
Shor’s factoring algorithm

Input: N , a number to be factored

1. pick a number 1 < a < N

2. if a and N are not co-prime, compute g = GCD(a,N) and N/g as the factors, and stop.

3. otherwise, determine the period r of the function fa,N (x) = a
x mod N

4. if the period is odd, go back to step 1

5. compute s = a
r
2 mod N

6. if s = N � 1 (equivalent to �1 mod N), go back to step 1

7. compute g1 = GCD(s+ 1, N) and g2 = GCD(s� 1, N), and return them

Example

Let N = 395861

Pick a = random.randrange(2, N) = 246793, so function fa,N (x) = 246793x mod 395861

GCD(246793, 395861) = 1, so a and N are co-prime

Period r of fa,N (x) = findPeriod(246793, 395861) = 32881

32881 is odd, so we need to pick another a

Pick a = random.randrange(2, N) = 188364, so function fa,N (x) = 188364x mod 395861

GCD(188364, 395861) = 1, so a and N are co-prime

Period r of fa,N (x) = findPeriod(188364, 395861) = 197286

197286 is even, so we can proceed

Compute s = 188364197286/2 mod 395861 = 164482

164482 6= 395860, so we can proceed

Compute factor g1 = GCD(s+ 1, N) = GCD(164483, 395861) = 787

Compute factor g2 = GCD(s� 1, N) = GCD(164481, 395861) = 503

Sure enough, 787⇥ 503 = 395861 = N



A quantum circuit for finding the period r

Number to be factored N = 8, random co-prime a = 3, so the function is f3,8(x) = 3x mod 8

This function has period r = 2:

x f(x)
0 1
1 3
2 1
3 3
4 1
5 3
6 1
7 3
8 1
. . .

In this example, the top register will hold m = 3 qubits, and the bottom register will hold n = 2
qubits. We start by creating an equal superposition of all values of x in the top register, each one
paired with 00 in the bottom register:

|'0i = |000i ⌦ |00i = |000, 00i

|'1i = 1p
8

⇣
|000i+ |001i+ |010i+ |011i+ |100i+ |101i+ |110i+ |111i

⌘
⌦ |00i

= 1p
8

⇣
|000, 00i+ |001, 00i+ |010, 00i+ |011, 00i+ |100, 00i+ |101, 00i+ |110, 00i+ |111, 00i

⌘

= 1p
8

⇣
|0, 0i+ |1, 0i+ |2, 0i+ |3, 0i+ |4, 0i+ |5, 0i+ |6, 0i+ |7, 0i

⌘

Next, we apply the unitary gate Uf3,8 to all five qubits, which entangles each value of x in the top
register with its corresponding value f3,8(x) in the bottom register via quantum parallelism:

|'2i = 1p
8

⇣
|0, 1i+ |1, 3i+ |2, 1i+ |3, 3i+ |4, 1i+ |5, 3i+ |6, 1i+ |7, 3i

⌘

= 1p
8

⇣
|000, 01i+ |001, 11i+ |010, 01i+ |011, 11i+ |100, 01i+ |101, 11i+ |110, 01i+ |111, 11i

⌘

The state vectors for |'1i and |'2i are shown below:



|'1i = |'2i =

Next, we measure the bottom two qubits. We will either observe 01 or 11, at random, corresponding
to the values f3,8(x) = 1 or 3. Suppose we observe 11, corresponding to 3. Because of entanglement,
this will force the top three qubits into a new superposition state |'3i consisting of the possible
values x = 1, 3, 5, or 7, but NOT the values 0, 2, 4, or 6.

|'3i = 1
2

⇣
|001i+ |011i+ |101i+ |111i

⌘

= 1
2

⇣
|1i+ |3i+ |5i+ |7i

⌘

The new amplitudes of |'3i are
1q
b2mr c

=
1q
b232 c

= 1
2

|'3i =

Notice that the non-zero amplitudes of |'3i are separated by intervals of length r = 2, equal to the
period of f . But the first non-zero amplitude starts at |001i, not |000i. We need to transform |'3i
so that the non-zero amplitudes start at |000i. That is, we want to make the amplitude o↵set be
0. We can accomplish this by applying the matrix DFT

† to |'3i to obtain |'4i:



|'4i =

The DFT
† transformation also transforms the interval between non-zero amplitudes from r to 2m

r .
Furthermore, the non-zero amplitude values change as well, since the new state vector contains a
di↵erent number of them, compared to before. In the above case, the interval becomes 23/2 = 4.
Measuring |'4i will give either 000 or 100 with equal probability, corresponding to x = 0 or x = 4.
If we get 100, we know that the amplitude interval must be 4, since the amplitude o↵set is now
guaranteed to be 0, and we can calculate the period r directly:

r =
2m

x
=

23

4
= 2, which is the correct period of f3,8.

However, if measuring |'4i gives 000 instead, this will not tell us the amplitude interval. In
general, we need to run the period-finding algorithm several times and accumulate an empirical set
of measurements of |'4i. We then look for the smallest non-zero value, which with high probability
will correspond to the correct amplitude interval. From there, we can calculate the period r as
above.



Discrete Fourier Transform

When the number of input qubits m = 3, the number of amplitudes M = 2m = 23 = 8, so the DFT
is an 8⇥ 8 matrix consisting of powers of the eighth root of unity ! = e

⇡
4 i, scaled by 1p

8
.

DFT[row, col ] =
1p
M
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1p
8
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These numbers all have magnitude 1, and di↵er only in their phase.


