Elementary Cellular Automata

Reading Assignment for Tuesday

Chapter 11 (pages 160-168)

One-Dimensional Cellular Automata

One-Dimensional Cellular Automata

Time step 0

One-Dimensional Cellular Automata

Time step 1

One-Dimensional Cellular Automata

Time step 2

One-Dimensional Cellular Automata

Time step 3

"Space Time" Diagram

Time step 0

"Space Time" Diagram

Time step 1

"Space Time" Diagram

Time step 2

"Space Time" Diagram

Time step 3

Elementary cellular automata

One-dimensional, two states (black and white)

Rule:

Stephen Wolfram

To define an ECA, fill in right side of arrows with black and white boxes:

Rule:

Total: $2 \times 2 \times 2 \times 2 \times 2 \times$ $2 \times 2 \times 2=2^{8}$
$=256$ possible ECAs

Wolfram numbering:

Rule:

Wolfram numbering:

Rule:

Wolfram numbering:

Rule:

Wolfram numbering:

Rule:

"The Rule 30 automaton is the most surprising thing I've ever seen in science....It took me several years to absorb how important this was.

But in the end, I realized that this one picture contains the clue to what's perhaps the most long-standing mystery in all of science: where, in the end, the complexity of the natural world comes from."
--Stephen Wolfram (Quoted in Forbes)

Wolfram patented Rule 30's use as a pseudo-random number generator!

Rule 30

NetLogo Demo

Wolfram's Four Classes of CA Behavior

Class 1: Almost all initial configurations relax after a transient period to the same fixed configuration.

Class 2: Almost all initial configurations relax after a transient period to some fixed point or some periodic cycle of configurations, but which one depends on the initial configuration

Class 3: Almost all initial configurations relax after a transient period to chaotic behavior. (The term "chaotic' ${ }^{\text {' here refers }}$ to apparently unpredictable space-time behavior.)

Class 4: Some initial configurations result in complex localized structures, sometime 1ono-lived

Examples of complex,

 long-lived localized structures
Rule 110

CAs as dynamical systems

(Analogy with logistic map)

Logistic Map

Elementary Cellular Automata

$x_{t+1}=f\left(x_{t}\right)=R x_{t}\left(1-x_{t}\right)$

Deterministic

Discrete time steps

Continuous "state" (value of x is a real number)

Dynamics:
Fixed point --- periodic ---- chaos

Control parameter: R
lattice $_{t+1}=f\left(\right.$ lattice $\left._{t}\right) \quad[f=$ ECA rule $)$

Deterministic

Discrete time steps

Discrete state (value of lattice is sequence of "black" and "white")

Dynamics:

Fixed point - periodic - chaos

Control parameter: ?
fixed point periodic chaotic
$0 \quad R \quad 4$

Langton's Lambda parameter as a proposed control parameter for CAs

Chris Langton

For two-state (black and white) CAs:
Lambda $=$ fraction of black output states in CA rule table

For example:

Lambda $=5 / 8$

Langton's hypothesis:

"Typical" CA behavior (after transients):

Lambda is a better predictor of behavior for neighborhood size > $\mathbf{3}$ cells

Summary

- CAs can be viewed as dynamical systems, with different attractors (fixed-point, periodic, chaotic, "edge of chaos")
- These correspond to Wolfram's four classes
- Langton's Lambda parameter is one "control parameter" that (roughly) indicates what type of attractor to expect
- The Game of Life is a Class 4 CA!
- Wolfram hypothesized that Class 4 CAs are capable of "universal computation"

