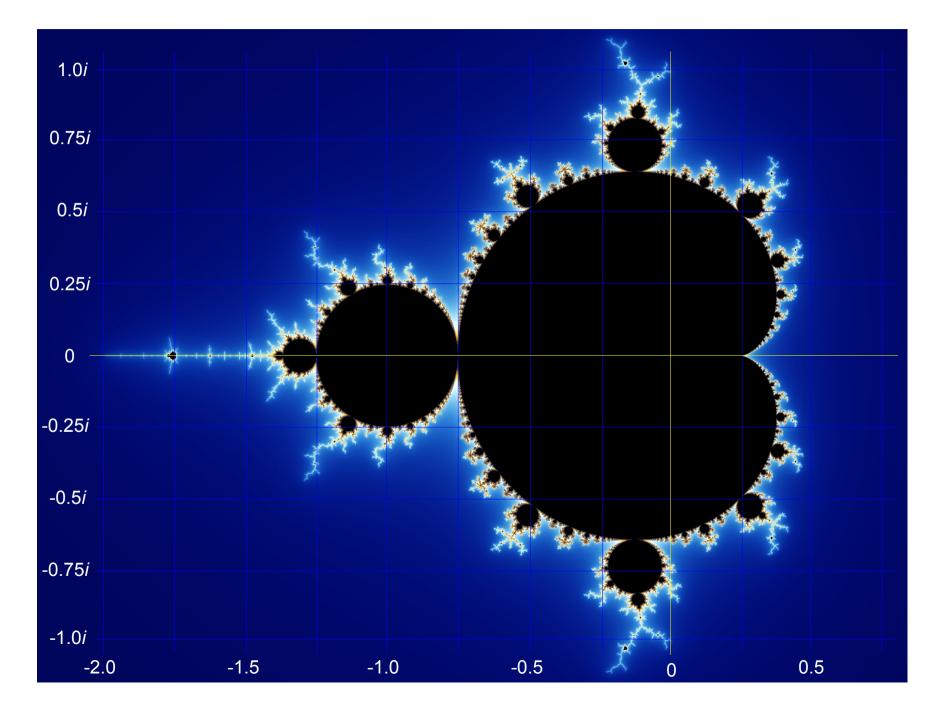
White points diverge to infinity

Black points converge*

The boundary "line" is of **fractional dimension**, and **infinitely convoluted**!

* but not necessarily to zero, or even to a single, fixed point



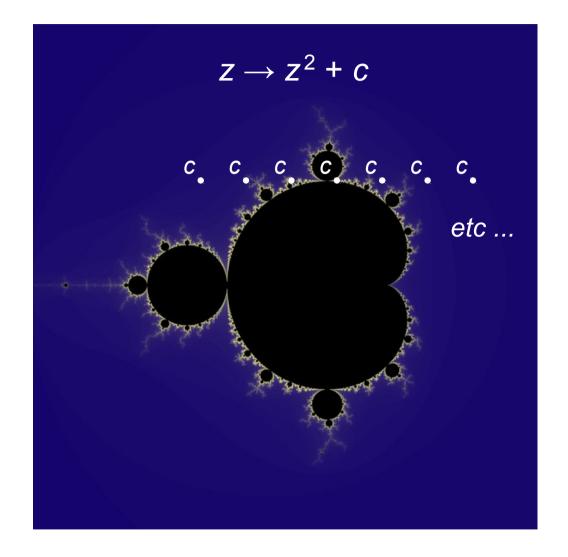


How to Color a Pixel

Let *c* be a complex number that corresponds to the pixel

- Initialize z = 0
- Repeatedly apply the update rule: $z \rightarrow z^2 + c$
- See how long it takes for the magnitude of *z* to exceed 2
 - If z's magnitude never exceeds 2, color the pixel black
 - Otherwise, choose a color based on how many steps it took for z's magnitude to exceed 2

The Mandelbrot Set Algorithm

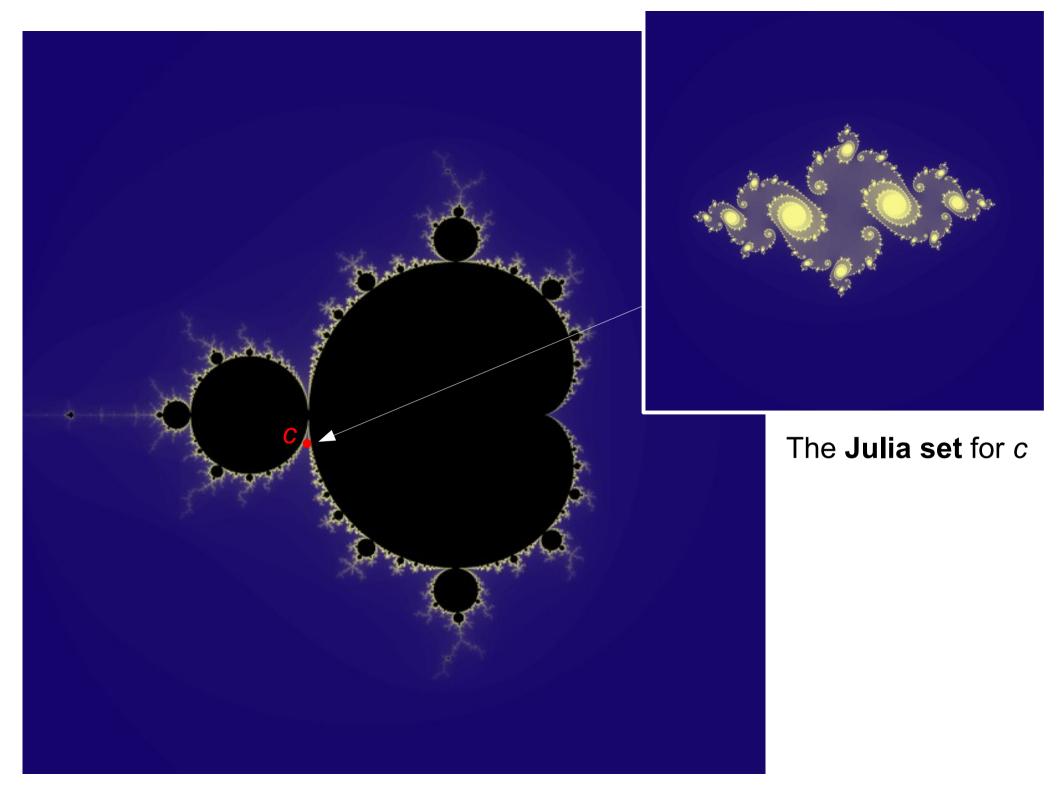


We use different values for *c*, and always start the iteration at 0

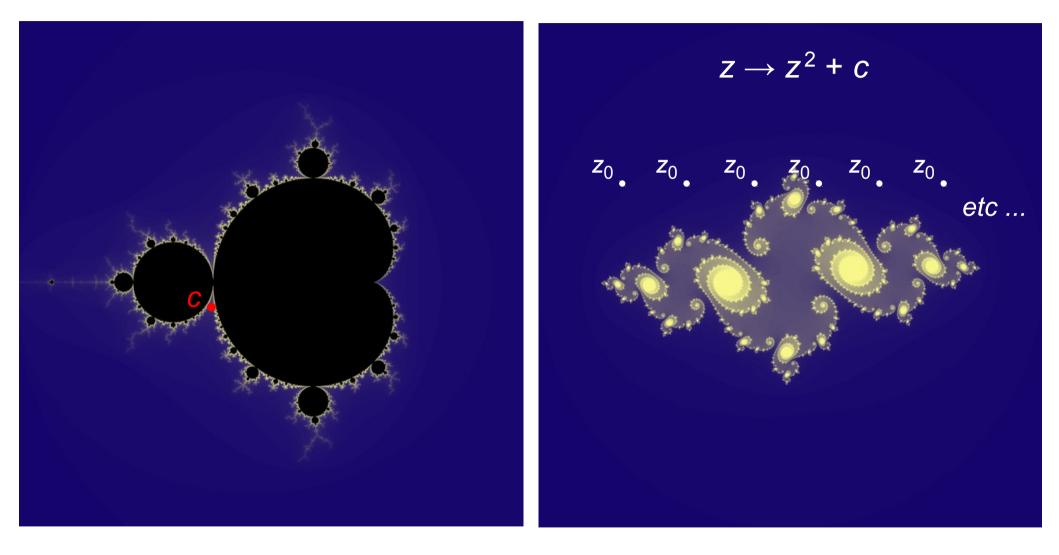
The Mandelbrot Set Algorithm

- For every number *c* in the complex plane, do the following:
 - 1. Initialize z to 0
 - 2. Initialize *count* to 0
 - If the magnitude of z > 2, choose a color for c based on the value of count, and stop; otherwise continue
 - 4. Increase *count* by 1
 - 5. Compute $z^2 + c$ and make this the new value of z
 - 6. Go to step 3

If the loop never stops, color *c* black



The Julia Set Algorithm for the Number c



We keep the value of *c* fixed, and start the iteration at different values of z_0

The Julia Set Algorithm for the Number c

- For every number z_0 in the complex plane, do the following:
 - 1. Initialize z to z_0
 - 2. Initialize *count* to 0
 - 3. If the magnitude of z > 2, choose a color for z_0 based on the value of *count*, and stop; otherwise continue
 - 4. Increase *count* by 1
 - 5. Compute $z^2 + c$ and make this the new value of z
 - 6. Go to step 3

If the loop never stops, color z_0 black

