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1 Irrational numbers

Let’s go back to the days of the ancient Greeks, when the concept of number was understood to
mean either positive whole numbers like 1, 2, 3, etc., or rational numbers, which could be made
from combinations (ratios) of whole numbers: 1

2 ,
1
3 ,

1
4 ,

2
3 ,

3
4 ,

5
2 ,

6
5 , etc. — and nothing else. It was

perfectly clear to the Greeks that these numbers encompassed all types of quantities in existence.
There was a whole number or a fraction that described every conceivable quantity in the world: a
dozen eggs, two and a half apples, a third of a jug of wine, seven sixteenths of a cubit, five hundred
square feet of land, and so on. What could be more obvious? The ancient Pythagoreans of the
sixth century B.C. especially revered the mathematics of whole numbers, in whose orderly beauty
and harmony they thought they glimpsed the mystical perfection of the gods.

But then the Pythagoreans made a revolutionary and deeply shocking discovery, which they kept
secret, because they considered the knowledge too dangerous to divulge: other kinds of numbers
besides these must exist! To see why this must be true, we first need to appreciate a couple of basic
facts about whole numbers and fractions:

Fact 1: squaring a whole number always preserves even/odd-ness

Squaring an odd number always gives an odd number. Examples: 32 = 9, 52 = 25, 152 = 225.

Squaring an even number always gives an even number. Examples: 42 = 16, 62 = 36, 142 = 196.

This is because odd numbers do not contain any factors of 2, so the product of two odd numbers
cannot contain any factors of 2 either. Conversely, since even numbers always contain at least
one factor of 2, the product of two even numbers must also contain at least one factor of 2.
Schematically:

〈. . . no factor of 2 anywhere. . . 〉 × 〈. . . no factor of 2 anywhere. . . 〉 = 〈. . . no factor of 2 anywhere. . . 〉

〈. . . factor of 2 somewhere. . . 〉 × 〈. . . factor of 2 somewhere. . . 〉 = 〈. . . factor of 2 somewhere. . . 〉

Fact 2: a fraction in lowest terms must contain at least one odd number

If a fraction a
b is in lowest terms, then a and b cannot both be even. Otherwise, you could reduce

it by dividing both a and b by 2. For example, 4
6 reduces to 2

3 , and 4
12 reduces to 2

6 , which further
reduces to 1

3 . So if a
b is in lowest terms (i.e., it cannot be further reduced), either a and b are both

odd, or one is odd and the other is even. In other words, at least one of them must be odd.
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A new kind of number

Pythagoras believed that all quantities could be expressed as the ratio of two whole numbers in
lowest terms. (A whole number itself can be written as a ratio with denominator 1, such as 5

1 .)

Now, consider a square of unit area, with sides equal to 1. What is the length of its diagonal?

By the Pythagorean theorem, diagonal2 = 12 + 12, so diagonal =
√

2.

Pythagoras assumed that the square root of 2, like any quantity, must be exactly expressible as the
ratio of two whole numbers a and b in lowest terms. Let’s see where this assumption leads us:

a

b
=
√

2, with
a

b
in lowest terms

so
a2

b2
= 2, by squaring both sides

so a2 = 2b2, by moving the b2 to the right-hand side

so a2 must be even, because 2 times anything gives an even number

so a itself must be even, because we know that squaring preserves even/odd-ness

that is, a = 2x for some other number x

so a2 = 4x2, by squaring both sides

so 2b2 = 4x2, since we already established that a2 = 2b2

so b2 = 2x2, by dividing both sides by 2

so b2 must be even, because 2 times anything gives an even number

so b itself must be even, because we know that squaring preserves even/odd-ness

so a and b must both be even — but this contradicts our starting assumption!

so our starting assumption must be wrong, because each step of the reasoning is indisputably correct,
but it leads straight to a logical contradiction

that is,
√

2 cannot be expressed as a ratio of whole numbers!

So there must exist other kinds of numbers — irrational numbers — that express quantities such
as the length of the diagonal of a simple unit square! This discovery deeply disturbed Pythagoras
and his followers, because it undermined their entire worldview, which held that the mathematics
of whole numbers was perfect and complete. But the logical conclusion cannot be avoided, and we
are forced to expand our concept of number as a result.
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2 Imaginary numbers

What is the solution to the equation x2 + 1 = 0? Solving for x gives x =
√
−1, which was

considered nonsensical by mathematicians of the early 16th century, who didn’t believe that square
roots of negative numbers could exist. They thought that such equations simply had no meaningful
solutions.

The formula for solving the general quadratic equation ax2 + bx + c = 0 had been known since
ancient times:

x =
−b±

√
b2 − 4ac

2a

Around 1500, the Italian mathematician Scipione del Ferro discovered an analogous but rather
more complicated formula for solving the cubic equation x3 + px = q, which was later rediscovered
and published by Gerolamo Cardano (known as “Cardan”) in 1545:

x =
3

√
q

2
+

√
q2

4
+
p3

27
−

3

√
−q

2
+

√
q2

4
+
p3

27

As an example, consider the equation x3 + 6x = 20

This equation is satisfied by x = 2. Plugging p = 6 and q = 20 into Cardan’s formula gives:

x =
3

√
20

2
+

√
202

4
+

63

27
−

3

√
−20

2
+

√
202

4
+

63

27

=
3

√
10 +

√
108− 3

√
−10 +

√
108

This daunting expression works out to precisely 2, so the formula indeed gives the value we expect.

But consider another example: x3 − 15x = 4

This equation is satisfied by x = 4. Plugging p = −15 and q = 4 into the formula gives:

x =
3

√
4

2
+

√
42

4
+

(−15)3

27
−

3

√
−4

2
+

√
42

4
+

(−15)3

27

=
3

√
2 +
√
−121− 3

√
−2 +

√
−121

Could this crazy-looking expression containing the obviously meaningless value
√
−121 really be

equivalent to the number 4? That made no sense at all to 16th-century mathematicians. Further-
more, the equation has two (and only two) other roots: x = −2±

√
3, and they are also indisputably

real. Cardan’s formula implied that
√
−121, whatever it was, could somehow be combined with

other numbers to create ordinary real numbers. This was one of the first clues that ultimately led
mathematicians to grudgingly accept the existence and legitimacy of numbers like

√
−121, which

they nevertheless referred to, with a certain disdain, as “imaginary”.
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3 Euler’s formula

The functions ex, cosx, and sinx can be expressed as the following infinite series:

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . .

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ . . .

sinx = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ . . .

Let the complex number z = a+ bi. Then:

ez = e(a+bi)

= eaebi

= ea
(

1 + bi+
(bi)2

2!
+

(bi)3

3!
+

(bi)4

4!
+

(bi)5

5!
+

(bi)6

6!
+

(bi)7

7!
+

(bi)8

8!
+

(bi)9

9!
+ . . .

)
= ea

(
1 + bi− b2

2!
− b3

3!
i+

b4

4!
+
b5

5!
i− b6

6!
− b7

7!
i+

b8

8!
+
b9

9!
i− . . .

)
= ea

([
1− b2

2!
+
b4

4!
− b6

6!
+
b8

8!
− . . .

]
+

[
bi− b3

3!
i+

b5

5!
i− b7

7!
i+

b9

9!
i− . . .

])
= ea

([
1− b2

2!
+
b4

4!
− b6

6!
+
b8

8!
− . . .

]
+ i

[
b− b3

3!
+
b5

5!
− b7

7!
+
b9

9!
− . . .

])
= ea (cos b+ i sin b)

This gives us a general recipe for raising e to the complex power z = a+ bi:

ez = ea (cos b+ i sin b)

As a special case, when z = θi, we get Euler’s formula:

eθi = e0 (cos θ + i sin θ)

= cos θ + i sin θ

As another special case, when z = πi

eπi = cosπ + i sinπ

= −1 + i 0

= −1

which can be rewritten as eπi + 1 = 0, combining the five most fundamental constants in mathe-
matics (0, 1, π, e, and i) using the three most important operations (addition, multiplication, and
exponentiation) in a single beautiful, almost mystical, equation. It is remarkable that raising an
irrational real number to an irrational imaginary power gives a negative integer as a result.
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4 Complex numbers

Let z be a complex number. Think of z as a “package” of four ordinary real values: (a, b, ρ, θ).
Each of these values has a name: a is called the real part, b the imaginary part, ρ the modulus or
magnitude, and θ the phase. These values are subject to some constraints:

• a can be anything: −∞ < a < +∞

• b can be anything: −∞ < b < +∞

• ρ is non-negative: 0 ≤ ρ < +∞

• θ is an angle in radians: 0 ≤ θ < 2π

So-called “real” numbers are just complex numbers with imaginary part 0. So-called “imaginary”
numbers are just complex numbers with real part 0. Positive real numbers are just those complex
numbers that have phase 0. Negative real numbers are those complex numbers with phase π.
Positive imaginary numbers are complex numbers with phase π

2 , while negative imaginary numbers
have phase 3π

2 . In fact, the terms “real”, “imaginary”, “complex”, “positive”, “negative”, and so
on are all essentially artificial — and sometimes misleading — distinctions. As far as Nature is
concerned, all numbers are complex, with real and imaginary parts, a magnitude, and a phase. It
just took people a while (many centuries) to realize this and to come to grips with it. In some
ways, the entire history of mathematics has been an ongoing struggle to understand and expand
the concept of number, starting with simple whole numbers and progessively encompassing rational
numbers, irrational numbers, zero, negative numbers, and finally imaginary and complex numbers.

Intuitively, ρ is the “size” of the number z, which in geometric terms is the distance of z from the
origin in the complex plane. For numbers with phase 0 (positive reals) or phase π (negative reals),
ρ is just the absolute value of the number.

Several interrelationships hold among these four values:

sin θ =
b

ρ

cos θ =
a

ρ

tan θ =
b

a

a = ρ cos θ

b = ρ sin θ

ρ =
√
a2 + b2

θ = tan−1 b

a
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We can construct the number z itself from its four values (a, b, ρ, θ) in a couple of different ways.
One way is to combine a, b, and i using addition and multiplication:

z = a+ bi

This is sometimes called Cartesian form. Another way, called exponential form, is to combine ρ, θ,
e, and i using multiplication and exponentiation:

z = ρeθi

This follows directly from the above interrelationships and Euler’s formula:

z = a+ bi

= (ρ cos θ) + (ρ sin θ)i

= ρ(cos θ + i sin θ)

= ρeθi

We can easily compute the natural (base e) logarithm of z from its ρ and θ values:

log z = log ρeθi

= log ρ+ log eθi

= log ρ+ θi

What is this formula really telling us? It says the following: Suppose you want to find the logarithm
of some complex number z. For convenience, let’s call that logarithm “L”. To find L, you just
apply the logarithm function to z’s magnitude, which will give you L’s real part. The phase of z
simply becomes L’s imaginary part. For example, take the number 3 + 4i, whose magnitude is 5
and phase is 0.927. Its logarithm L would have real part log(5) = 1.61 and imaginary part 0.927.
That is, L = 1.61 + 0.927i. Simple. And now that we know L’s real and imaginary parts, we can
easily calculate L’s magnitude ρ =

√
1.612 + 0.9272 = 1.86 and phase θ = tan−1(0.9271.61 ) = 0.522. In

other words, we could write L equivalently as 1.86 e0.522i.

This means that whenever we start with a positive real number, with phase 0, the logarithm L
will have 0 as its imaginary part, so L will be real. That is why taking the logarithm of a positive
real number always gives a real number. But negative real numbers, with phase π, and all other
numbers with non-zero phase, will have logarithms with non-zero imaginary parts, so they will be
complex, not real.

To square a complex number z, we just square its magnitude ρ and double its phase θ. To cube
z, we cube its magnitude and triple its phase. To raise it to the 4th power, we raise ρ to the 4th
power and multiply the phase θ by 4. And so on. In general: zn = (ρeθi)n = ρnenθi.

Conversely, to find the square root of z, which is equivalent to z
1
2 , we take the (positive) square

root of its magnitude ρ and divide its phase θ by 2. To find the cube root 3
√
z, we take the cube

root of ρ and divide θ by 3. To find the 4th root, we compute 4
√
ρ and θ

4 . And so on. In general:

n
√
z = z

1
n = (ρeθi)

1
n = ρ

1
n e

θ
n
i = n
√
ρ e

θ
n
i
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In a moment, we’ll come back to the issue of multiple roots — the fact that all numbers (except 0)
always have two distinct square roots, three distinct cube roots, four distinct 4th roots, and so on.
For now, think about what happens when we square a positive real number: since its phase is 0,
doubling the phase has no effect; therefore, the result is still a positive real number. What about
squaring a negative real number? Doubling its phase π gives 2π, which is equivalent to 0, modulo
2π. That is why squaring a negative real number yields a positive real number.

In fact, to multiply any two numbers whatsoever, we just multiply their magnitudes ρ and add
their phases θ (modulo 2π). Squaring, cubing, and so on are just special cases of this. That is why
multiplying any two negative real numbers always gives a positive real number: the phase of their
product is always 0. Likewise, multiplying two positive real numbers always gives a phase of 0 + 0,
so the result is still a positive real number. Multiplying a positive imaginary number (phase π

2 ) by
another positive imaginary number (phase π

2 ) gives a phase of π, so the result is a negative real
number. That is why i2 = −1.

How do we know that this is the right multiplication rule? That is easy to see:

z1z2 = (ρ1 e
θ1i)(ρ2 e

θ2i)

= ρ1ρ2 e
(θ1i+ θ2i)

= ρ1ρ2 e
(θ1+θ2)i

What about multiple roots? When we raise z to the nth power, its phase θ gets multiplied by n.
Conversely, when we take the nth root of z (the inverse operation), the phase gets divided by n.
But because the phase is an angle in radians, it can be specified equally well by the angle θ + 2π,
or the angle θ + 4π, or the angle θ + 6π, or in general, the angle θ + 2πk for any integer k ≥ 0,
all of which are equal to the original angle θ plus some additional number of full counterclockwise
revolutions around the origin.

For example, if the number z has phase θ = π
4 , it is equally valid to say that its phase is 9π

4 (which
is π

4 + 2π), or 17π
4 (which is π

4 + 4π), or 25π
4 (which is π

4 + 6π), or 401π
4 (which is π

4 + 100π), and so
on. Since these angles differ only by multiples of 2π, they all represent precisely the same phase!
For that matter, so do the negative angles −7π

4 , −15π
4 , −23π

4 , and so on (π4 −2π, π4 −4π, π4 −6π, . . . ).
So the k in θ + 2πk can really be any integer at all. We usually describe θ as being in the range
0 ≤ θ < 2π, but this is only a convenience. What matters for the phase is just its “direction”.

To find the 5th root of z, we must divide its phase θ by 5. But which angle should we use for θ?
All of the angles below are equally valid representations of z’s phase, because they are all of the
form θ + 2πk (where k ≥ 0):

θ =
π

4

9π

4

17π

4

25π

4

33π

4

41π

4

49π

4

57π

4

65π

4

73π

4

81π

4

89π

4

97π

4
. . .

If we view the above angles using “modulo 2π glasses”, we see they are all really just π
4 in disguise:

θ =
π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4
. . .
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What happens when we divide each of the angles by 5? Here are the results:

θ

5
=

π

20

9π

20

17π

20

25π

20

33π

20

41π

20

49π

20

57π

20

65π

20

73π

20

81π

20

89π

20

97π

20
. . .

Through our modulo 2π glasses, however, we see that the results are not all equivalent:

θ

5
=

π

20

9π

20

17π

20

25π

20

33π

20

π

20

9π

20

17π

20

25π

20

33π

20

π

20

9π

20

17π

20

25π

20
. . .

In fact, there are exactly five distinct values, modulo 2π. Each of these corresponds to a distinct
5th-root of z. The roots all have the same magnitude 5

√
ρ, but different phases, which are evenly

spaced around a circle, starting at angle π
20 and increasing by 2π

5 (one fifth of the circle) on each
step until, five steps later, we arrive back at π

20 .

If we take the cube root instead, dividing the phase by 3 gives three distinct new phases, modulo 2π,
each one spaced a third of the way around a circle (of radius 3

√
ρ) starting at θ

3 . Taking the seventh
root yields seven distinct new phases, each one spaced one seventh of the way around starting at
θ
7 . In short, numbers have multiple roots because of their phase: dividing a number’s phase by
n splits it into n distinct new phases, modulo 2π. In general, a number z with magnitude ρ and
phase θ has exactly n distinct nth roots, each of magnitude n

√
ρ and phase θ

n + 2πk
n , or equivalently,

1
n(θ + 2πk), where k = 0, 1, 2, . . . , n− 1.

This explains why positive real numbers have both a positive and a negative square root: since
positive reals have phase 0, which is also equivalent to the angles 2π, 4π, 6π, 8π, etc., dividing their
phase by 2, modulo 2π, yields two distinct roots, one with phase 0 (the positive root) and another
with phase π (the negative root). Negative real numbers have imaginary square roots for exactly
the same reasons. For example, −1 has magnitude 1 and phase π, which is also equivalent to the
angles 3π, 5π, 7π, 9π, etc. Dividing the phase by 2 gives the angles π

2 , 3π
2 , π

2 , 3π
2 , π

2 , . . . , modulo
2π. The numbers corresponding to these two distinct phases are i and −i. That is why

√
−1 = ±i.

It all comes down to the fact that numbers have phase.

The number 1 is sometimes referred to as unity, and its roots are called the nth roots of unity. Since 1
has magnitude 1 and phase 0, its roots have magnitude 1 and phase 2πk

n , for k = 0, 1, 2, . . . , n−1. In

general, the nth roots of unity can be expressed in ρeθi exponential form as e(2πk/n)i, for 0 ≤ k < n.
For example, consider the four fourth roots of unity. They are spaced evenly around the unit circle
with phases in multiples of 2π

4 = π
2 , namely the phases 0, π

2 , π, and 3π
2 . Specifically, the roots are

e0, e(π/2)i, eπi, and e(3π/2)i, which are the numbers 1, i, −1, and −i, respectively.

Geometrically, raising each of these roots to the 4th power corresponds to starting at the root and
multiplying it by itself three more times in succession, which can be visualized as counterclockwise
rotations in the number plane. For root i (phase π

2 ), this gives three successive 90-degree rotations,
ending at 1. For −1 (phase π), this gives three 180-degree rotations, also ending at 1. For −i
(phase 3π

2 ), this gives three 270-degree rotations, again ending at 1. Finally, for root 1 (phase 0),
we get three 0-degree “do nothing” rotations, which simply leaves us at our starting point of 1.
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