CS 50 Lab 14 – Linked Lists and Stacks

In this lab you will practice with linked lists and stacks. You are encouraged to talk things over with your lab-mates. Don’t hesitate to call me over for help, answers to questions, or comments.

1. Copy the Labs/Lab14 subfolder in the CS 50 class folder to your userspace or desktop. You will find several versions of the linked-list class discussed in lecture. LinkedList2 is a singly-linked list that keeps track of the head and tail nodes, and LinkedList3 is a doubly-linked list. Test them out by compiling and running the test programs in tests2.java and tests3.java (see the comments at the top of these files for more information).

Compare the performance of the addFirst, addLast, removeFirst, and removeLast operations by testing each version with 5000, 10000, and 20000 elements. Which ones seem to run more slowly as the lists get bigger? Is this what you would expect, based on the way each operation is implemented?

2. LinkedList4.java includes the method listIterator(), which returns a new LinkedList.Iterator object that can be used to traverse the elements of a list without worrying about nodes and references. Users of the LinkedList class do not have access to a list's underlying implementation, so an iterator provides a simple and convenient way of accessing the elements of a list in order. Look over LinkedList4.java and tests4.java, and then compile and run the Test4 program.

Next, add the method moveBackward() to the Iterator class, so that lists can be traversed in reverse order, as well as the methods resetToFirst(), which resets the iterator position to the first element in the list, and resetToLast(), which resets the iterator position to the last element in the list. Test out your code to make sure it works.

3. Now add the following method to the LinkedList4 class:

 public boolean isMember(Object obj)

This method should return true if the list contains an object that is equal to obj (using the equals method), and false otherwise. Test out your method by adding some code to Test4.

4. Complete the definition of the Unique program. This program should print out the lines of a text file, ignoring duplicate lines. Use a linked list to keep track of the lines already encountered. Your isMember method will come in handy here. For example, running Unique on the file lines.txt should produce the following output:

DOS> java Unique lines.txt
This is the first line

This is the second line

This is the third line

This is the fourth line

This is the fifth line

5. Finish the BraceMatcher.java program from today's lecture. This program uses a Stack to keep track of each opening brace — {, (or [— encountered in the input. Whenever a closing brace is encountered, the top symbol on the stack is checked to make sure it matches the symbol just encountered. If so, the stack is popped and the program continues checking the input. If a mismatch occurs, or the stack becomes empty before all of the input has been examined, the program should signal an error. Likewise, if there are symbols left on the stack after all of the input has been examined, then not enough closing braces were included, so the program should signal an error.

6. Change to the Maze directory and look at the file amaze.txt. This file contains a simple text representation of a maze. Walls are shown as # and the start and finish positions are indicated by s and f. The applet program Mazerunner.java reads in a maze file and displays a graphical picture of the maze, showing walls in black and the start and finish positions in green and red, respectively. Compile and run this program. At the moment all it does is display the maze.

Study the code for Maze.java, Position.java, and Mazerunner.java until you understand how the pieces fit together. A Maze object represents a maze as a 2-D character array. It also keeps track of the start and finish positions. A Position object represents a particular location on the board. Notice that calling a position's north(), south(), east(), or west() method returns a new neighboring position. Your job is to flesh out Mazerunner.java's run() method so that the program will search for a path from start to finish, showing all positions visited in the process. Here is a pseudocode outline:

create a new empty stack
push the start position onto the stack
while the stack is not empty do {
 remove the next position from the stack
 if this position has not been visited before {
 mark the position as visited
 repaint the screen
 if this position is the finish {
 print "PATH FOUND" and terminate
 } else {
 add any positions to the north, south, east, or west to the stack
 }
 }
}
// stack is empty, so no path is possible
print "NO PATH FROM START TO FINISH" and terminate

For testing purposes, the file amaze2.txt contains a maze in which no path is possible from start to finish.

7. It would be nice for the program to display the final path from start to finish, in addition to the positions explored. To do this, we need to be able to recover the entire path once we reach the finish position. Modify the Position class so that it keeps track of an extra variable, the previous position. When we create a new position q from an existing position p (as in the methods north, south, east, and west), we can set q's previous position to be p. Once we reach the finish position, we can just follow the chain of previous references back to the starting point, marking them as part of the path (see the markPath method in Maze.java). After marking each position in this way, we can just repaint the screen to see the final path.

