Shor's factoring algorithm

Input: N, a number to be factored

- 1. pick a number 1 < a < N
- 2. if a and N are not co-prime, compute g = GCD(a, N) and N/g as the factors, and stop.
- 3. otherwise, determine the period r of the function $f_{a,N}(x) = a^x \mod N$
- 4. if the period is odd, go back to step 1
- 5. compute $s = a^{\frac{r}{2}} \mod N$
- 6. if s = N 1 (equivalent to $-1 \mod N$), go back to step 1
- 7. compute $g_1 = \text{GCD}(s+1, N)$ and $g_2 = \text{GCD}(s-1, N)$, and return them

Example

Let N = 395861

Pick a = random.randrange(2, N) = 246793, so function $f_{a,N}(x) = 246793^x \mod 395861$

GCD(246793, 395861) = 1, so a and N are co-prime

Period r of $f_{a,N}(x) = \text{findPeriod(246793, 395861)} = 32881$

32881 is odd, so we need to pick another a

Pick a = random.randrange(2, N) = 188364, so function $f_{a,N}(x) = 188364^x \mod 395861$

GCD(188364, 395861) = 1, so a and N are co-prime

Period r of $f_{a,N}(x) = \text{findPeriod(188364, 395861)} = 197286$

197286 is even, so we can proceed

Compute $s = 188364^{197286/2} \mod 395861 = 164482$

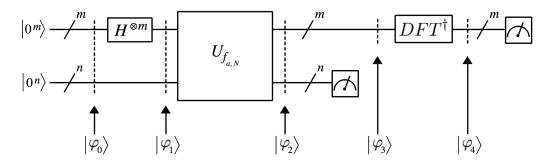
 $164482 \neq 395860$, so we can proceed

Compute factor $g_1 = \text{GCD}(s+1, N) = \text{GCD}(164483, 395861) = 787$

Compute factor $g_2 = \text{GCD}(s - 1, N) = \text{GCD}(164481, 395861) = 503$

Sure enough, $787 \times 503 = 395861 = N$

A quantum circuit for finding the period r



Number to be factored N = 8, random co-prime a = 3, so the function is $f_{3,8}(x) = 3^x \mod 8$ This function has period r = 2:

x	$\int f(x)$
0	1
1	3
2	1
3	3
4	1
5	3
6	1
7	3
8	1

In this example, the top register will hold m = 3 qubits, and the bottom register will hold n = 2 qubits. We start by creating an equal superposition of all values of x in the top register, each one paired with 00 in the bottom register:

$$\begin{aligned} |\varphi_0\rangle &= |000\rangle \otimes |00\rangle = |000,00\rangle \\ |\varphi_1\rangle &= \frac{1}{\sqrt{8}} \Big(|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |110\rangle + |111\rangle \Big) \otimes |00\rangle \\ &= \frac{1}{\sqrt{8}} \Big(|000,00\rangle + |001,00\rangle + |010,00\rangle + |011,00\rangle + |100,00\rangle + |101,00\rangle + |110,00\rangle + |111,00\rangle \Big) \\ &= \frac{1}{\sqrt{8}} \Big(|0,0\rangle + |1,0\rangle + |2,0\rangle + |3,0\rangle + |4,0\rangle + |5,0\rangle + |6,0\rangle + |7,0\rangle \Big) \end{aligned}$$

Next, we apply the unitary gate $U_{f_{3,8}}$ to all five qubits, which entangles each value of x in the top register with its corresponding value $f_{3,8}(x)$ in the bottom register via quantum parallelism:

$$\begin{aligned} |\varphi_2\rangle &= \frac{1}{\sqrt{8}} \Big(|0,1\rangle + |1,3\rangle + |2,1\rangle + |3,3\rangle + |4,1\rangle + |5,3\rangle + |6,1\rangle + |7,3\rangle \Big) \\ &= \frac{1}{\sqrt{8}} \Big(|000,01\rangle + |001,11\rangle + |010,01\rangle + |011,11\rangle + |100,01\rangle + |101,11\rangle + |110,01\rangle + |111,11\rangle \Big) \end{aligned}$$

The state vectors for $|\varphi_1\rangle$ and $|\varphi_2\rangle$ are shown below:

	000,00 [1/√8]		000,00 [0]
	000,01 [0]		000,01 [1/√8]
0 0 0 0 0 0 0 0 0 0	000,10 [0]		000,10 [0]
	000,11 [0]		000,11 [0	ī
	001,00 [1/√8	Ĵ		001,00 Ē	0	ī
	001,01 [0]		001,01 Ē	0	ī
	001,10 [0]		001,10 Ē	0	ī
	001,11 [0]		001,11 [1/√8	ī
	010,00 [1/√8	Ĵ		010,00 Ē	.0	ī
	010,01 [0]		010,01 [1⁄√8	j.
	010,10 [0]		010,10 [0	ī
	010,11 [0			010,11 [0]
	011,00 [1/√8]		011,00 [0	Ĵ
	011,01 [0]		011,01 [0	Ĵ
	011,10 [0]		011,10 [0]
$ \langle \alpha_{1}\rangle =$	011,11 [0]		011,11 [1⁄√8]
$ \varphi_1\rangle =$	100,00 [1/√8]	$ arphi_2 angle=$	100,00 [0]
	100,01 [0]		100,01 [1/√8]
	100,10 [0]		100,10 [0]
	100,11 [0]		100,11 [0]
	101,00 [1/√8]		101,00 [0]
	101,01 [0]		101,01 [0]
	101,10 [0]		101,10 [0]
	101,11 [0]		101,11 [1/√8]
	110,00 [1/√8]		110,00 [0]
	110,01 [0]		110,01 [1/√8]
	110,10 [0]		110,10 [0]
	110,11 [0]		110,11 [0]
	111,00 [1/√8			111,00 [0	
	111,01 [0]		111,01 [0]
	111,10 [0]		111,10 [0]
	111,11 [0]		111,11 [1⁄√8]

Next, we measure the bottom two qubits. We will either observe **01** or **11**, at random, corresponding to the values $f_{3,8}(x) = 1$ or 3. Suppose we observe **11**, corresponding to 3. Because of entanglement, this will force the top three qubits into a new superposition state $|\varphi_3\rangle$ consisting of the possible values x = 1, 3, 5, or 7, but NOT the values 0, 2, 4, or 6.

)

$$\begin{aligned} |\varphi_3\rangle &= \frac{1}{2} \Big(|001\rangle + |011\rangle + |101\rangle + |111\rangle \\ &= \frac{1}{2} \Big(|1\rangle + |3\rangle + |5\rangle + |7\rangle \Big) \end{aligned}$$

The new amplitudes of $|\varphi_3\rangle$ are $\frac{1}{\sqrt{\lfloor \frac{2^m}{r} \rfloor}} = \frac{1}{\sqrt{\lfloor \frac{2^3}{2} \rfloor}} = \frac{1}{2}$

$$|arphi_3
angle = egin{array}{cccccc} 000 & [& 0 &] \ 001 & [& 1/2 &] \ 010 & [& 0 &] \ 011 & [& 1/2 &] \ 100 & [& 0 &] \ 101 & [& 1/2 &] \ 110 & [& 0 &] \ 111 & [& 1/2 &] \ \end{array}$$

Notice that the non-zero amplitudes of $|\varphi_3\rangle$ are separated by intervals of length r = 2, equal to the period of f. But the first non-zero amplitude starts at $|001\rangle$, not $|000\rangle$. We need to transform $|\varphi_3\rangle$ so that the non-zero amplitudes start at $|000\rangle$. That is, we want to make the *amplitude offset* be 0. We can accomplish this by applying the matrix DFT^{\dagger} to $|\varphi_3\rangle$ to obtain $|\varphi_4\rangle$:

$$|\varphi_4
angle = egin{array}{ccccccc} 000 & [& 1/\sqrt{2} &] \ 001 & [& 0 &] \ 010 & [& 0 &] \ 010 & [& 0 &] \ 101 & [& 0 &] \ 100 & [& -1/\sqrt{2} &] \ 101 & [& 0 &] \ 110 & [& 0 &] \ 111 & [& 0 &] \ \end{array}$$

The DFT^{\dagger} transformation also transforms the interval between non-zero amplitudes from r to $\frac{2^m}{r}$. Furthermore, the non-zero amplitude values change as well, since the new state vector contains a different number of them, compared to before. In the above case, the interval becomes $2^3/2 = 4$. Measuring $|\varphi_4\rangle$ will give either **000** or **100** with equal probability, corresponding to x = 0 or x = 4. If we get **100**, we know that the amplitude interval must be 4, since the amplitude offset is now guaranteed to be 0, and we can calculate the period r directly:

 $r = \frac{2^m}{x} = \frac{2^3}{4} = 2$, which is the correct period of $f_{3,8}$.

However, if measuring $|\varphi_4\rangle$ gives **000** instead, this will not tell us the amplitude interval. In general, we need to run the period-finding algorithm several times and accumulate an empirical set of measurements of $|\varphi_4\rangle$. We then look for the smallest non-zero value, which with high probability will correspond to the correct amplitude interval. From there, we can calculate the period r as above.

Discrete Fourier Transform

When the number of input qubits m = 3, the number of amplitudes $M = 2^m = 2^3 = 8$, so the DFT is an 8×8 matrix consisting of powers of the eighth root of unity $\omega = e^{\frac{\pi}{4}i}$, scaled by $\frac{1}{\sqrt{8}}$.

$$DFT[row, col] = \frac{1}{\sqrt{M}} (\omega^{row})^{col}$$

$$= \frac{1}{\sqrt{8}} \begin{bmatrix} (\omega^{0})^{0} & (\omega^{0})^{1} & (\omega^{0})^{2} & (\omega^{0})^{3} & (\omega^{0})^{4} & (\omega^{0})^{5} & (\omega^{0})^{6} & (\omega^{0})^{7} \\ (\omega^{1})^{0} & (\omega^{1})^{1} & (\omega^{1})^{2} & (\omega^{1})^{3} & (\omega^{1})^{4} & (\omega^{1})^{5} & (\omega^{1})^{6} & (\omega^{1})^{7} \\ (\omega^{2})^{0} & (\omega^{2})^{1} & (\omega^{2})^{2} & (\omega^{2})^{3} & (\omega^{2})^{4} & (\omega^{2})^{5} & (\omega^{2})^{6} & (\omega^{2})^{7} \\ (\omega^{3})^{0} & (\omega^{3})^{1} & (\omega^{3})^{2} & (\omega^{3})^{3} & (\omega^{3})^{4} & (\omega^{3})^{5} & (\omega^{3})^{6} & (\omega^{3})^{7} \\ (\omega^{4})^{0} & (\omega^{4})^{1} & (\omega^{4})^{2} & (\omega^{4})^{3} & (\omega^{4})^{4} & (\omega^{4})^{5} & (\omega^{4})^{6} & (\omega^{4})^{7} \\ (\omega^{5})^{0} & (\omega^{5})^{1} & (\omega^{5})^{2} & (\omega^{5})^{3} & (\omega^{5})^{4} & (\omega^{5})^{5} & (\omega^{5})^{6} & (\omega^{5})^{7} \\ (\omega^{6})^{0} & (\omega^{6})^{1} & (\omega^{6})^{2} & (\omega^{6})^{3} & (\omega^{6})^{4} & (\omega^{6})^{5} & (\omega^{6})^{6} & (\omega^{6})^{7} \\ (\omega^{7})^{0} & (\omega^{7})^{1} & (\omega^{7})^{2} & (\omega^{7})^{3} & (\omega^{7})^{4} & (\omega^{7})^{5} & (\omega^{7})^{6} & (\omega^{7})^{7} \end{bmatrix} = \frac{1}{\sqrt{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^{1} & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\ 1 & \omega^{2} & \omega^{4} & \omega^{6} & \omega^{8} & \omega^{10} & \omega^{12} & \omega^{14} \\ 1 & \omega^{3} & \omega^{6} & \omega^{9} & \omega^{12} & \omega^{15} & \omega^{18} & \omega^{21} \\ 1 & \omega^{4} & \omega^{8} & \omega^{12} & \omega^{16} & \omega^{20} & \omega^{24} & \omega^{28} \\ 1 & \omega^{5} & \omega^{10} & \omega^{15} & \omega^{20} & \omega^{25} & \omega^{30} & \omega^{35} \\ 1 & \omega^{6} & \omega^{12} & \omega^{18} & \omega^{24} & \omega^{30} & \omega^{36} & \omega^{42} \\ 1 & \omega^{7} & \omega^{14} & \omega^{21} & \omega^{28} & \omega^{35} & \omega^{42} & \omega^{49} \end{bmatrix}$$

These numbers all have magnitude 1, and differ only in their phase.