The Computational Beauty of Nature

Professor Jim Marshall

Spring 2020

Sarah Lawrence College

Administrivia

- Office: Science 100
 Phone: 2673
 Email: jmarshall@sarahlawrence.edu
- Class web page: http://science.slc.edu/jmarshall/cbn
- Check your SLC email (gm.slc.edu) every day
- Read the **Academic Honesty policy** on the class web page, as well as the other course policies

Administrivia

- Class attendance
 - please be on time
 - please notify me in advance if you need to miss class
 - more than 3 absences or more than 1 missed group conference may result in reduced course credit

Grading and evaluation

- weekly reading assignments
- lab exercises, homework problem sets
- in-class quizzes
- research paper
- attendance

Administrivia

Books

Topics: Fractals

- Self-similarity
- The Mandelbrot set
- Julia sets
- L-systems

Topics: Chaos

- Nonlinear dynamics
- The logistic map
- Bifurcation diagrams
- Strange attractors

Topics: Computation

- Number systems and information
- Turing machines
- The limits of computation

Topics: Adaptation

- Genetic algorithms and simulated evolution
- Artificial neural networks
- Evolving virtual creatures
- Evolutionary robotics

Topics: Emergence

- Cellular automata
- The "edge of chaos"
- The Game of Life
- Virtual ants and boids

What are complex systems?

- Networks of simple interacting components, which, following simple rules, produce complex emergent behavior
 - simple components with simple rules of operation
 - no central controller
 - limited communication among components
 - collective behavior emerges from interacting components
 - easy to understand the low-level component behavior
 - hard to predict the high-level emergent behavior

"The solitary army ant is behaviorally one of the least sophisticated animals imaginable" —Nigel Franks

https://en.wikipedia.org/wiki/Army_ant

https://www.youtube.com/watch?v=4BdjxYUdJS8

Termite mound

Ant videos

Army ants Excavation of a giant anthill

Brains

Brains

Bird flocking

The immune system

Tonsils and adenoids Thymus Lymph nodes Lymph nodes Appendix Appendix Bone marrow

Organs of the Immune System

https://5nrrbodysystems.weebly.com/immune-system.html https://home.ccr.cancer.gov/inthejournals/dev/itj-therapy.asp

Genetic regulatory networks

http://rulai.cshl.edu/TRED/GRN/p53.htm https://www.ncbi.nlm.nih.gov/books/NBK22266 https://www2.le.ac.uk/projects/vgec/geneticsall/genes-chromosomes

Food webs

http://www.afsc.noaa.gov/Quarterly/jas2006/images/Gaichas_Feature.jpg http://alaska.usgs.gov/science/biology/seabirds_foragefish/marinehabitat/images/Food_Web3.jpg

Social networks

Social networks

Facebook "friend" links

www.facebook.com/note.php?note_id=469716398919

Map of the Internet (2005)

How can we understand complex systems?

Theory

Observation and experiments

Computer modeling

How can we understand complex systems?

Reductionism

- Linear systems
- Can be understood by analyzing each part in isolation
- "The whole is equal to the sum of its parts"
- Long tradition in Western science

• Holism

- Nonlinear systems
- "The whole is greater than the sum of its parts"

Computational modeling

Mathematical modeling

Benoit Mandelbrot (1924-2010)

https://en.wikipedia.org/wiki/Fractal_landscape#/media/File:Animated_fractal_mountain.gif

https://en.wikipedia.org/wiki/Fractal_landscape#/media/File:Fractal_terrain_texture.jpg

Reading Assignment for Thursday

- Preface and Chapter 1 of Complexity: A Guided Tour
- Preface and Introduction (Chapter 1) of The Computational Beauty of Nature
- Both books will be on reserve at the library
- No lab this week