
Reversible gates

• Landauer’s Principle: Suppose a computer erases a single bit of information. The amount of
energy dissipated into the environment is (the entropy of the environment increases by) at

least kBT ln 2, where kB is Boltzmann’s constant and T is the temperature of the surrounding
environment.

• Computers currently dissipate on the order of 500kBT ln 2 in energy for each elementary
logical operation, so we are nowhere near the lower bound set by Landauer’s Principle.

• Useful facts about XOR:

z � z = 0

z � 0 = z

z � 1 = NOT z

• AND, OR, NAND, NOR, XOR, and XNOR are not reversible.

• How to make XOR reversible? Add an extra output that just copies the x input:

x y | x XOR y

--------+-----------

0 0 | 0

0 1 | 1

1 0 | 1

1 1 | 0

x y | x x XOR y

--------+----------------

0 0 | 0 0

0 1 | 0 1

1 0 | 1 1

1 1 | 1 0

• Reversible XOR is called the controlled-NOT or CNOT gate. Inputs: x and y. Outputs: x
(unchanged) and y0 = x � y. Input x acts as a control bit. When x = 1, y is negated, since
1� y = NOT y. Otherwise y is unchanged, since 0� y = y.

CNOT : |x, yi ! |x, x� yi

Matrix representation: Gate symbol:

CNOT =

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775

• CNOT ? CNOT = IDEN

• If we apply CNOT to an input vector V , we can undo the e↵ect by applying another CNOT

operation:

CNOT ? CNOT ? V = IDEN ? V = V

• To↵oli gate: controlled-controlled-NOT (CCNOT). Inputs: x, y, z. Outputs: x0, y0, z0.
Inputs x and y act as control bits, which are just copied to the outputs x0 and y0. When x = 1
and y = 1, z is negated, since z � 1 = NOT z. Otherwise z is unchanged, since z � 0 = z.

x y z | x’ = x y’ = y z’ = z XOR (x AND y)

-----------+---

0 0 0 | 0 0 0

0 0 1 | 0 0 1

0 1 0 | 0 1 0

0 1 1 | 0 1 1

1 0 0 | 1 0 0

1 0 1 | 1 0 1

1 1 0 | 1 1 1

1 1 1 | 1 1 0

• Gate symbol:

• NOT from a To↵oli gate: set x = 1, y = 1 (just delete all rows from To↵oli truth table with
x = 0 or y = 0):

x y z | x’ y’ z’ = NOT z

-----------+-------------------------

1 1 0 | 1 1 1

1 1 1 | 1 1 0

• AND from a To↵oli gate: set z = 0 (just delete rows with z = 1 from To↵oli truth table):

x y z | x’ y’ z’ = x AND y

-----------+--------------------------

0 0 0 | 0 0 0

0 1 0 | 0 1 0

1 0 0 | 1 0 0

1 1 0 | 1 1 1

• COPY from a To↵oli gate: set x = 1, z = 0 (just delete all rows from To↵oli truth table with
x = 0 or z = 1). Input y gets copied to outputs y0 and z0:

x y z | x’ y’ z’

-----------+----------------

1 0 0 | 1 0 0

1 1 0 | 1 1 1

• Fredkin gate: controlled-SWAP

|0, y, zi ! |0, y, zi
|1, y, zi ! |1, z, yi

When x = 1, the inputs y and z are swapped. Otherwise they are unchanged. Truth table:

x y z | x y’ z’

------------+--------------

0 0 0 | 0 0 0

0 0 1 | 0 0 1

0 1 0 | 0 1 0

0 1 1 | 0 1 1

1 0 0 | 1 0 0

1 0 1 | 1 1 0

1 1 0 | 1 0 1

1 1 1 | 1 1 1

• AND from Fredkin: set y = 0 (delete all rows with y = 1). Output y0 = x AND z

x y z | x y’ = x AND z z’

------------+---------------------------

0 0 0 | 0 0 0

0 0 1 | 0 0 1

1 0 0 | 1 0 0

1 0 1 | 1 1 0

• NOT and COPY from Fredkin: set y = 1, z = 0. Output y0 = NOT x. Input x gets copied
to outputs x and z0:

x y z | x y’ = NOT x z’

------------+------------------------

0 1 0 | 0 1 0

1 1 0 | 1 0 1

• Since we can make NOT and AND, we can make NAND, so we can make anything from
Fredkin gates.

