Is the moon there when nobody looks?

N. David Mermin

Three Observable "Color Properties"

$C_{1}(1$-color $)=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\left|R_{1}\right\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad\left|G_{1}\right\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$C_{2}(2$-color $)=\left[\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]=\left[\begin{array}{cc}-0.5 & 0.866 \\ 0.866 & 0.5\end{array}\right]$
$\left|R_{2}\right\rangle=\left[\begin{array}{c}\frac{1}{2} \\ \frac{\sqrt{3}}{2}\end{array}\right]$
$\left|G_{2}\right\rangle=\left[\begin{array}{c}-\frac{\sqrt{3}}{2} \\ \frac{1}{2}\end{array}\right]$
$C_{3}(3$-color $)=\left[\begin{array}{cc}-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right]=\left[\begin{array}{cc}-0.5 & -0.866 \\ -0.866 & 0.5\end{array}\right]$
$\left|R_{3}\right\rangle=\left[\begin{array}{c}-\frac{1}{2} \\ \frac{\sqrt{3}}{2}\end{array}\right]$
$\left|G_{3}\right\rangle=\left[\begin{array}{c}\frac{\sqrt{3}}{2} \\ \frac{1}{2}\end{array}\right]$

Eigenvalues: $\quad+1$ (red) $\quad-1$ (green)
Eigenvectors

Eigenvectors of the observable C_{1}

Eigenvectors of the observables $\mathrm{C}_{1}, \mathrm{C}_{2}$

Eigenvectors of the observables C_{1}, C_{2}, C_{3}

Suppose the particle's 1-color is RED and we measure its 2-color

Projecting R_{1} onto the eigenvectors of C_{2} (2-color)

Projecting R_{1} onto the eigenvectors of C_{2} (2-color)

Squaring the magnitude gives the probability

The 2-color becomes GREEN with 75\% probability

Suppose the particle's 1-color is RED and we measure its 3-color

Projecting R_{1} onto the eigenvectors of C_{3} (3-color)

Projecting R_{1} onto the eigenvectors of C_{3} (3-color)

Squaring the magnitude gives the probability

The 3-color becomes RED with 25% probability

