Reversible gates

- Landauer's Principle: Suppose a computer erases a single bit of information. The amount of energy dissipated into the environment is (the entropy of the environment increases by) at least $k_{B} T \ln 2$, where k_{B} is Boltzmann's constant and T is the temperature of the surrounding environment.
- Computers currently dissipate on the order of $500 k_{B} T \ln 2$ in energy for each elementary logical operation, so we are nowhere near the lower bound set by Landauer's Principle.
- Useful facts about XOR:

$$
\begin{aligned}
& z \oplus z=0 \\
& z \oplus 0=z \\
& z \oplus 1=\operatorname{NOT} z
\end{aligned}
$$

- AND, OR, NAND, NOR, XOR, and XNOR are not reversible.
- How to make XOR reversible? Add an extra output that just copies the x input:

x	y	x	XOR y
$\mathbf{0}$	0	1	0
0	1		1
1	0	1	1
1	1	1	0

x	y	I	x	x XOR y
$\mathbf{0}$	0	\|	0	0
0	1	1	0	1
1	0	1	1	1
1	1	1	0	

- Reversible XOR is called the controlled-NOT or CNOT gate. Inputs: x and y. Outputs: x (unchanged) and $y^{\prime}=x \oplus y$. Input x acts as a control bit. When $x=1, y$ is negated, since $1 \oplus y=$ NOT y. Otherwise y is unchanged, since $0 \oplus y=y$.

CNOT : $|x, y\rangle \rightarrow|x, x \oplus y\rangle$

Matrix representation:
$C N O T=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Gate symbol:

- $C N O T \star C N O T=I D E N$
- If we apply $C N O T$ to an input vector V, we can undo the effect by applying another $C N O T$ operation:
$C N O T \star C N O T \star V=I D E N \star V=V$
- Toffoli gate: controlled-controlled-NOT (CCNOT). Inputs: x, y, z. Outputs: $x^{\prime}, y^{\prime}, z^{\prime}$. Inputs x and y act as control bits, which are just copied to the outputs x^{\prime} and y^{\prime}. When $x=1$ and $y=1, z$ is negated, since $z \oplus 1=$ NOT z. Otherwise z is unchanged, since $z \oplus 0=z$.

- NOT from a Toffoli gate: set $x=1, y=1$ (just delete all rows from Toffoli truth table with $x=0$ or $y=0$):

x	y	z	x	$y^{\prime} \quad z^{\prime}=$ NOT z	
1	1	0	1	1	1
1	1	1	1	1	0

- AND from a Toffoli gate: set $z=0$ (just delete rows with $z=1$ from Toffoli truth table):

- COPY from a Toffoli gate: set $x=1, z=0$ (just delete all rows from Toffoli truth table with $x=0$ or $z=1$). Input y gets copied to outputs y^{\prime} and z^{\prime} :

x	y	z	x'	y^{\prime}	z'
1	0	0	1	0	0
1	1	0	1	1	1

- Fredkin gate: controlled-SWAP
$|0, y, z\rangle \rightarrow|0, y, z\rangle$
$|1, y, z\rangle \rightarrow|1, z, y\rangle$
When $x=1$, the inputs y and z are swapped. Otherwise they are unchanged. Truth table:

- AND from Fredkin: set $y=0$ (delete all rows with $y=1$). Output $y^{\prime}=x$ AND z

| x | y | z | \mid | x | $\mathrm{y}^{\prime}=\mathrm{x}$ AND z | z^{\prime} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0 | 0 | 0 | \mid | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | \mid | 1 | 0 | 0 |
| 1 | 0 | 1 | \mid | 1 | 1 | 0 |

- NOT and COPY from Fredkin: set $y=1, z=0$. Output $y^{\prime}=$ NOT x. Input x gets copied to outputs x and z^{\prime} :

- Since we can make NOT and AND, we can make NAND, so we can make anything from Fredkin gates.

