Models of Self-Organization:

Virtual Ants, Loops, Termites, Boids, and Fireflies

Reading for This Week

- Chapter 16 of The Computational Beauty of Nature (Autonomous Agents and Self-Organization, pp. 261-279)

Reading for Next Week

- Chapter 13 of Complexity: A Guided Tour (pp. 186-208) which discusses the Copycat analogy-making program

Model of Ant Colony Consuming Food

Rules:

- Each ant moves around randomly in search of food
- When an ant finds a piece of food, it carries the food back to the nest by following the "nest scent" chemical gradient
- An ant with food leaves a pheromone trace behind it as it moves
- When an ant with food reaches the nest, it drops the food and then heads out again in search of more food
- If other ants detect pheromone, they follow the pheromone scent

Model of Ant Colony Consuming Food

Virtual Ants

- Invented by Chris Langton in 1986
- Grid world with circular boundaries
- Grid cells can be either white or black
- On each time step:

1. Ant moves forward into a new cell
2. If cell is white: cell turns black and ant turns 90 degrees to the right If cell is black: cell turns white and ant turns 90 degrees to the left

Virtual Ants

- Invented by Chris Langton in 1986
- Grid world with circular boundaries
- Grid cells can be either white or black
- On each time step:

1. Ant moves forward into a new cell
2. If cell is white: cell turns black and ant turns 90 degrees to the right If cell is black: cell turns white and ant turns 90 degrees to the left

Virtual Ants

- Invented by Chris Langton in 1986
- Grid world with circular boundaries
- Grid cells can be either white or black
- On each time step:

1. Ant moves forward into a new cell
2. If cell is white: cell turns black and ant turns 90 degrees to the right If cell is black: cell turns white and ant turns 90 degrees to the left

Virtual Ants

- Invented by Chris Langton in 1986
- Grid world with circular boundaries
- Grid cells can be either white or black
- On each time step:

1. Ant moves forward into a new cell
2. If cell is white: cell turns black and ant turns 90 degrees to the right If cell is black: cell turns white and ant turns 90 degrees to the left

Virtual Ants

- Invented by Chris Langton in 1986
- Grid world with circular boundaries
- Grid cells can be either white or black
- On each time step:

1. Ant moves forward into a new cell
2. If cell is white: cell turns black and ant turns 90 degrees to the right If cell is black: cell turns white and ant turns 90 degrees to the left

Virtual Ants

- Invented by Chris Langton in 1986
- Grid world with circular boundaries
- Grid cells can be either white or black
- On each time step:

1. Ant moves forward into a new cell
2. If cell is white: cell turns black and ant turns 90 degrees to the right If cell is black: cell turns white and ant turns 90 degrees to the left

Virtual Ants

- Invented by Chris Langton in 1986
- Grid world with circular boundaries
- Grid cells can be either white or black
- On each time step:

1. Ant moves forward into a new cell
2. If cell is white: cell turns black and ant turns 90 degrees to the right If cell is black: cell turns white and ant turns 90 degrees to the left

etc...

Time Reversible

1. If cell is black: cell turns white and ant turns 90 degrees to the left

If cell is white: cell turns black and ant turns 90 degrees to the right
2. Ant moves backwards

Time Reversible

1. If cell is black: cell turns white and ant turns 90 degrees to the left

If cell is white: cell turns black and ant turns 90 degrees to the right
2. Ant moves backwards

Time Reversible

1. If cell is black: cell turns white and ant turns 90 degrees to the left

If cell is white: cell turns black and ant turns 90 degrees to the right
2. Ant moves backwards

Time Reversible

1. If cell is black: cell turns white and ant turns 90 degrees to the left

If cell is white: cell turns black and ant turns 90 degrees to the right
2. Ant moves backwards

Time Reversible

1. If cell is black: cell turns white and ant turns 90 degrees to the left

If cell is white: cell turns black and ant turns 90 degrees to the right
2. Ant moves backwards

Time Reversible

1. If cell is black: cell turns white and ant turns 90 degrees to the left

If cell is white: cell turns black and ant turns 90 degrees to the right
2. Ant moves backwards

Time Reversible

1. If cell is black: cell turns white and ant turns 90 degrees to the left

If cell is white: cell turns black and ant turns 90 degrees to the right
2. Ant moves backwards

Time Reversible

1. If cell is black: cell turns white and ant turns 90 degrees to the left

If cell is white: cell turns black and ant turns 90 degrees to the right
2. Ant moves backwards

Time Reversible

- Most CAs are not time reversible
- Example: the Game of Life

- For time-reversible CAs, both the future and the past are completely determined by the current configuration

Virtual Ants

- Long-term behavior of a single virtual ant: chaotic ?

9,000 time steps

Virtual Ants

- Long-term behavior of a single virtual ant: periodic! (104-step cycle)

Virtual Ants

- The "highway" trajectory appears to be an attractor
- All tested initial configurations eventually converge to it
- No one knows if this is true for all configurations
- Cohen-Kung Theorem:

All virtual ant trajectories are unbounded

- A single virtual ant can simulate a Turing Machine
- Virtual ants are thus capable of universal computation

Langton's Loops

- 8-state cellular automaton (states are color-coded)
- Simplification of von Neumann's original 29-state CA
- Capable of self-replication
- Not capable of universal computation

Termites

- Studied by Mitchel Resnick at the MIT Media Lab
- Also called turmites: "Turing machine termites"
- 2-dimensional Turing Machines
- Tape is a 2-dimensional infinite grid
- Tape head has a spatial orientation (N/S/E/W)
- Exactly equivalent in power to ordinary 1-dimensional Turing Machines

Termites

- 2-D grid world with randomly scattered "wood chips"
- Termites' "goal":
- Arrange wood chips into neat piles
- Termites' rules:
- Wander around at random until you bump into a wood chip
- If you are not carrying a wood chip, pick up the chip you bumped into
- If you are already carrying a wood chip, drop it

Boids

- Model of bird flocking (or fish schooling) behavior
- Developed by Craig Reynolds in 1987
- Used to create swarms of bats and herds of penguins in the movie Batman Returns
- Boid rules are very simple:
- Separation
- Alignment
- Cohesion

Boids: Rules

A boid's neighborhood:

Separation
avoid crowding and collisions

Alignment
match heading of other boids

Cohesion
move toward center of neighbors

Boids: Rules

$\mathbf{V}_{\text {old }} \quad$ the previous direction of movement
$\mathbf{V}_{\text {sep }}$
$V_{\text {align }}$
$\mathrm{V}_{\text {cohere }}$
$\mathrm{w}_{\text {sep }}$
$\mathrm{W}_{\text {align }}$
$\mathrm{w}_{\text {cohere }}$
m
the weight of the Separation rule the weight of the Alignment rule the weight of the Cohesion rule
a momentum parameter between 0 and 1

Boids: Rules

Direction of current "forces":

$\mathbf{V}_{\text {current }}=\mathrm{w}_{\text {sep }} \mathbf{V}_{\text {sep }}+\mathrm{w}_{\text {align }} \mathbf{V}_{\text {align }}+\mathrm{w}_{\text {cohere }} \mathbf{V}_{\text {cohere }}$

New boid direction (no momentum):

$$
V_{\text {new }}=V_{\text {current }}
$$

New boid direction (with momentum):

$$
\mathbf{V}_{\text {new }}=m \mathbf{V}_{\text {old }}+(1-m) \mathbf{V}_{\text {current }}
$$

Fireflies

- Some species of fireflies (especially in southeast Asia) exhibit remarkable flash synchronization
- Each firefly has an internal "clock"
- Flash occurs at beginning of clock cycle
- All fireflies begin at a random point in their clock cycle
- Enough flashes in the vicinity of a firefly resets its clock
- Eventually they all begin flashing in unison

Fireflies

"
... a great belt of light, some ten feet wide, formed by thousands upon thousands of fireflies whose green phosphorescence bridges the shoulder-high grass ...

The fluorescent band composed of these tiny organisms lights up and goes out with a precision that is perfectly synchronized, and one is left wondering what means of communication they possess which enables them to coordinate their shining as though controlled by a mechanical device."
—Joy Adamson, 1961 author of Born Free

Highly Recommended Reading

Demos of Self-Organization

- Ant Colony Foraging for Food
- Langton's Virtual Ants and Loops
- Termites Gathering Wood Chips
- Boids Flocking Behavior
- Firefly Synchronization

