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Langton's λ Parameter

● k = number of possible cell states
● Designate one state as the “quiescent” or “dead” state

● N = total number of rules in the rule table
● q = # of rules that map to the quiescent state
● N – q = # of rules that map to non-quiescent states

● λ =  fraction of non-quiescent states in the rule table

=  (N – q) / N
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Example: k = 5
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Significance of CAs for Complex Systems

● Cellular automata can produce highly complex behavior from 
simple rules

● Natural complex systems can be modeled using cellular-
automata-like architectures

● CAs give a framework for understanding how complex 
dynamics can produce collective information processing in 
“life-like” systems
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Challenges

● How can we understand computation within CAs?

● What is the meaning of “emergent computation”?

● How can we design CAs to accomplish specific desired 
computations?
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Task: Density-Classification
● Used cellular automata with a neighborhood size of 7
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Pop Quiz

● How many neighborhoods?
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Naïve “Solution”

Majority vote in each neighborhood
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But It Doesn’t Work!
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● For 100 generations:
– Generate 100 random initial configurations (ICs), with 

densities evenly distributed in the range [0 … 1]
– Calculate fitness of rules: fraction of 100 ICs that 

produced correct classification (all 0's or all 1's)
after 2N time steps (where N = universe size)

– Rank population by fitness
– Copy highest 20% of the rules (the elite pool) directly 

into the new generation
– Fill in the remaining 80% by randomly choosing elite 

rules and using single-point crossover and mutation

A Genetic Algorithm for Evolving CAs
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A Genetic Algorithm for Evolving CAs

● Elite CA rules get tested on new sets of ICs each generation
● 300 different runs of the GA were performed
● Several types of strategies evolved:

– Block-expansion
Go to all 0's unless there is a sufficiently large block 
of adjacent (or almost adjacent) 1's; if so, expand the 
block of 1's

– Particle-based
Send “signals” from one region of the Universe to 
another containing information about the densities of 
different regions
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Results: Block-Expansion Strategies

● Not very sophisticated

● All computation is “local”

Majority white Majority black
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Results: Block-Expansion Strategies

● Densities of test configurations (ICs) were evenly
distributed in the range [0 … 1]

● This helped the GA make progress early on

● ...but became a problem as better CA rules evolved

● Later CA rules needed more challenging ICs with
densities much closer to 0.5

● Performance on an unbiased sample of 10,000 test
ICs degraded as the universe size (N) increased   
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Results: Particle-Based Strategies
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Comparison of Strategy Performance

CA Strategy Fitness on a Universe of size N
N=149 N=599 N=999

Majority-vote 0 0 0

Expand 1-blocks 0.652 0.515 0.503

Particle-based (b) 0.697 0.580 0.522
Particle-based (c) 0.742 0.718 0.701
Particle-based (d) 0.769 0.725 0.714

Hand-designed 0.816 0.766 0.757

Better generalization than Expand-Blocks strategy
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Conclusions

● GAs can (sometimes) discover CA rules that employ
strategies based on coordinated information
processing and communication across spatially
extended distances

● The best GA-evolved rules for density classification
are comparable to the best human-designed rules

● This provides a framework for studying how real
evolutionary processes might give rise to complex
information processing in natural systems
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