Background on Complex Numbers

Calvin and Hobbes

by Bill Watterson

Calvin and Hobbes

by Bill Watterson

The Concept of Number

- The ancient Greeks understood the concept of number to mean
- Whole numbers

$$
1,2,3,4, \ldots
$$

- Ratios of whole numbers (fractions or rationals) $1 / 2,3 / 4,1 / 4,2 / 3,3 / 4,5 / 2,6 / 5,5 / 1, \ldots$
- These numbers covered all types of quantities in existence
- But then Pythagoras made a deeply shocking discovery:

Other types of numbers must exist!

- This knowledge was deemed too dangerous to divulge

The Concept of Number

- What is the length of the diagonal of this square?

$$
\begin{aligned}
& \text { By the Pythagorean Theorem: } \\
& \qquad \sqrt{1^{2}+1^{2}}=\sqrt{2}
\end{aligned}
$$

1

The Concept of Number

- Pythagoras assumed that the number $\sqrt{2}$ in principle must be expressible as the ratio of two whole numbers

$$
\sqrt{2}=\frac{a}{b} \quad \text { with } \frac{a}{b} \text { in lowest terms }
$$

- Let's see where this assumption leads us ...
- Each step of our reasoning must be absolutely convincing
- No faith is needed (sorry, Calvin) - except for our assumption!

First, some basic number facts:

- Fact 1:

Squaring a whole number always preserves even/odd-ness

$$
\begin{array}{lll}
3^{2}=9 & 5^{2}=25 & 15^{2}=225 \\
4^{2}=16 & 6^{2}=36 & 14^{2}=196
\end{array}
$$

- Fact 2:

A fraction in lowest terms must contain at least one odd number
$1 / 3$ and $3 / 4$ cannot be reduced
4/6 reduces to $2 / 3$
$4 / 12$ reduces to $2 / 6$, which reduces to $1 / 3$
(Proof that the square root of 2 is irrational)

Fast Forward to the $16^{\text {th }}$ Century...

- Irrational numbers such as $\sqrt{2}$ and π are fully accepted
- Negative numbers such as -3 still make mathematicians squirm
- Some derisively call them "fictitious numbers"
- Cutting-edge research of the day: understanding and solving cubic equations

$$
x^{3}+6 x=20 \quad x^{3}-15 x=4
$$

An Amusing Little Story

- Scipione del Ferro, mathematician (Bologna)
- Antonio Fior, student of del Ferro
- Niccolo Tartaglia, mathematician (Brescia)
- Gerolamo Cardano, physician, mathematician, philosopher, gambler, and all around Renaissance man (Milan)

Tartaglia

Cardano

Around 1500, Scipione del Ferro discovered how to solve the "depressed" cubic equation:

$$
x^{3}+p x=q
$$

$$
x=\sqrt[3]{\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}-\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

But he kept this knowledge a closely-guarded secret all his life

Example

$$
\begin{aligned}
& x^{3}+6 x=20 \\
& p=6 \quad q=20 \\
& x=\sqrt[3]{\frac{20}{2}+\sqrt{\frac{20^{2}}{4}+\frac{6^{3}}{27}}}-\sqrt[3]{-\frac{20}{2}+\sqrt{\frac{20^{2}}{4}+\frac{6^{3}}{27}}} \\
&=\sqrt[3]{10+\sqrt{108}}-\sqrt[3]{-10+\sqrt{108}} \\
&=2
\end{aligned}
$$

On his deathbed, del Ferro confided the secret to his student Antonio Fior, who was a very mediocre mathematician

In 1535, Fior challenged Niccolo Tartaglia to a public contest
...and lost badly, because Tartaglia re-discovered del Ferro's solution for himself just before the contest

Gerolamo Cardano also re-discovered del Ferro's solution, and published it in his book Ars Magna in 1545

His book had 13 chapters, one for each "type" of cubic equation
$x^{3}+p x=q \quad x^{3}+6 x=20$
$x^{3}=p x+q \quad x^{3}=15 x+4$
$x^{3}+p x^{2}=q \quad x^{3}+2 x^{2}=16$
etc.
This was a much greater achievement than del Ferro's single formula (which is now called "Cardano's formula")

But There Was Still a Mystery

$$
x^{3}-15 x=4
$$

It's easy to see that the solution is $x=4$

But There Was Still a Mystery

$$
x^{3}-15 x=4
$$

Solving this using Cardano's formula gives the solution

$$
x=\sqrt[3]{2+\sqrt{-121}}-\sqrt[3]{-2+\sqrt{-121}}
$$

But how could this possibly be equivalent to 4 ???
In fact, all three roots of the equation are clearly real:

$$
x=4 \quad x=-2+\sqrt{3} \quad x=-2-\sqrt{3}
$$

Cardano called such cubic equations "irreducible"

But There Was Still a Mystery

$$
x^{3}-15 x=4
$$

In subsequent work, Rafael Bombelli (1526-72) was able to prove that

$$
\sqrt[3]{2+\sqrt{-121}}-\sqrt[3]{-2+\sqrt{-121}}
$$

really is the ordinary number 4.
This was one of the first clues that eventually forced mathematicians to (grudgingly) accept that square roots of negative numbers might really be legitimate.

But There Was Still a Mystery

[Square roots of negative numbers] are not nothing, nor less than nothing, which makes them imaginary, indeed impossible

—Leonhard Euler

In mathematics, you don't understand things. You just get used to them.
—John von Neumann

Complex Numbers

