Perceptron Training Procedure

Binary Threshold Neuron

 $1 \times 2.51 + 1 \times 0.13 + 0 \times -1.27 + ... + 1 \times 0.09 + -0.5 = 2.23$

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure
 - 1. present an input pattern

target = 1

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure
 - 1. present an input pattern
 - 2. compute output value

output = $\Theta($ sum of inputs \times weights + bias)

"threshold" function:

```
if sum \ge 0: output = 1
if sum < 0: output = 0
```

target = 1

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure
 - 1. present an input pattern
 - 2. compute output value $output = \Theta(sum \ of \ inputs \times weights + bias)$
 - 3. compare output to target value

error = target – output

target = 1 error = 1 - 0 = 1

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure •
 - 1. present an input pattern
 - 2. compute output value output = $\Theta(\text{sum of inputs} \times \text{weights} + \text{bias})$
 - 3. compare output to target value
 - error = target output
 - hte and hi 4. if incorrect, adjust weig weight_adjustment = $\varepsilon \times$ $\times 3 =$

bias adjustment

"learning rate" $(0 < \varepsilon < 1)$

target = 1error = 1 - 0 = 1

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure
 - 1. present an input pattern
 - 2. compute output value $output = \Theta(sum \ of \ inputs \times weights + bias)$
 - 3. compare output to target value error = target – output
 - 4. if incorrect, adjust weights and bias weight_adjustment = ε × input × error
 - 5. repeat until all input patterns give the correct output value

target = 1 error = 0 bias 1 1 1 0

Perceptron Training Example

error = target - output = 0 - 1 = -1

 $1 \ 1 \Rightarrow 0$

error = target - output = 0 - 1 = -1

amount to change weight₁

= $\varepsilon \times error \times input_1 = 0.2 \times -1 \times 0 = 0$

 $1 \ 1 \Rightarrow 0$

error = target – output = 0 - 1 = -1

amount to change weight₁

 $= \varepsilon \times error \times input_1 = 0.2 \times -1 \times 0 = \mathbf{0}$ new value of weight_1 = 0.2 + 0 = 0.2

 $1 \ 1 \Rightarrow 0$

error = target - output = 0 - 1 = -1amount to change weight₂ = $\varepsilon \times error \times input_2 = 0.2 \times -1 \times 1 = -0.2$

 $1 \ 1 \Rightarrow 0$

error = target - output = 0 - 1 = -1amount to change weight₂ = $\varepsilon \times error \times input_2 = 0.2 \times -1 \times 1 = -0.2$ new value of weight₂ = -0.1 + -0.2 = -0.3

 $1 \ 1 \Rightarrow 0$

error = target – output = 0 - 1 = -1

amount to change bias

 $= \varepsilon \times error = 0.2 \times -1 = -0.2$

 $1 \ 1 \Rightarrow 0$

error = target – output = 0 - 1 = -1

amount to change bias

 $= \varepsilon \times error = 0.2 \times -1 = -0.2$

new value of bias

= 0.1 + -0.2 = -0.1

 $1 \times 0.2 + 0 \times -0.3 + -0.1 = 0.1 \ge 0$ output = 1

error = target - output = 1 - 0 = 1

 $1 \ 1 \Rightarrow 0$

error = target - output = 1 - 0 = 1amount to change weight₁ = $\varepsilon \times error \times input_1 = 0.2 \times 1 \times 0 = 0$

 $1 \ 1 \Rightarrow 0$

error = target - output = 1 - 0 = 1

amount to change weight₁

 $= \varepsilon \times error \times input_1 = 0.2 \times 1 \times 0 = \mathbf{0}$ new value of weight_1 = 0.2 + 0 = 0.2

error = target - output = 1 - 0 = 1amount to change weight₂ = $\varepsilon \times error \times input_2 = 0.2 \times 1 \times 0 = 0$

 $1 \ 1 \Rightarrow 0$

error = target - output = 1 - 0 = 1amount to change weight₂ = $\varepsilon \times error \times input_2 = 0.2 \times 1 \times 0 = 0$ new value of weight₂ = -0.3 + 0 = -0.3

 $1 \ 1 \Rightarrow 0$

error = target - output = 1 - 0 = 1

amount to change bias

 $= \varepsilon \times error = 0.2 \times 1 = 0.2$

error = target – output = 1 - 0 = 1amount to change bias = $\varepsilon \times error = 0.2 \times 1 = 0.2$ new value of bias = -0.1 + 0.2 = 0.1

 $1 \times 0.2 + 0 \times -0.3 + 0.1 = 0.3 \ge 0$ output = 1

error = target - output = 1 - 0 = 1

error = target - output = 1 - 0 = 1amount to change weight₁ = $\varepsilon \times error \times input_1 = 0.2 \times 1 \times 0 = 0$

 $1 \ 1 \Rightarrow 0$

error = target – output = 1 - 0 = 1amount to change weight₁ = $\varepsilon \times error \times input_1 = 0.2 \times 1 \times 0 = 0$ new value of weight₁

= 0 + 0 = 0

error = target - output = 1 - 0 = 1amount to change weight₂ = $\varepsilon \times error \times input_2 = 0.2 \times 1 \times 0 = 0$

 $1 \ 1 \Rightarrow 0$

error = target - output = 1 - 0 = 1amount to change weight₂ = $\varepsilon \times error \times input_2 = 0.2 \times 1 \times 0 = 0$ new value of weight₂ = -0.5 + 0 = -0.5

 $1 \ 1 \Rightarrow 0$

error = target - output = 1 - 0 = 1

amount to change bias

 $= \varepsilon \times error = 0.2 \times 1 = 0.2$

 $1 \ 1 \Rightarrow 0$

error = target – output = 1 - 0 = 1amount to change bias = $\varepsilon \times error = 0.2 \times 1 = 0.2$ new value of bias

= -0.1 + 0.2 = 0.1

 $1 \times 0 + 0 \times -0.5 + 0.1 = 0.1 \ge 0$ output = 1

 $1 \times 0 + 0 \times -0.5 + 0.1 = 0.1 \ge 0$ output = 1

$$\checkmark$$