
The No-Cloning Theorem

It is easy to make a copy of a classical bit using the COPY gate. What about for qubits? Can we
find a quantum gate that will make a copy of a qubit in an arbitrary superposition state? In other
words, is it possible to clone an arbitrary qubit? Such a gate would have to be unitary, so it would
need two inputs and two outputs. Suppose that a 2-qubit linear operator Q : V⌦V ! V⌦V takes
as inputs a qubit in an arbitrary superposition state | i and a qubit in state |0i, and produces
two exact copies of | i as outputs. That is, Q(| i ⌦ |0i) = | i ⌦ | i. For comparison, we could
imagine adding a “dummy” input bit of 0 to the COPY gate, which shows that the Q gate is just
a generalization of COPY :

Q should operate on the basis states |0i and |1i like this:

• Q(|0i ⌦ |0i) �! |0i ⌦ |0i

• Q(|1i ⌦ |0i) �! |1i ⌦ |1i

Q should operate on an arbitrary superposition state ↵|0i+ �|1i, where ↵,� 2 C, like this:

• Q((↵|0i+ �|1i)⌦ |0i) �! (↵|0i+ �|1i)⌦ (↵|0i+ �|1i)

In the latter case, the output is of the form (A+B)⌦ (A+B), where A = ↵|0i and B = �|1i.
We can rewrite this using the rules for tensor products:

(A+B)⌦ (A+B)

= A⌦ (A+B) +B ⌦ (A+B)

= A⌦A+A⌦B +B ⌦A+B ⌦B

= ↵|0i ⌦ ↵|0i+ ↵|0i ⌦ �|1i+ �|1i ⌦ ↵|0i+ �|1i ⌦ �|1i

= ↵2(|0i ⌦ |0i) + ↵�(|0i ⌦ |1i) + �↵(|1i ⌦ |0i) + �2(|1i ⌦ |1i)

= ↵2|00i+ ↵�|01i+ �↵|10i+ �2|11i

This is the output that we should get if Q copies the state ↵|0i+ �|1i correctly.

But we can also directly work out the result of applying Q to the input (↵|0i + �|1i) ⌦ |0i, since
we know that Q is a linear operator (all quantum gates are), and that Q(|0i ⌦ |0i) = |0i ⌦ |0i and
Q(|1i ⌦ |0i) = |1i ⌦ |1i. Let’s see what we get:



Q
�
(↵|0i+ �|1i)⌦ |0i

�

= Q
�
↵|0i ⌦ |0i+ �|1i ⌦ |0i

�
since (A+B)⌦ C is equivalent to A⌦ C +B ⌦ C

= Q
�
↵|0i ⌦ |0i

�
+Q

�
�|1i ⌦ |0i

�
since Q is linear: Q(A+B) = Q(A) +Q(B)

= Q
�
↵(|0i ⌦ |0i)

�
+Q

�
�(|1i ⌦ |0i)

�
since cA⌦B is equivalent to c(A⌦B)

= ↵Q
�
|0i ⌦ |0i

�
+ �Q

�
|1i ⌦ |0i

�
since Q is linear: Q(cA) = cQ(A)

= ↵(|0i ⌦ |0i) + �(|1i ⌦ |1i) since Q(|0i ⌦ |0i) = |0i ⌦ |0i and Q(|1i ⌦ |0i) = |1i ⌦ |1i
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The only way in which ↵|00i+ �|11i can equal ↵2|00i+ ↵�|01i + �↵|10i+ �2|11i is if ↵ = 1 and
� = 0, or if ↵ = 0 and � = 1. In other words, the only superposition states ↵|0i + �|1i on which
Q works correctly are the basis states |0i = 1|0i+0|1i and |1i = 0|0i+1|1i. This means that only
classical bits can be cloned, not arbitrary qubits!
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which means that the qubits in fact become entangled as a result of the “cloning” operation,
instead of producing two independent copies of the qubit. Thus Q does not work as it should on
the superposition state 1p
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Transporting a qubit

On the other hand, unlike cloning, there is no problem in transporting an arbitrary qubit state
from one place to another. A 2-qubit transport operator T : V⌦V ! V⌦V would work as follows:
T (| i ⌦ |0i) = |0i ⌦ | i. In transporting the state of the first qubit to the second, the first qubit
gets reset to |0i. This is essentially a quantum version of the SWAP operation:

T should operate on the basis states |0i and |1i like this:

• T (|0i ⌦ |0i) �! |0i ⌦ |0i

• T (|1i ⌦ |0i) �! |0i ⌦ |1i

T should operate on an arbitrary superposition state ↵|0i+ �|1i like this:

• T ((↵|0i+ �|1i)⌦ |0i) �! |0i ⌦ (↵|0i+ �|1i)
= |0i ⌦ ↵|0i+ |0i ⌦ �|1i
= ↵(|0i ⌦ |0i) + �(|0i ⌦ |1i)
= ↵|00i+ �|01i

This is the output that we should get if T transports the state ↵|0i+ �|1i correctly.

Directly working out the actual result gives:
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= ↵|00i+ �|01i since |00i and |01i are shorthand for |0i ⌦ |0i and |0i ⌦ |1i

which is exactly the behavior we expect when applying T to ↵|0i+ �|1i.

The 2-qubit output state ↵|00i+ �|01i is equivalent to |0i ⌦ (↵|0i+ �|1i), meaning that the state
of the first qubit is |0i and the state of the second is ↵|0i+ �|1i. Measuring the first qubit would
yield |0i with certainty, but would give us no information about the state of the second. Thus the
two output qubits are independent rather than entangled.


