The No-Cloning Theorem

It is easy to make a copy of a classical bit using the COPY gate. What about for qubits? Can we
find a quantum gate that will make a copy of a qubit in an arbitrary superposition state? In other
words, is it possible to clone an arbitrary qubit? Such a gate would have to be unitary, so it would
need two inputs and two outputs. Suppose that a 2-qubit linear operator @ : VRV — V®V takes
as inputs a qubit in an arbitrary superposition state |¢)) and a qubit in state |0), and produces
two exact copies of [¢) as outputs. That is, Q(|¢) ® |0)) = |[¢) ® |[¢). For comparison, we could
imagine adding a “dummy” input bit of 0 to the COPY gate, which shows that the @) gate is just
a generalization of COPY:
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@ should operate on the basis states |0) and |1) like this:
* Q(|0) ©0)) — 10) ©10)
e Q1) ®[0)) — 1) ®]1)
@ should operate on an arbitrary superposition state «|0) + 3|1), where «, 5 € C, like this:
e Q((|0) +8|1)) ® 10)) — (al0) + B[1)) © (|0) + 5[1))
In the latter case, the output is of the form (A + B) ® (A + B), where A = a|0) and B = §|1).
We can rewrite this using the rules for tensor products:
(A+B)® (A+ B)
—A®(A+B)+B®(A+B)
=A®RA+ARB+B®A+B®B
= |0) ® |0) + a|0) ® B[1) + B[1) © «|0) + B]1) @ B]1)
= a?(|0) ®10)) + aB(|0) ® [1)) + Ba(|1) @ [0)) + A2(|1) ® |1))
= a?|00) + aB]01) + Bal10) + B2|11)
This is the output that we should get if Q) copies the state a|0) + 8|1) correctly.

But we can also directly work out the result of applying @ to the input («|0) + 5|1)) ® |0), since
we know that @ is a linear operator (all quantum gates are), and that Q(]0) ® |0)) = |0) ® |0) and
Q1) ®10)) =|1) ® |1). Let’s see what we get:



Q((a]0) + 8|1)) @ |0))
= Q(a|0) ® |0) + B]1) @ |0)) since (A + B) ® C is equivalent to A® C + B® C
= Q(a|0) ®|0)) + Q(B]1) @ |0)) since @ is linear: Q(A+ B) = Q(A) + Q(B)
= Q(a(]0) ®10))) +Q(B(]1) ®10))) since cA® B is equivalent to ¢(A @ B)

= aQ(|0) ®|0)) + BQ(]1) ® |0)) since @ is linear: Q(cA) = cQ(A)

= a(|0)®[0)) +5(]1) @ 1)) since Q(|0) ® 10)) = |0) ® |0) and Q(|1) ® [0)) = [1) @ [1)

= «|00) + 5|11) since |00) and |11) are shorthand for |0) ® |0) and |1) ® |1)
The only way in which «|00) + B[11) can equal a|00) + a3|01) + Ba|10) + B2|11) is if @ = 1 and
B=0,o0rif «a =0and g = 1. In other words, the only superposition states «|0) + 3|1) on which

@ works correctly are the basis states |0) = 1]0) 4+ 0|1) and |1) = 0]|0) 4+ 1|1). This means that only
classical bits can be cloned, not arbitrary qubits!

An example

To be more concrete, suppose that |¢) = f|0> \/§H> Cloning |¢) should give Q(|) ® |0)) =
V) @) = (ﬁ|0) \ﬁ|1>) (ﬁ‘m \/5]1>) which, following the above analysis with a = 3 = %,
equals 1[00) + 3|01) + £|10) + 2[11). This means that, after cloning, we would expect both qubits

to be in “equally balanced” superpositions of |0) and |1), independent of each other. However,
because @ is a linear operator, applying @ to (%\O) + %|1>) ® |0) must give:

o

Q (102 10) + L1 @ o))

5510) + 1) @ |0)

—

Q(Hle0)+Q(Hne)
L0 @)+ He(ne)
= 10y ® |0) + (1) ® 1))
= 75100) + 5[11)
1 1 1 1
# 5(00) + 5|01) + 5[10) + 3[11)
which means that the qubits in fact become entangled as a result of the “cloning” operation,

instead of producing two independent copies of the qubit. Thus @ does not work as it should on
the superposition state %|0> + %\D



Transporting a qubit

On the other hand, unlike cloning, there is no problem in transporting an arbitrary qubit state
from one place to another. A 2-qubit transport operator T : V®V — V®V would work as follows:
T(]1) ® ]0)) = |0) ® |¢). In transporting the state of the first qubit to the second, the first qubit
gets reset to |0). This is essentially a quantum version of the SWAP operation:
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T should operate on the basis states |0) and |1) like this:
 T(|0) ® 10)) — |0) ®|0)
e T(I1)®10)) — [0) @ [1)
T should operate on an arbitrary superposition state «|0) + §|1) like this:
o T((|0) + 5[1)) ©10)) — |0) ® (a]0) + B]1))
=10) ® a[0) + 10) @ B[1)

= a(|0) ® [0)) + 8(]0) @ [1))
= «|00) + 8]01)

This is the output that we should get if T transports the state a|0) + 3|1) correctly.

Directly working out the actual result gives:
T((al0) + B11)) © |0))

= T(a]0) ®[0) + B]1) ®0)) since (A + B) ® C is equivalent to A C+ B® C

= T(a|0)®10)) + T(8]1) ®[0)) since T is linear: T(A + B) = T(A) + T(B)

= aT(|0)®(0)) +BT(|1) ®|0)) since T is linear: T'(cA) = cT'(A)

= a(|0)®[0)) + 5(]0) @ |1)) since T'(]0) ©[0)) = [0) ©[0) and T'(|1) ® |0)) = [0) @ |1)

= «|00) + /5|01) since |00) and |01) are shorthand for |0) ® |0) and |0) ® |1)
which is exactly the behavior we expect when applying T' to «|0) + §|1).

The 2-qubit output state «|00) 4+ 3|01) is equivalent to [0) ® («|0) + B|1)), meaning that the state
of the first qubit is |0) and the state of the second is «|0) + 5|1). Measuring the first qubit would
yield |0) with certainty, but would give us no information about the state of the second. Thus the
two output qubits are independent rather than entangled.



