Artificial Neurons: Continuous Version

 $1.0 \times 2.51 + 0.0 \times 0.13 + 0.2 \times -1.27 + ... + 0.7 \times 0.09 + -0.5 = 1.82$

Pattern Associator Networks

- Units are arranged into successive layers
- Feed-forward connections only
- Layer activations represent stimulus/response associations

	e e	· · ·			• • •	* * * *
	* • • • •		• • • •	• • • •		•
	••••	• • • • •	• • •			•
	•••	• •			* * * *	• • • • •
		•				• •
					••••	
	•					
					• • •	
	S	COSS		••		
				• • •		
	e a <i>e e</i> e					•••••
	•	• • • • • •	• • •		• • •	• • • • •
		• • • • •	• • •	• • • •	• • •	••••
				••••	•••	
		• • • • • •				•
• • • •			6.3(2,2,2)			
	• • • • •		exx.x			• • • •
		• • • •	ELAL:			•••••
		* * * * *	866e	· · ·		• • • • • •
		: •				-
			0444			.
		• •				•••
200000000000000000000000000000000000000	***************************************	************************************	99999-9999		*******************************	***************************************

ALVINN

Recognizing Handwritten Digits

Recognizing Handwritten Digits

Recognizing Handwritten Digits

Handwritten Digits Demo

Weights from "retina" to middle hidden unit

Sunglasses Recognizer Demo

Recognizing Poses

30 x 32 "retina" (960 input units)

Recognizing Poses

Recognizing Poses

Pose Recognizer Demo

The Knowledge is in the Connection Weights

Neural Network Learning

- Connection weights determine network behavior
- Behavior could be "good" or "bad"
- Error function quantifies this measure

 $E = (target_1 - output_1)^2 + (target_2 - output_2)^2 + \dots$

Neural Network Learning

- How to change the weights so that *E* goes down?
- Backpropagation learning algorithm modifies the weights
- On each time step, the overall error of the network moves "downhill" in the direction of the **gradient**

