Qubits

- states $|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ represent the classical bits 0 and 1
- a qubit $\in \mathbb{C}^{2}=\left[\begin{array}{l}c_{0} \\ c_{1}\end{array}\right]=c_{0}|0\rangle+c_{1}|1\rangle$, where $\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}=1$
- probability of qubit being measured as $|0\rangle=\left|c_{0}\right|^{2}$
probability of qubit being measured as $|1\rangle=\left|c_{1}\right|^{2}$

Multiple qubits

- $|00\rangle=|0\rangle \otimes|0\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right] \otimes\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right] \quad|01\rangle=|0\rangle \otimes|1\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right] \otimes\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
$|10\rangle=|1\rangle \otimes|0\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right] \otimes\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right] \quad|11\rangle=|1\rangle \otimes|1\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right] \otimes\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
- an arbitrary 2-qubit state: $c_{00}|00\rangle+c_{01}|01\rangle+c_{10}|10\rangle+c_{11}|11\rangle$
- example: $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle$
- $|00000000\rangle=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right] \quad \ldots \quad|11111111\rangle=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ 1\end{array}\right] \quad$ with $2^{8}=256$ rows

Rules for tensor products

- \otimes distributes over + :
$|A\rangle \otimes(|B\rangle+|C\rangle)=|A\rangle \otimes|B\rangle+|A\rangle \otimes|C\rangle$
$(|A\rangle+|B\rangle) \otimes|C\rangle=|A\rangle \otimes|C\rangle+|B\rangle \otimes|C\rangle$
- scalar multiplication "semi-distributes" over \otimes : $\alpha(|A\rangle \otimes|B\rangle)=\alpha|A\rangle \otimes|B\rangle=|A\rangle \otimes \alpha|B\rangle$
- "parallel" operations:
$(A \star C) \otimes(B \star D)=(A \otimes B) \star(C \otimes D)$
special case:
$\left(A \star V_{1}\right) \otimes\left(B \star V_{2}\right)=(A \otimes B) \star\left(V_{1} \otimes V_{2}\right)$

Example of parallel operations

$A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad B=\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right] \quad V_{1}=\left[\begin{array}{l}3 \\ 5\end{array}\right] \quad V_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
We can apply A to V_{1} and B to V_{2} seperately:
$A \star V_{1}=\left[\begin{array}{l}5 \\ 3\end{array}\right] \quad B \star V_{2}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$
and then combine the results:
$\left(A \star V_{1}\right) \otimes\left(B \star V_{2}\right)=\left[\begin{array}{l}5 \\ 3\end{array}\right] \otimes\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{c}10 \\ 20 \\ 6 \\ 12\end{array}\right]$
Or: we can combine the operations as $A \otimes B$ and the vectors as $V_{1} \otimes V_{2}$, and apply the combined operation to the combined vectors:
$A \otimes B=\left[\begin{array}{cccc}0 & 0 & 4 & -1 \\ 0 & 0 & 2 & 1 \\ 4 & -1 & 0 & 0 \\ 2 & 1 & 0 & 0\end{array}\right] \quad V_{1} \otimes V_{2}=\left[\begin{array}{c}3 \\ 6 \\ 5 \\ 10\end{array}\right] \quad(A \otimes B) \star\left(V_{1} \otimes V_{2}\right)=\left[\begin{array}{c}10 \\ 20 \\ 6 \\ 12\end{array}\right]$

A circuit for XOR

a XOR $\mathrm{b}=(\mathrm{a}$ AND $($ NOT b$))$ OR ((NOT a) AND b)

The solid black dots in the above diagram correspond to bit-copying operations (also called "fanout" operations). To write an expression for this circuit in terms of matrix multiplications and tensor products, we first need to make these bit-copying operations explicit. We can use two COPY gates:

The above circuit still contains two crossed wires, which corresponds to swapping bits. We can make this explicit with a $S W A P$ gate:

We can now express the circuit as a combination of matrix and tensor product operations:

$O R \star(A N D \otimes A N D) \star(I D E N \otimes N O T \otimes N O T \otimes I D E N) \star(I D E N \otimes S W A P \otimes I D E N) \star(C O P Y \otimes C O P Y)$

Another approach is to use a SPLIT operation, which produces two copies of its input bits according to the following truth table:

SPLIT:	A	B	A	B	A	B
	0	0	0	0	0	0
	0	1	0	1	0	1
	1	0	1	0	1	0
	1	1	1	1	1	1

This avoids the need for an intervening $S W A P$ gate. We can then express the circuit as the combination of matrix multiplications and tensor products below:
$O R \star(A N D \otimes A N D) \star(I D E N \otimes N O T \otimes N O T \otimes I D E N) \star S P L I T$

Universality of the NAND gate

