Entangling qubits with CNOT

The CNOT gate with the y input set to 0 works fine for copying the classical bits 0 and 1:
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But what happens if the top input qubit is in an arbitrary superposition state «|0) 4+ 3|1) instead?
If the CNOT gate correctly copies this qubit, we would expect that the state of each output qubit
would be equal to «|0) + §|1). That is:
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But that is not what actually happens. Instead of being in the above separable state, with both
output qubits in identical superpositions of |0) and |1), the two qubits end up in an entangled state:
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We cannot factor this 2-qubit state into the tensor product of two 1-qubit states. Thus the output
qubits are not two independent copies of the input qubit. Since they are entangled, in a certain
sense they could be regarded as being literally the same qubit. As soon as we measure one of them,
yielding either |0) with probability |«|? or |1) with probability |3|?, the other one immediately
acquires the same state with 100% certainty. At that moment, the entanglement is broken, and
both qubits become independent, classical bits from that point on.



