Recommended Reading for This Week

Chapter 22: Neural Networks and Learning (pp. 383 - 413)

Input Patterns

0000000011110000000011110000000...

Input Patterns

 16×16 "retina"

256 binary values

Input Patterns

 $0 \times 1 + 0 \times 1 - 1.5 = -1.5 < 0$

 $0 \times 1 + 0 \times 1 - 1.5 = -1.5 < 0$

 $0 \times 1 + 1 \times 1 - 1.5 = -0.5 < 0$

 $0 \times 1 + 1 \times 1 - 1.5 = -0.5 < 0$

 $1 \times 1 + 0 \times 1 - 1.5 = -0.5 < 0$

 $1 \times 1 + 0 \times 1 - 1.5 = -0.5 < 0$

 $1 \times 1 + 1 \times 1 - 1.5 = +0.5 \ge 0$

 $1 \times 1 + 1 \times 1 - 1.5 = +0.5 \ge 0$

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure
 - 1. present an input pattern

target = 1

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure
 - 1. present an input pattern
 - 2. compute output value

output = $\Theta(\text{sum of inputs} \times \text{weights} + \text{bias})$

"threshold" function:

```
if sum \ge 0: output = 1
if sum < 0: output = 0
```

target = 1

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure
 - 1. present an input pattern
 - 2. compute output value $output = \Theta(sum \ of \ inputs \times weights + bias)$
 - 3. compare output to target value

error = target – output

target = 1 error = 1 - 0 = 1

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure •
 - 1. present an input pattern
 - 2. compute output value output = $\Theta(\text{sum of inputs} \times \text{weights} + \text{bias})$
 - 3. compare output to target value
 - error = target output
 - hte and hi 4. if incorrect, adjust weig weight_adjustment = $\varepsilon \times$ $\times 3 =$

bias adjustment

"learning rate" $(0 < \varepsilon < 1)$

target = 1error = 1 - 0 = 1

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure
 - 1. present an input pattern
 - 2. compute output value $output = \Theta(sum \ of \ inputs \times weights + bias)$
 - 3. compare output to target value error = target – output
 - 4. if incorrect, adjust weights and bias weight_adjustment = ε × input × error
 - 5. repeat until all input patterns give the correct output value

target = 1 error = 0 bias 1 1 1 0

Perceptron learning theorem

The perceptron training procedure is **guaranteed** to find weight values that correctly solve the problem, within a finite number of steps, **provided such weight values exist**.

- Not all problems can be solved by **single-layer** perceptrons
- Classic example: XOR $0 \ 0 \ \Rightarrow 0$ $0 \ 1 \ \Rightarrow 1$ $1 \ 1 \ \Rightarrow 0$ $0 \ 1 \ \Rightarrow 1$
- Perceptrons with **multiple layers** of weights can solve XOR
- But **no training procedure** or **learning theorem** for multi-layer networks was known in the 1960s

- Marvin Minsky and Seymour Papert of MIT published
 Perceptrons in 1969
- They rigorously analyzed the limitations of perceptrons, and doubted that a training procedure existed for networks with multiple layers of weights
- This caused many people to seriously question the potential of neural networks
- As a result, interest in neural network research (and funding) largely dried up for more than a decade

Expanded Edition

Perceptrons

Marvin L. Minsky Seymour A. Papert

A perceptron is an "adjustable line"

 $W_1 x + W_2 y + bias = sum$

- When sum > 0, the input x, y is classified one way (1)
- When sum < 0, the input x, y is classified the other way (0)
- When sum = 0, the input x, y is right on the "border"

A perceptron is an "adjustable line"

$$W_1 x + W_2 y + bias = 0$$

This is the equation of a line, which we can rewrite in standard slope-intercept form as y = mx + b:

$$y = -W_1/W_2 x + -bias/W_2$$

Slope of line Intercept of line with *y*-axis

A perceptron is an "adjustable line"

By adjusting the values of W_1 , W_2 , and **bias**, we can change the orientation of the line in any way we like

• Input patterns correspond to **points** in the **input space**

- Input patterns correspond to points in the input space
- A perceptron that correctly classifies input patterns as belonging to category A or category B corresponds to a straight line dividing the input space into two halves
- The two categories of input patterns are **linearly separable**

- Input patterns correspond to points in the input space
- A perceptron that correctly classifies input patterns as belonging to category A or category B corresponds to a straight line dividing the input space into two halves
- The two categories of input patterns are **linearly separable**

- Input patterns correspond to points in the input space
- A perceptron that correctly classifies input patterns as belonging to category A or category B corresponds to a straight line dividing the input space into two halves
- The two categories of input patterns are **linearly separable**

• Minsky and Papert proved that many interesting problems are not linearly separable, and thus no perceptron can learn them

- This idea applies to input spaces of any dimensionality
- Example: 3-dimensional input patterns

linearly separable

- This idea applies to input spaces of any dimensionality
- Example: 3-dimensional input patterns

partially linearly separable

- This idea applies to input spaces of any dimensionality
- Example: 3-dimensional input patterns

not linearly separable

• Multi-layer networks can learn to classify input patterns that are not linearly separable

Parallel Distributed Processing (PDP)

- In the 1980s, a way to train multi-layer networks was discovered, called the **backpropagation** learning algorithm
- David Rumelhart, Geoffrey Hinton, James McClelland, and others revived interest in neural networks with the publication of the "PDP books"
- Showed that Minsky and Papert's analysis was too pessimistic
- Backpropagation is one of the key components of modern-day research in deep learning

Artificial Neurons: Binary Version

 $1 \times 2.51 + 1 \times 0.13 + 0 \times -1.27 + ... + 1 \times 0.09 + -0.5 = 2.23$

Artificial Neurons: Continuous Version

 $1.0 \times 2.51 + 0.0 \times 0.13 + 0.2 \times -1.27 + ... + 0.7 \times 0.09 + -0.5 = 1.82$

Pattern Associator Networks

- Units are arranged into successive layers
- Feed-forward connections only
- Layer activations represent stimulus/response associations

