Reversible gates

- Landauer's Principle: Suppose a computer erases a single bit of information. The amount of energy dissipated into the environment is (the entropy of the environment increases by) at least $k_B T \ln 2$, where k_B is Boltzmann's constant and T is the temperature of the surrounding environment.
- Computers currently dissipate on the order of $500k_BT \ln 2$ in energy for each elementary logical operation, so we are nowhere near the lower bound set by Landauer's Principle.
- Useful facts about XOR:

 $z \oplus z = 0$ $z \oplus 0 = z$

 $z \oplus 1 = \text{NOT } z$

- AND, OR, NAND, NOR, XOR, and XNOR are not reversible.
- How to make XOR reversible? Add an extra output that just copies the x input:

	•		x XOR y		•			x XOR y
			0					0
0	1	Ι	1	0	1	Ι	0	1
1	0	I	1	1	0	Ι	1	1
1	1	Ι	0	1	1	Ι	1	0

• Reversible XOR is called the *controlled-NOT* or CNOT gate. Inputs: x and y. Outputs: x (unchanged) and $y' = x \oplus y$. Input x acts as a control bit. When x = 1, y is negated, since $1 \oplus y = \text{NOT } y$. Otherwise y is unchanged, since $0 \oplus y = y$.

 $CNOT: |x, y\rangle \rightarrow |x, x \oplus y\rangle$

Matrix representation:

Gate symbol:

- $CNOT \star CNOT = IDEN$
- If we apply CNOT to an input vector V, we can undo the effect by applying another CNOT operation:

 $CNOT \star CNOT \star V = IDEN \star V = V$

• Toffoli gate: controlled-controlled-NOT (*CCNOT*). Inputs: x, y, z. Outputs: x', y', z'. Inputs x and y act as control bits, which are just copied to the outputs x' and y'. When x = 1 and y = 1, z is negated, since $z \oplus 1 = \text{NOT } z$. Otherwise z is unchanged, since $z \oplus 0 = z$.

x	у	z	I	x' = x	y' = y	z' = z XOR (x AND y)
0	0	0	-+-	0	0	0
0	0	1	Ι	0	0	1
0	1	0	Ι	0	1	0
0	1	1	Ι	0	1	1
1	0	0	Ι	1	0	0
1	0	1	Ι	1	0	1
1	1	0	Ι	1	1	1
1	1	1	Ι	1	1	0
• Ga	te sy	mbo	1:	$\begin{array}{c} x \\ y \\ z \end{array}$		$\oplus (x^{\wedge} y)$

• NOT from a Toffoli gate: set x = 1, y = 1 (just delete all rows from Toffoli truth table with x = 0 or y = 0):

	•				•	z' = NOT z
			·	1		1
1	1	1		1	1	0

• AND from a Toffoli gate: set z = 0 (just delete rows with z = 1 from Toffoli truth table):

	-			x'	-	z' = x AND y
				0		0
0	1	0	Ι	0	1	0
1	0	0	Ι	1	0	0
1	1	0	Ι	1	1	1

• COPY from a Toffoli gate: set x = 1, z = 0 (just delete all rows from Toffoli truth table with x = 0 or z = 1). Input y gets copied to outputs y' and z':

	-				у'	
			•		0	
1	1	0		1	1	1

- Fredkin gate: controlled-SWAP
 - $$\begin{split} |0,y,z\rangle &\rightarrow |0,y,z\rangle \\ |1,y,z\rangle &\rightarrow |1,z,y\rangle \end{split}$$

When x = 1, the inputs y and z are swapped. Otherwise they are unchanged. Truth table:

х	У				у'	
			+			
0	0	0		0	0	0
0	0		Ι	0	0	1
0	1	0	Ι	0	1	0
0	1	1	I	0	1	1
1	0	0		1	0	0
1	0	1	Ι	1	1	0
1	1	0	I	1	0	1
1	1	1	Ι	1	1	1

• AND from Fredkin: set y = 0 (delete all rows with y = 1). Output y' = x AND z

	•				y' = x AND z	z'
		0	•		0	0
0	0	1	I	0	0	1
1	0	0	I	1	0	0
1	0	1	I	1	1	0

• NOT and COPY from Fredkin: set y = 1, z = 0. Output y' = NOT x. Input x gets copied to outputs x and z':

x	У	z		х	y' = NOT x	z'
0	1	0		0	1	0
1	1	0	I	1	0	1

• Since we can make NOT and AND, we can make NAND, so we can make anything from Fredkin gates.