The No-Cloning Theorem

It is easy to make a copy of a classical bit using the COPY gate. What about for qubits? Can we find a quantum gate that will make a copy of a qubit in an arbitrary superposition state? In other words, is it possible to clone an arbitrary qubit? Such a gate would have to be unitary, so it would need two inputs and two outputs. Suppose that a 2-qubit linear operator $Q: \mathbb{V} \otimes \mathbb{V} \rightarrow \mathbb{V} \otimes \mathbb{V}$ takes as inputs a qubit in an arbitrary superposition state $|\psi\rangle$ and a qubit in state $|0\rangle$, and produces two exact copies of $|\psi\rangle$ as outputs. That is, $Q(|\psi\rangle \otimes|0\rangle)=|\psi\rangle \otimes|\psi\rangle$. For comparison, we could imagine adding a "dummy" input bit of 0 to the $C O P Y$ gate, which shows that the Q gate is just a generalization of $C O P Y$:

Q should operate on the basis states $|0\rangle$ and $|1\rangle$ like this:

- $Q(|0\rangle \otimes|0\rangle) \longrightarrow|0\rangle \otimes|0\rangle$
- $Q(|1\rangle \otimes|0\rangle) \longrightarrow|1\rangle \otimes|1\rangle$
Q should operate on an arbitrary superposition state $\alpha|0\rangle+\beta|1\rangle$, where $\alpha, \beta \in \mathbb{C}$, like this:
- $Q((\alpha|0\rangle+\beta|1\rangle) \otimes|0\rangle) \longrightarrow(\alpha|0\rangle+\beta|1\rangle) \otimes(\alpha|0\rangle+\beta|1\rangle)$

In the latter case, the output is of the form $(A+B) \otimes(A+B)$, where $A=\alpha|0\rangle$ and $B=\beta|1\rangle$. We can rewrite this using the rules for tensor products:

$$
\begin{aligned}
& (A+B) \otimes(A+B) \\
= & A \otimes(A+B)+B \otimes(A+B) \\
= & A \otimes A+A \otimes B+B \otimes A+B \otimes B \\
= & \alpha|0\rangle \otimes \alpha|0\rangle+\alpha|0\rangle \otimes \beta|1\rangle+\beta|1\rangle \otimes \alpha|0\rangle+\beta|1\rangle \otimes \beta|1\rangle \\
= & \alpha^{2}(|0\rangle \otimes|0\rangle)+\alpha \beta(|0\rangle \otimes|1\rangle)+\beta \alpha(|1\rangle \otimes|0\rangle)+\beta^{2}(|1\rangle \otimes|1\rangle) \\
= & \alpha^{2}|00\rangle+\alpha \beta|01\rangle+\beta \alpha|10\rangle+\beta^{2}|11\rangle
\end{aligned}
$$

This is the output that we should get if Q copies the state $\alpha|0\rangle+\beta|1\rangle$ correctly.
But we can also directly work out the result of applying Q to the input $(\alpha|0\rangle+\beta|1\rangle) \otimes|0\rangle$, since we know that Q is a linear operator (all quantum gates are), and that $Q(|0\rangle \otimes|0\rangle)=|0\rangle \otimes|0\rangle$ and $Q(|1\rangle \otimes|0\rangle)=|1\rangle \otimes|1\rangle$. Let's see what we get:

$$
\begin{aligned}
& Q((\alpha|0\rangle+\beta|1\rangle) \otimes|0\rangle) \\
&= Q(\alpha|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|0\rangle) \\
&= \text { since }(A+B) \otimes C \text { is equivalent to } A \otimes C+B \otimes C \\
&= Q(\alpha(|0\rangle \otimes|0\rangle)+Q(\beta|1\rangle \otimes|0\rangle) \\
&=\alpha Q(\text { since } Q \text { is linear: } Q(A+B)=Q(A)+Q(B) \\
&=\alpha(\beta(|1\rangle \otimes|0\rangle)) \text { since } c A \otimes B \text { is equivalent to } c(A \otimes B) \\
&=\alpha(|0\rangle \otimes|0\rangle)+\beta(|1\rangle \otimes|1\rangle) \text { since } Q \text { is linear: } Q(c A)=c Q(A) \\
&=\alpha|00\rangle+\beta|11\rangle \text { since }|00\rangle \text { and }|11\rangle \text { are shorthand for }|0\rangle \otimes|0\rangle \text { and }|1\rangle \otimes|1\rangle
\end{aligned}
$$

The only way in which $\alpha|00\rangle+\beta|11\rangle$ can equal $\alpha^{2}|00\rangle+\alpha \beta|01\rangle+\beta \alpha|10\rangle+\beta^{2}|11\rangle$ is if $\alpha=1$ and $\beta=0$, or if $\alpha=0$ and $\beta=1$. In other words, the only superposition states $\alpha|0\rangle+\beta|1\rangle$ on which Q works correctly are the basis states $|0\rangle=1|0\rangle+0|1\rangle$ and $|1\rangle=0|0\rangle+1|1\rangle$. This means that only classical bits can be cloned, not arbitrary qubits!

An example

To be more concrete, suppose that $|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$. Cloning $|\psi\rangle$ should give $Q(|\psi\rangle \otimes|0\rangle)=$ $|\psi\rangle \otimes|\psi\rangle=\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)$, which, following the above analysis with $\alpha=\beta=\frac{1}{\sqrt{2}}$, equals $\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle$. This means that, after cloning, we would expect both qubits to be in "equally balanced" superpositions of $|0\rangle$ and $|1\rangle$, independent of each other. However, because Q is a linear operator, applying Q to $\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \otimes|0\rangle$ must give:

$$
\begin{aligned}
& Q\left(\left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right) \otimes|0\rangle\right) \\
= & Q\left(\frac{1}{\sqrt{2}}|0\rangle \otimes|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \otimes|0\rangle\right) \\
= & Q\left(\frac{1}{\sqrt{2}}|0\rangle \otimes|0\rangle\right)+Q\left(\frac{1}{\sqrt{2}}|1\rangle \otimes|0\rangle\right) \\
= & \frac{1}{\sqrt{2}} Q(|0\rangle \otimes|0\rangle)+\frac{1}{\sqrt{2}} Q(|1\rangle \otimes|0\rangle) \\
= & \frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle)+\frac{1}{\sqrt{2}}(|1\rangle \otimes|1\rangle) \\
= & \frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle \\
\neq & \frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle
\end{aligned}
$$

which means that the qubits in fact become entangled as a result of the "cloning" operation, instead of producing two independent copies of the qubit. Thus Q does not work as it should on the superposition state $\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$.

Transporting a qubit

On the other hand, unlike cloning, there is no problem in transporting an arbitrary qubit state from one place to another. A 2-qubit transport operator $T: \mathbb{V} \otimes \mathbb{V} \rightarrow \mathbb{V} \otimes \mathbb{V}$ would work as follows: $T(|\psi\rangle \otimes|0\rangle)=|0\rangle \otimes|\psi\rangle$. In transporting the state of the first qubit to the second, the first qubit gets reset to $|0\rangle$. This is essentially a quantum version of the $S W A P$ operation:

T should operate on the basis states $|0\rangle$ and $|1\rangle$ like this:

- $T(|0\rangle \otimes|0\rangle) \longrightarrow|0\rangle \otimes|0\rangle$
- $T(|1\rangle \otimes|0\rangle) \longrightarrow|0\rangle \otimes|1\rangle$
T should operate on an arbitrary superposition state $\alpha|0\rangle+\beta|1\rangle$ like this:
- $T((\alpha|0\rangle+\beta|1\rangle) \otimes|0\rangle) \longrightarrow|0\rangle \otimes(\alpha|0\rangle+\beta|1\rangle)$ $=|0\rangle \otimes \alpha|0\rangle+|0\rangle \otimes \beta|1\rangle$ $=\alpha(|0\rangle \otimes|0\rangle)+\beta(|0\rangle \otimes|1\rangle)$ $=\alpha|00\rangle+\beta|01\rangle$

This is the output that we should get if T transports the state $\alpha|0\rangle+\beta|1\rangle$ correctly.

Directly working out the actual result gives:

$$
\begin{aligned}
& T((\alpha|0\rangle+\beta|1\rangle) \otimes|0\rangle) \\
= & T(\alpha|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|0\rangle) \\
= & T(\alpha|0\rangle \otimes|0\rangle)+T(\beta|1\rangle \otimes|0\rangle) \\
= & \text { since }(A+B) \otimes C \text { is equivalent to } T \text { is linear: } T(A+B)=T(A)+T(B) \\
= & \alpha T(|0\rangle \otimes|0\rangle)+\beta T(|1\rangle \otimes|0\rangle) \\
= & \text { since } T \text { is linear: } T(c A)=c T(A) \\
= & \alpha(|0\rangle \otimes|0\rangle)+\beta(|0\rangle \otimes|1\rangle)
\end{aligned} \quad \text { since } T(|0\rangle \otimes|0\rangle)=|0\rangle \otimes|0\rangle \text { and } T(|1\rangle \otimes|0\rangle)=|0\rangle \otimes|1\rangle
$$

which is exactly the behavior we expect when applying T to $\alpha|0\rangle+\beta|1\rangle$.
The 2-qubit output state $\alpha|00\rangle+\beta|01\rangle$ is equivalent to $|0\rangle \otimes(\alpha|0\rangle+\beta|1\rangle)$, meaning that the state of the first qubit is $|0\rangle$ and the state of the second is $\alpha|0\rangle+\beta|1\rangle$. Measuring the first qubit would yield $|0\rangle$ with certainty, but would give us no information about the state of the second. Thus the two output qubits are independent rather than entangled.

