
Qubits

• states |0i =
"
1

0

#
and |1i =

"
0

1

#
represent the classical bits 0 and 1

• a qubit 2 C2 =

"
c0

c1

#
= c0|0i+ c1|1i, where |c0|2 + |c1|2 = 1

• probability of qubit being measured as |0i = |c0|2

probability of qubit being measured as |1i = |c1|2

Multiple qubits

• |00i = |0i ⌦ |0i =
"
1

0

#
⌦

"
1

0

#
=

2

666664

1

0

0

0

3

777775
|01i = |0i ⌦ |1i =

"
1

0

#
⌦

"
0

1

#
=

2

666664

0

1

0

0

3

777775

|10i = |1i ⌦ |0i =
"
0

1

#
⌦

"
1

0

#
=

2

666664

0

0

1

0

3

777775
|11i = |1i ⌦ |1i =

"
0

1

#
⌦

"
0

1

#
=

2

666664

0

0

0

1

3

777775

• an arbitrary 2-qubit state: c00|00i+ c01|01i+ c10|10i+ c11|11i

• example: 1
2 |00i+

1
2 |01i+

1
2 |10i+

1
2 |11i

• |00000000i =

2

6666666664

1

0

0

...

0

3

7777777775

. . . |11111111i =

2

6666666664

0

0

0

...

1

3

7777777775

with 28 = 256 rows

Rules for tensor products

• ⌦ distributes over +:

|Ai ⌦
✓
|Bi+ |Ci

◆
= |Ai ⌦ |Bi+ |Ai ⌦ |Ci

✓
|Ai+ |Bi

◆
⌦ |Ci = |Ai ⌦ |Ci+ |Bi ⌦ |Ci

• scalar multiplication “semi-distributes” over ⌦:

↵

✓
|Ai ⌦ |Bi

◆
= ↵|Ai ⌦ |Bi = |Ai ⌦ ↵|Bi

• “parallel” operations:

(A ? C)⌦ (B ?D) = (A⌦B) ? (C ⌦D)

special case:

(A ? V1)⌦ (B ? V2) = (A⌦B) ? (V1 ⌦ V2)

Example of parallel operations

A =


0 1
1 0

�
B =


4 �1
2 1

�
V1 =

"
3

5

#
V2 =

"
1

2

#

We can apply A to V1 and B to V2 seperately:

A ? V1 =

"
5

3

#
B ? V2 =

"
2

4

#

and then combine the results:

(A ? V1)⌦ (B ? V2) =

"
5

3

#
⌦
"
2

4

#
=

2

666664

10

20

6

12

3

777775

Or: we can combine the operations as A⌦ B and the vectors as V1 ⌦ V2, and apply the combined
operation to the combined vectors:

A⌦B =

2

664

0 0 4 �1
0 0 2 1
4 �1 0 0
2 1 0 0

3

775 V1 ⌦ V2 =

2

666664

3

6

5

10

3

777775
(A⌦B) ? (V1 ⌦ V2) =

2

666664

10

20

6

12

3

777775

A circuit for XOR

a XOR b = (a AND (NOT b)) OR ((NOT a) AND b)

The solid black dots in the above diagram correspond to bit-copying operations (also called “fanout”
operations). To write an expression for this circuit in terms of matrix multiplications and tensor
products, we first need to make these bit-copying operations explicit. We can use two COPY gates:

The above circuit still contains two crossed wires, which corresponds to swapping bits. We can
make this explicit with a SWAP gate:

We can now express the circuit as a combination of matrix and tensor product operations:

OR? (AND⌦AND)? (IDEN ⌦NOT ⌦NOT ⌦ IDEN)? (IDEN ⌦SWAP ⌦ IDEN)? (COPY ⌦COPY)

Another approach is to use a SPLIT operation, which produces two copies of its input bits according
to the following truth table:

SPLIT: A B | A B A B

-----+-------------

0 0 | 0 0 0 0

0 1 | 0 1 0 1

1 0 | 1 0 1 0

1 1 | 1 1 1 1

This avoids the need for an intervening SWAP gate. We can then express the circuit as the
combination of matrix multiplications and tensor products below:

OR ? (AND ⌦AND) ? (IDEN ⌦NOT ⌦NOT ⌦ IDEN) ? SPLIT

Universality of the NAND gate

