
Variance of an observable

If we prepare a quantum system in the state | i, and then observe the value of ⌦, we will get some
real number as a result (one of ⌦’s eigenvalues). If we repeatedly do this (meaning that we prepare
the system again in state | i and then observe ⌦ again), we will get a series of real numbers. Over
time, with enough repeated observations of ⌦ in state | i, we will obtain an average value that
approximates h |⌦ | i. The actual real numbers obtained will generally deviate from h |⌦ | i,
sometimes being bigger and sometimes smaller. In addition to the expected mean value of ⌦, we
can calculate the expected amount of variation around the mean value, also known as the variance

of ⌦. Since the di↵erence between an observed value and the mean can be positive or negative
(over or under the mean), we will use the square of the di↵erence in computing the variance, rather
than the raw di↵erence itself; that way, we won’t have to worry about negative signs.

We will modify ⌦ slightly, in such a way as to produce the di↵erences between the observed values
and the expected mean µ = h |⌦ | i = h⌦i , rather than the actual observed values themselves.
As a concrete example, suppose that h |⌦ | i = 3.3, meaning that repeatedly measuring ⌦ in state
| i gives a sequence of values that average out to 3.3 in the long run, such as: 2.5, 4.0, 3.4, 4.9, 1.7.
We modify ⌦ by transforming it with a new operator � into � (⌦), which also depends on | i.
When we repeatedly measure � (⌦) in state | i, we get a sequence of “demeaned” values with the
same relative distribution as before, but whose mean is 0. For example: �0.8, 0.7, 0.1, 1.6, �1.6.

The � (⌦) operator simply subtracts the mean value µ = h⌦i from the diagonal entries of ⌦:
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Let’s compare the actions of ⌦ and � (⌦) on | i:
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What is the expected value of � (⌦) itself in the state | i? It is just h |� (⌦) | i, which is:
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We can now consider the amount of variation in the values of � (⌦). That is, how wide on average
is their “spread” or deviation from the mean value of 0? The expected value of this deviation—
squared, so that we can ignore whether deviations are negative or positive—is the variance of ⌦ in
state | i, denoted Var (⌦) = h� (⌦) ?� (⌦)i . Like the mean, it is just a real number.



Variance example

Consider the observable property ⌦, with the following eigenvalues and orthonormal eigenbasis:
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• When we measure ⌦ in the laboratory, the outcome of the experiment on our measuring
device will always be either 4 or 1.

• If we prepare the system in state |upi and then measure ⌦ once, what is the probability of
obtaining 4? What is the probability of obtaining 1?
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• If we perform this experiment many times by repeatedly preparing the system in state |upi
and then measuring ⌦, what will be the average of the values obtained over the long run?
This is the expected value of ⌦ in state |upi, also sometimes written as h⌦iup .
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• If we prepare the system in state |e1i and measure ⌦, what are the probabilities of obtaining
4 or 1? What is the expected value?

he1 | e1i = 1 So probability of obtaining 4 = |1|2 = 1

he2 | e1i = 0 So probability of obtaining 1 = |0|2 = 0
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The outcome will always be 4 (that is, �1) when we measure ⌦ in the eigenstate |e1i.

• We can quantify the amount of “fuzziness” or uncertainty of a measurement by calculating
the variance of ⌦ when measured in a state | i, written as Var (⌦). If we repeatedly measure
⌦ in state |upi, the amount of expected variation in the measurements obtained over the long
run will be Varup(⌦). Likewise, the amount of expected variation when we measure ⌦ in state
|e1i will be Vare1(⌦).



To calculate Var (⌦), we first define a new observable � (⌦) based on ⌦ and the expected value
µ of ⌦ in state | i. This new observable is called the mean-adjusted or demeaned version of ⌦ in
state | i:
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We then square � (⌦) to produce another new observable: � (⌦) ?� (⌦):
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The variance is the expected value in state | i of this new observable:

• Var (⌦) = h |� (⌦) ?� (⌦) | i
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• Thus the uncertainty of the observable ⌦ is non-zero when measured in state |upi, but there
is no uncertainty at all when ⌦ is measured in its eigenstate |e1i.


