Langton's λ Parameter

ECA Rule 110

$$\lambda = 5/8 = 0.625$$

Langton's λ Parameter

- k = number of possible cell states
- Designate one state as the "quiescent" or "dead" state
- N = total number of rules in the rule table
- q = # of rules that map to the quiescent state
- N q = # of rules that map to non-quiescent states
- λ = fraction of non-quiescent states in the rule table
 - = (N q) / N
 - = 1 q/N

Langton's λ Parameter

Maximum **uniformity**

Maximum heterogeneity

Example: k = 5

Maximum **uniformity**

Maximum heterogeneity

The Edge of Chaos

http://math.hws.edu/eck/js/edge-of-chaos/CA.html

Significance of CAs for Complex Systems

- Cellular automata can produce highly complex behavior from simple rules
- Natural complex systems can be modeled using cellularautomata-like architectures
- CAs give a framework for understanding how complex dynamics can produce collective information processing in "life-like" systems

Challenges

- How can we understand computation within CAs?
- What is the meaning of "emergent computation"?
- How can we design CAs to accomplish specific desired computations?

Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work

Melanie Mitchell Santa Fe Institute 1399 Hyde Park Road Santa Fe, NM 87501 mm@santafe.edu James P. Crutchfield¹ Santa Fe Institute 1399 Hyde Park Road Santa Fe, NM 87501 jpc@santafe.edu Rajarshi Das IBM Watson Research Ctr. P.O. Box 704 Yorktown Heights, NY 10598 rajarshi@watson.ibm.com

In Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA'96). Moscow, Russia: Russian Academy of Sciences, 1996.

 Decide if an arbtirary initial configuration (IC) has a majority of ON cells (1) or OFF cells (0)

 Decide if an arbtirary initial configuration (IC) has a majority of ON cells (1) or OFF cells (0)

- Trivial for an ordinary computer program:
 - Maintain a counter variable C
 - Add 1 to C for each ON cell
 - Subtract 1 from C for each OFF cell
 - If final value of C > 0, then output "1", else output "0"

- Trivial for a neural network:
 - Set each weight to +1
 - Set bias to -N/2 where N is the number of cells

• Used cellular automata with a neighborhood size of 7

Pop Quiz

• How many neighborhoods?

$$2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^7 = 128$$

Pop Quiz

• How many different possible CA rules?

 2^{128} = 340,282,366,920,938,463,463,374,607,431,768,211,456

Naïve "Solution"

Majority vote in each neighborhood

Rule:

But It Doesn't Work!

A Genetic Algorithm for Evolving CAs

- For 100 generations:
 - Generate 100 random initial configurations (ICs), with densities evenly distributed in the range [0 ... 1]
 - Calculate fitness of rules: fraction of 100 ICs that produced correct classification (all 0's or all 1's) after 2N time steps (where N = universe size)
 - Rank population by fitness
 - Copy highest 20% of the rules (the elite pool) directly into the new generation
 - Fill in the remaining 80% by randomly choosing elite rules and using single-point crossover and mutation

A Genetic Algorithm for Evolving CAs

- Elite CA rules get tested on new sets of ICs each generation
- 300 different runs of the GA were performed
- Several types of strategies evolved:

- Block-expansion

Go to all 0's unless there is a sufficiently large block of adjacent (or almost adjacent) 1's; if so, expand the block of 1's

Particle-based

Send "signals" from one region of the Universe to another containing information about the densities of different regions

Results: Block-Expansion Strategies

- Not very sophisticated
- All computation is "local"

Results: Block-Expansion Strategies

- Densities of test configurations (ICs) were evenly distributed in the range [0 ... 1]
- This helped the GA make progress early on
- ...but became a problem as better CA rules evolved
- Later CA rules needed more challenging ICs with densities much closer to 0.5
- Performance on an **unbiased** sample of 10,000 test ICs degraded as the universe size (N) increased

Comparison of Strategy Performance

CA Strategy	Fitness on a Universe of size N			
	N=149	N=599	N=999	
Majority-vote	0	0	0	
Expand 1-blocks	0.652	0.515	0.503	

Results: Particle-Based Strategies

Majority white

Majority black

Results: Particle-Based Strategies

Majority white

Majority black

(C)

Results: Particle-Based Strategies

Majority white

Majority black

(d)

How to Describe Information Processing?

Simple patterns filtered out

How to Describe Information Processing?

"particles"

laws of "particle physics"

Comparison of Strategy Performance

CA Strategy	Fitness on N=149	a Universe o N=599	of size N N=999
Majority-vote	0	0	0
Expand 1-blocks	0.652	0.515	0.503
Particle-based (b)	0.697	0.580	0.522
Particle-based (c) Particle-based (d)	0.742 0.769	0.718 0.725	0.701 0.714
Hand-designed	0.816	0.766	0.757

Better generalization than Expand-Blocks strategy

Conclusions

- GAs can (sometimes) discover CA rules that employ strategies based on coordinated information processing and communication across spatially extended distances
- The best GA-evolved rules for density classification are comparable to the best human-designed rules
- This provides a framework for studying how real evolutionary processes might give rise to complex information processing in natural systems