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● To add two complex numbers, you just:
– Add their real parts
– Add their imaginary parts

● To multiply two complex numbers, you just:
– Multiply their magnitudes
– Add their phases (angles)

● To square a complex number, you just:
– Square its magnitude
– Double its phase (angle)

Complex Arithmetic
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What is its Magnitude?

 1.0i

 0.75i

 0.5i

 0.25i

 0

 -0.25i

 -0.5i

 -0.75i

 -1.0i
 -1.0 -1.5 -2.0  -0.5  0  0.5

 -0.5+0.5iz

  

What is its Magnitude?

 1.0i

 0.75i

 0.5i

 0.25i

 0

 -0.25i

 -0.5i

 -0.75i

 -1.0i
 -1.0 -1.5 -2.0  -0.5  0  0.5

 -0.5+0.5iz



  

Square root of (-0.5)2 + (0.5)2 = 0.7071 
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What is its Phase?

 1.0i

 0.75i

 0.5i

 0.25i

 0

 -0.25i

 -0.5i

 -0.75i

 -1.0i
 -1.0 -1.5 -2.0  -0.5  0  0.5

 -0.5+0.5iz
phase = 135°

magnitude =  0.7071

  

What is its Phase?

 1.0i

 0.75i

 0.5i

 0.25i

 0

 -0.25i

 -0.5i

 -0.75i

 -1.0i
 -1.0 -1.5 -2.0  -0.5  0  0.5

 -0.5+0.5iz
phase = 135°

magnitude =  0.7071



  

What is z2 ?
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What is z2 squared?
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What is z2 squared?
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Notation:  z → z 
2
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Numbers with Magnitude = 1
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What Happens When We Repeatedly 
Square Numbers with Magnitude = 1 ?
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What Happens When We Repeatedly 
Square Numbers with Magnitude < 1 ?
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Square Numbers with Magnitude > 1 ?
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All Black Points “Converge” to Zero
All White Points “Diverge” to Infinity
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The Boundary Points Form a Perfect Circle

The boundary line is
1-dimensional, smooth,

and razor-sharp
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c   →    c 2 + c    →   (c 2 + c)2 + c    →    ((c 2 + c)2 + c)2 + c

     and so on ...

Now, choose any complex number c

What happens when we repeatedly apply

z → z 
2 + c 

starting with c ?
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0   →   c   →    c 2 + c    →   (c 2 + c)2 + c    →   . . .

                 The process is the same

Now, choose any complex number c

What happens when we repeatedly apply

z → z 
2 + c 

starting with zero ?
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The Mandelbrot Set

White points
diverge to infinity

Black points
converge*

The boundary “line” is
of fractional dimension,

and infinitely convoluted!

* but not necessarily to zero, or even to a single, fixed point
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The Mandelbrot Set
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Let c be a complex number that corresponds to the pixel

● Initialize z = 0

● Repeatedly apply the update rule:  z → z 
2 + c

● See how long it takes for the magnitude of z to exceed 2

– If z’s magnitude never exceeds 2, color the pixel black

– Otherwise, choose a color based on how many steps
it took for z’s magnitude to exceed 2

How to Color a Pixel
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c

z → z 
2 + c

The Mandelbrot Set Algorithm

c c c c c c

etc ...

We use different values for c, and 
always start the iteration at 0  
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● For every number c in the complex plane, do the following:0

1.  Initialize z to 0 

2.  Initialize count to 0
3.  If the magnitude of z > 2, choose a color for c based on0 

the value of count, and stop; otherwise continue
4.  Increase count by 1
5.  Compute z2 + c and make this the new value of z
6.  Go to step 3

    If the loop never stops, color c black

The Mandelbrot Set Algorithm
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The Julia set for cc
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The Julia Set Algorithm for the Number c

z0 z0 z0z0 z0

We keep the value of c fixed, and start 
the iteration at different values of z0

etc ...

z → z 
2 + c
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