Machine Learning and Artificial Neurons

- Checkers (Arthur Samuel, IBM, 1950s)
 - First successful machine learning program
 - Learned to play checkers better than Samuel himself
 - Beat 4th ranked player in the nation in 1961

- Zip code recognizer (Yann LeCun, AT&T Bell Labs, 1980s)
 - Used a neural network
 - Trained on handwritten zip codes from U.S. mail
 - Achieved the state of the art in digit recognition
 - Classification accuracy > 95%

10119134857268032-6414186 6359720299299722510046701 3084111591010615406103631 1064111030475262009979966 8412056708557131427935460 1019750187112995089970984 0109707597331972015519055 1075518255182814318010143 1787521655460354603546055 18235108303047520439401

80322-4129 80206 40004 4 37878 CE ,5502 75×16 35460 A

- **TD-Gammon** (Gerry Tesauro, IBM, 1990s)
 - Learned by playing over 1.5 million games against itself
 - Discovered novel board evaluation strategies
 - Used reinforcement learning and neural networks
 - Achieved parity with the top 5-10 players in the world
 - By far the best computer backgammon program

- ALVINN (Dean Pomerleau, CMU, 1990s)
 - Autonomous vehicle controlled by a neural network
 - Input: image of road, Output: steering wheel position
 - Neural network learns by "observing" a human driver
 - In 1995, steered a car semi-autonomously from coast to coast (all but 50 of 2,850 miles)

Neurons and Brains

- Your brain has ~ 100 billion neurons
- Each neuron has ~ 10,000 synaptic connections to other neurons
- Hundreds of trillions of connections
- Learning induces changes in the connection strengths between neurons

Hodgkin-Huxley Neuron Model

Artificial Neurons: Binary Version

Artificial Neurons: Binary Version

Artificial Neurons: Binary Version

 $1 \times 2.51 + 1 \times 0.13 + 0 \times -1.27 + ... + 1 \times 0.09 = 2.73$

