The Prisoner's Dilemma

The Prisoner's Dilemma

- Idealized game-theoretic model of cooperation
- Formulated in 1950 by Melvin Dresher and Merrill Flood at RAND Corporation
- Implications for social science, political science, economics
- Genetic algorithms can be applied to the Prisoner's Dilemma to study the evolution of cooperation

The Prisoner's Dilemma

- 2 prisoners (Alice and Bob) held in separate cells
- Neither one can communicate with the other
- Each prisoner has to make a choice:
- Maintain innocence and don't talk (cooperate)
- Agree to testify against the other one (defect)
- Each is being offered the same deal
- Each knows that the other is being offered the same deal

The Prisoner's Dilemma

- If Alice and Bob both refuse to testify against the other:

2 years in prison for both

- If Alice refuses to talk, and Bob testifies against Alice: 5 years for Alice, 0 years for Bob
- If Alice testifies against Bob, and Bob refuses to talk:

0 years for Alice, 5 years for Bob

- If Alice and Bob both testify against the other:

4 years for both

Payoff Matrix

Bob cooperates

Alice cooperates

$-2,-2$

Alice defects

Payoff Matrix (Standard Version)

Bob cooperates

Reward $R=3$
Punishment $\boldsymbol{P}=1$
Temptation $\boldsymbol{T}=5$
Sucker payoff $S=0$

Alice's Point of View

- Bob will either cooperate or defect
- Suppose Bob cooperates:
- If I cooperate, I will get 2 years in prison
- If I defect, I will get 0 years
\leftarrow better choice
- Suppose Bob defects:
- If I cooperate, I will get 5 years (and Bob will get off scot-free!)
- If I defect, I will get 4 years
\leftarrow better choice
- Either way, the better choice for me is clearly to defect

Bob's Point of View

- Alice will either cooperate or defect

- Suppose Alice cooperates:
- If I cooperate, I will get 2 years in prison
- If I defect, I will get 0 years
\leftarrow better choice
- Suppose Alice defects:
- If I cooperate, I will get 5 years (and Alice will get off scot-free!)
- If I defect, I will get 4 years
\leftarrow better choice
- Either way, the better choice for me is clearly to defect

And So...

- Both Alice and Bob sleep on it

- The next day, both decide to defect
- Both end up in prison for 4 long years
- If they had just cooperated, they'd be in for half as long!

Does logic prevent cooperation?

The Iterated Prisoner's Dilemma

- One possible formulation:
- You exchange bags of money for diamonds with a dealer whom you've never met
- Transactions occur once a month at separate drop and pickup locations in the forest
- Each month, you must decide whether to cooperate (leave a full bag of money) or defect (leave an empty bag)
- As far as you know, this arrangement will continue indefinitely, once a month

The Iterated Prisoner's Dilemma

- Suppose one day your dealer defects (leaves an empty bag)
- What should you do next time?
- Use a strategy to decide what to do (Cooperate or Defect) based on the recent history of the game

Some Example Strategies

- Always cooperate, no matter what
- Always defect, no matter what
- Cooperate for a while, then defect forever afterwards
- Cooperate until the other player defects, then defect forever afterwards (MASSIVE RETALIATION)

Some Example Strategies

- Cooperate or defect at random (RANDOM)
- Cooperate the first time, then do whatever the other player did on the previous step (TIT FOR TAT)
- Like TIT FOR TAT, but defect only when the other player defects twice in a row (TIT FOR TWO TATS)
- Like TIT FOR TAT, but with a 10% chance of defecting after the other player cooperates (JOSS)

TIT FOR TAT vs. JOSS

(

TIT FOR TATs initial choice

TIT FOR TAT vs. JOSS

CC CC CC ... and so it goes

JOSS rewards TIT FOR TATs cooperation
TIT FOR TAT rewards JOSS's cooperation

TIT FOR TAT vs. JOSS

CC CC CC CD
until JOSS attempts to exploit the situation

TIT FOR TAT vs. JOSS

CC CC CC CD DC

JOSS goes back to "playing nice"

TIT FOR TAT responds to JOSS's defection

TIT FOR TAT vs. JOSS

CC CC CC CD DC CD

JOSS punishes TFTs defection

TIT FOR TAT rewards JOSS's cooperation

TIT FOR TAT vs. JOSS

CC CC CC CD DC CD DC

TIT FOR TAT punishes JOSS's defection

TIT FOR TAT vs. JOSS

CC CC CC CD DC CD DC CD DC CD ... and so it goes

TIT FOR TAT vs. JOSS

CC CC CC CD DC CD DC CD DC CD DD
 until JOSS inevitably tries again

TIT FOR TAT vs. JOSS

JOSS punishes TFTs defection

TIT FOR TAT vs. JOSS

CC CC CC CD DC CD DC CD DC CD DD DD DD DD ...
 TIT FOR TAT punishes JOSS's defection
 JOSS punishes TFTs defection

... and so it goes, forever after

TIT FOR TAT vs. JOSS

CC CC CC CD DC CD DC CD DC CD DD DD DD DD ...

- Result: a complete breakdown of trust and cooperation
- JOSS's attempt at exploitation backfires
- The same thing likely happens when JOSS plays against other strategies, limiting its overall gain in the long run
- TIT FOR TAT likely does better in the long run when it plays against other "nicer" strategies

No Single Best Strategy Exists

- It all depends on the strategy the other player is using, and how long the game may last
- If Bob's strategy is ALWAYS DEFECT, the best strategy for Alice is also to always defect

Payoff: PPPPPP ...

- If Bob's strategy is MASSIVE RETALIATION, the best strategy for Alice is to cooperate for as long as possible, then defect on the very last move

Payoff: RRRRRRRT

- If Bob's strategy doesn't depend in any way on what Alice actually does, the best strategy for Alice is to always defect
- Cooperation is good for Alice only if Bob can be influenced by what Alice does

First IPD Computer Tournament

- Organized by Robert Axelrod at the University of Michigan
- Invited game theory experts in mathematics, economics, political science, and social science to submit strategies for an Iterated Prisoner's Dilemma computer tournament
- Strategies were encoded as computer programs Input: history of previous 3 games (e.g. CC CD DD) Output: move for this game (C or D)
- Some strategies incorporated randomness
- Some strategies were very sophisticated and complex (e.g., some used Markov models, or Bayesian inference)

First IPD Computer Tournament

- 15 strategies in all, including RANDOM
- All strategies played each other 200 times, round-robin style
- Strategy score: average number of points earned per game
- Tournament was run 5 times, and results averaged
- And the winner was...

First IPD Computer Tournament

- 15 strategies in all, including RANDOM
- All strategies played each other 200 times, round-robin style
- Strategy score: average number of points earned per game
- Tournament was run 5 times, and results averaged
- Winner: TIT FOR TAT (simplest strategy of all)

> Cooperate the first time, then do whatever the other player did on the previous step

Strategy Properties

- Nice: "Don't be the first to defect"
- Forgiving: "Don't use massive retaliation" or
"Don't hold a grudge after punishing a defection"
- Provocable: "Do retaliate for a defection"
- Responsive: "Base your behavior, at least in part, on what the other player does"
- Clarity: "Be responsive in a way that is recognizable"
- Robust: "Be effective against a variety of other strategies"

TIT FOR TAT has all of these properties

Second IPD Computer Tournament

- Strategies submitted by experts in the same fields as before, plus evolutionary biology, physics, and computer science
- 63 strategies in all, including RANDOM
- Many more sophisticated strategies than in Tournament 1
- Participants could submit any type of strategy, and were aware of TIT FOR TAT and the other strategies from Tournament 1
- And the new winner was ...

TIT FOR TAT, once again!

Second IPD Computer Tournament

- Among the top 15 strategies, only one was not "nice" (\#8)
- Among the bottom 15 strategies, only one was "nice"
- TIT FOR TWO TATS came in $24^{\text {th }}$
- Cooperation was a key feature of the most successful strategies
- Provocability was important, but restrained retaliation was more successful than massive retaliation
- Forgiveness helped to restore cooperation in the face of occasional defections
- General Lesson: be nice, provocable, and forgiving

Evolving Strategies with a Genetic Algorithm

Evolving Strategies with a Genetic Algorithm

- Encoding a strategy as a genome:

History	Move	+ 6 more symbols to encode initial "history"
CC CC CC	C	CCCDCCICDDCCD . D C
CC CC CD	D	CCCDCC ${ }^{\text {c }}$
CC CC DC	D	${ }^{\text {r }}$
CC CCDD	C	70 bits
CC CD CC	$\rightarrow \mathrm{C}$	
CC CD CD	D	\} 64 rows
CD CC CC	D	
DD DD DD		= 1,180,591,620,717,411,303,424

An Example Game

CCCDCCCDDCCD...D... C

An Example Game

CCCDCC CDDCCD ... D ... C

An Example Game

CCCDCC CDDCCD ... D ... C

History	Move
CC CC CC	C
CC CC CD	D
CC CC DC	D
CC CC DD	C
CC CD CC	\rightarrow
CC CD CD	\mathbf{D}
\vdots	\vdots
CD CC CC	\mathbf{D}
\vdots	\vdots
DD DD DD	C

My first move: CCCDCC $\rightarrow \mathrm{C}$ Other player's first move:

C
My next move: CDCCCC \rightarrow D Other player's next move: C

My next move: CCCCDC \rightarrow D Other player's next move: D

An Example Game

CCCDCC CDDCCD ... D ... C

History	Move
CC CC CC	C
CC CC CD	D
CC CC DC	D
CC CC DD	C
CC CD CC	\rightarrow
CC CD CD	\mathbf{D}
\vdots	\vdots
CD CC CC	\mathbf{D}
\vdots	\vdots
DD DD DD	C

My first move: CCCDCC $\rightarrow \mathrm{C}$ Other player's first move: C

My next move: CDCCCC \rightarrow D Other player's next move: C

My next move: CCCCDC \rightarrow D
Other player's next move: D
My next move: CCDCDD \rightarrow etc.

The Genetic Algorithm: Details

- Population size: 20 strategies
- Fitness-proportionate selection
- Multi-point crossover (average of one crossover per genome)
- Mutation rate: 0.7% per position
- Each GA run evolved for 50 generations
- Performed 40 separate runs with random initial populations
- Fitness: average score of a strategy in an environment

Environment 1

- Fitness of a strategy
- Strategy plays against 8 representative strategies from IPD Tournament 2
- 151 moves per game
- Fitness is the average score over all games played
- Environment 1 is fixed

Results: Environment 1

- 29 of 40 runs evolved strategies similar to TIT FOR TAT
- 11 of 40 runs evolved strategies better than TIT FOR TAT - More exploitative than TIT FOR TAT
- Always defect on first move (and sometimes second)
- Not nice
- Use player's responses to decide how to proceed
- With unexploitable players, they "apologize" and then try to mutually cooperate
- With exploitable players, they continue to exploit
- Less robust, but highly adapted to Environment 1

Turning Off Crossover

- 40 additional runs were conducted without crossover
- Each offspring strategy included information from only one parent instead of two
- Same fitness evaluation as before, using Environment 1
- Results:
- Again, most runs found strategies that were similar to TIT FOR TAT in their effectiveness
- Only about half of the runs (5 out of 40) found strategies that were substantially better than TIT FOR TAT (compared to 11 out of 40 when using crossover)

Environment 2

- Crossover was reinstated
- Fitness of a strategy
- Strategy plays against all 20 strategies in the current GA population, including itself
- 151 moves per game
- Fitness is the average score over all games played
- Environment 2 changes from generation to generation
- 10 runs were performed

Results: Environment 2

Results: Environment 2

Results: Environment 2

Clusters of reciprocating strategies evolve, becoming less vulnerable to exploitation by uncooperative strategies
200

Generations

Results: Environment 2

Axelrod's Conclusions

- In the presence of many unresponsive strategies, uncooperative defectors have a strong advantage
- Cooperation can establish a foothold in a population of defectors through small clusters of reciprocating strategies
- The reciprocating strategies do well enough amongst themselves to offset being exploited by the defectors
- As cooperative strategies proliferate, the proportion of strategies vulnerable to exploitation by defectors shrinks, driving the defectors toward extinction

Modeling Social Norms

- Follow-up work by Axelrod investigated the effect of adding social norms to the GA model
- When a player defects, other players may witness the defection and punish the player, with some probability
- Each player that witnesses a defection may decide to punish the defector by subtracting points from its score
- New inherited traits, subject to mutation:
- Boldness: a player's probability of defecting
- Vengefulness: a player's probability of punishing an observed defection

Modeling Social Norms

- Hypothesis:

Norms will facilitate the evolution of cooperation, with vengefulness evolving to counteract boldness

- Simulation results:
- With no social norms (vengefulness values 0 in the initial population), defectors ended up dominating
- Norms are not enough to reliably induce cooperation

Meta-Norms

- So Axelrod added meta-norms to the simulation:

Witnesses can be punished for not punishing the defectors!

- Example of a meta-norm:

Bystanders' disapproving looks in a supermarket when a parent fails to discipline their child for being disruptive

- Simulation results:
- Non-punishers tended to evolve into punishers
- Defectors tended to evolve into cooperators
- Meta-norms can indeed promote and sustain cooperation

Modeling Spatial Structure

- Martin Nowak and Robert May added spatial structure to a simple version of the Prisoner's Dilemma
- Players either always cooperate or always defect
- Players are distributed across a 2-D lattice

P	P	P	P	P
P	P	P	P	P
P	P	P	P	P
P	P	P	P	P
P	P	P	P	P

Modeling Spatial Structure

- Each player only plays against its local neighbors

$P 1$	$P 2$	$P 3$	$P 4$	$P 5$
$P 6$	$P 7$	$P 8$	$P 9$	$P 10$
$P 11$	$P 12$	$P 13$	$P 14$	$P 15$
$P 16$	$P 17$	$P 18$	$P 19$	$P 20$
$P 21$	$P 22$	$P 23$	$P 24$	$P 25$

Modeling Spatial Structure

- Each player only plays against its local neighbors

$P 1$	$P 2$	$P 3$	$P 4$	$P 5$
$P 6$	$P 7$	$P 8$	$P 9$	$P 10$
$P 11$	$P 12$	$P 13$	$P 14$	$P 15$
$P 16$	$P 17$	$P 18$	$P 19$	$P 20$
$P 21$	$P 22$	$P 23$	$P 24$	$P 25$

Modeling Spatial Structure

- Each player only plays against its local neighbors

And so on ...

Modeling Spatial Structure

- Each player only plays against its local neighbors
- Each player is replaced by the highest scoring player in its neighborhood, with no crossover or mutation

$P 1$	$P 2$	$P 3$	$P 4$	$P 5$
$P 6$	$P 7$	$P 8$	$P 9$	$P 10$
$P 11$	$P 12$	$P 19$	$P 14$	$P 15$
$P 16$	$P 17$	$P 18$	$P 19$	$P 20$
$P 21$	$P 22$	$P 23$	$P 24$	$P 25$

Modeling Spatial Structure

- Nowak and May experimented with different:
- Mixtures of cooperators and defectors
- Values of the payoff matrix
- Results:
- Cooperation persisted indefinitely in the population
- Distribution of cooperators and defectors either:
- Oscillated indefinitely
- Exhibited chaotic dynamics

Conclusion: Territoriality favors cooperation

Computer Modeling of the Real World

All models are wrong, but some are useful.
-George Box and Norman Draper

- Computer models of evolution (GAs) and social cooperation (Prisoner's Dilemma) are highly simplified and idealized
- Nevertheless, they can serve as a useful guide in thinking about the real phenomena being modeled
- They can provide new insights, suggest new questions, and enable controlled experiments to be performed that otherwise would be impossible

Also check out this fun website:

The Evolution of Trust

https://ncase.me/trust

