
The Computational Beauty of Nature – Spring 2020

Lab 3: Dynamics and Chaos

In this lab you will investigate the dynamics of the logistic map and, in particular, the degree of 
sensitive dependence on initial conditions at different values of the control parameter R.  You will then 
extend your studies to the sine map.  You should write down your answers to each exercise as you go.
You will submit your answers to the starred (**) exercises with your next homework assignment.

1. Download logistic.nlogo from the class web page to your Desktop, and open it in NetLogo.  Then click
setup.  The window on the right shows a graph of the logistic map xt+1 = R xt (1 – xt), with R = 2.  The 
controls on the left allow you to iterate the equation starting from two different initial conditions x0 and
x0', so you can watch their trajectories simultaneously.  You can also change the value of R.

Use the slider controls to adjust the values of x0 and x0', and then click setup.  IMPORTANT: you 
should always click   setup   after modifying any parameter settings.  The two initial values will appear as 
colored dots on the graph (blue is x0, red is x0' ).  Now click go repeatedly to iterate the values.  You 
will notice that both trajectories quickly converge to 0.5, where they remain fixed thereafter.  This is 
because 0.5 is a fixed point of the equation when R = 2.  Try starting from several other initial values of
x0 and x0' for comparison (remember to click setup each time), including initial values close to 0.5 and 
far away from 0.5. 

2. You can also change a parameter setting by typing the command  set  parameterName  newValue
at the observer> prompt at the bottom of the control panel, substituting the actual name and value for 
parameterName and newValue.  This is useful for setting a parameter to a precise value.  For example, 
to change the value of R to 2.5, type  set R 2.5  and hit Return, and then click setup.  Notice that the 
height of the parabola changes (in fact, you can think of R as a “knob” that controls the parabola's 
shape).  What happens when you iterate with R = 2.5, starting from several different initial values of x0
and x0' ?  Do you reach the same fixed point as before?  How quickly do the trajectories converge?

3. Now repeat the experiment for R = 2.7, 2.8, and 2.9.  As R gets closer to 3.0, what happens to the value
of the fixed point?  What about the average time it takes to completely converge to the fixed point?

4. Above R = 3.0, the behavior of the equation changes.  Set R to 3.2 and repeat the experiment.  This 
time, instead of converging to a fixed point, the trajectories converge to a limit cycle of period 2, 
oscillating back and forth between two values.  What are those values?  Do you always end up in the 
same limit cycle if you start from different initial values of x0 and x0' ?  Try a few values to find out.

5. As you have already seen, when R < 3.0, there is a single fixed point that pulls all trajectories into it, no
matter their starting value.  We call such a fixed point stable or attracting.  But unstable or repelling 
fixed points can also exist.  For example, when R = 3.2, the value 0.6875 is an unstable fixed point.  To 
see this, first set the plot-x0'? switch to Off, so we can focus just on the x0 trajectory.  Then set x0 to 
0.6875 and iterate, to verify that it is indeed a fixed point.  Next, try starting from 0.67 or 0.69 to see 
what happens.  Also try starting from 0.68751, which is just 0.00001 away from the unstable fixed 
point.  How long does this trajectory “linger” near the fixed point before eventually wandering away?

6. If we turn up R to 3.3, is 0.6875 still a fixed point?  If so, is it still unstable?  If not, what happens to its 
trajectory, compared to the case when R = 3.2?
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7. As it turns out, an unstable fixed point does indeed exist when R = 3.3, but its value is slightly larger 
than before.  In fact, its value is precisely 0.696969696969....  Unfortunately, we cannot represent this 
value exactly in our simulator, since we have only a finite number of decimal places available.  Try 
setting x0 to this value anyway, using a large number of decimal places.  How long does the trajectory 
remain “fixed”, before eventually wandering away to join the period-2 limit cycle attractor?

8. Now turn up R to 3.5 and iterate from a few different starting points.  Is the behavior of the system still 
periodic?  If so, what is the period?  Try the same thing with R = 3.56.

9. (**) Above an R value of about 3.6, the behavior of the system becomes chaotic.  One of the hallmarks
of chaos is extreme sensitivity to initial conditions, meaning that the system, when started from two 
very similar initial values, will nevertheless produce very different behavior in each case.  To 
investigate this, first set the plot-x0'? switch back to On, so that we can easily compare the behavior of 
two trajectories.  Then, for each of the values of R = 3.6, 3.7, 3.8, 3.9, and 4.0 (five different values), 
create plots showing x versus time, as follows:

● Set x0 to 0.2
● Set x0' to 0.20000001
● Set R to the appropriate value
● Click setup
● Repeatedly click go until the plots corresponding to the two initial conditions have separated.  

You can mouse over the plot to see the coordinates of each point.
● Save your plot by right-clicking (or control-clicking) on it and choosing Copy Image, then 

pasting it into a Word or OpenOffice document.  Don't forget to record the value of R used to 
create the plot.

For each of the five R values, record the time at which the plots corresponding to the two initial 
conditions just begin to separate (this is the “time to separation”).  Once you have recorded these times 
for the five R values, plot them on a single graph, showing the separation time as a function of R.

10. (**) Now download and open the file sine.nlogo, which implements the sine map:  xt+1 = (R/4) sin(π xt),
where x is between 0 and 1 and R is between 0 and 4.  Redo the steps of the previous exercise using the 
sine map model. To what extent is the behavior of the sine map similar to or different from the logistic 
map?

11. Strangely, deep inside the chaotic region between R = 3.6 and R = 4.0, “islands of order” can suddenly 
appear.  One such region for the logistic map is around an R value of 3.84.  Reload the logistic map 
model, and try starting with x0 = 0.2 and x0' = 0.199 to see what happens.  What is the resulting 
behavior of the system?  How sensitive is the system to initial conditions?  What happens if you turn R 
down to 3.82, or up to 3.86?

12. The sine map also exhibits a similar type of unexpectedly predictable behavior around R = 3.76.  What 
happens to sine map trajectories at this value of R?  Experiment with other nearby values of R to 
determine the approximate width of this “window of stability”.
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