Deutsch-Jozsa algorithm (Marshall's variation)

Now let's generalize x to be an arbitrary n-bit binary string, which we will write as \mathbf{x}. Whereas $|x\rangle$ represented a single qubit, $|\mathbf{x}\rangle$ will represent an n-qubit quantum register. Instead of creating an equal superposition of $|0\rangle$ and $|1\rangle$ as before, we will create an equal superposition of all n-bit binary strings $|000 \ldots 0\rangle$ to $|111 \ldots 1\rangle$ using n Hadamard gates applied to $|000 \ldots 0\rangle$:

$$
H^{\otimes n}\left|0^{n}\right\rangle=(H \otimes H \otimes \ldots \otimes H)|00 \ldots 0\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in\{0,1\}^{n}}|\mathbf{x}\rangle
$$

We apply U_{f} to the n-qubit superposition $H^{\otimes n}\left|0^{n}\right\rangle$, which represents the binary codes of all of the integers from 0 to $2^{n}-1$ simultaneously, and the 1 -qubit superposition $H|1\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle$:

$$
\begin{aligned}
\left|\varphi_{0}\right\rangle & =\left|0^{n}\right\rangle \otimes|1\rangle \\
\left|\varphi_{1}\right\rangle & =H^{\otimes n}\left|0^{n}\right\rangle \otimes H|1\rangle \\
& =\left(\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in\{0,1\}^{n}}|\mathbf{x}\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)
\end{aligned}
$$

Applying U_{f} to $\left|\varphi_{1}\right\rangle$ will produce the output:
$\left|\varphi_{2}\right\rangle=\left(\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in\{0,1\}^{n}}(-1)^{f(\mathbf{x})}|\mathbf{x}\rangle\right) \otimes\left(\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle\right)$
We can turn the second qubit back into $|1\rangle$ by applying a single H gate to it:
$\left|\varphi_{3}\right\rangle=\left(\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in\{0,1\}^{n}}(-1)^{f(\mathbf{x})}|\mathbf{x}\rangle\right) \otimes|1\rangle$
Since we're only interested in the top n qubits, we will just ignore the bottom qubit:
$\left|\varphi_{4}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in\{0,1\}^{n}}(-1)^{f(\mathbf{x})}|\mathbf{x}\rangle$
We then apply n Hadamard gates to the top n qubits and measure the result. If we obtain 0^{n}, then f is constant. If we obtain anything else, then f is balanced (assuming that f was either constant or balanced to begin with). If f is neither constant nor balanced, the measurement will not yield reliable information.

Some examples

To make things more concrete, consider the case when $n=2$, that is, when $|\mathbf{x}\rangle$ consists of 2 qubits. The top two output qubits after applying U_{f} are then:
$\left|\varphi_{4}\right\rangle=\frac{1}{2}\left((-1)^{f(00)}|00\rangle+(-1)^{f(01)}|01\rangle+(-1)^{f(10)}|10\rangle+(-1)^{f(11)}|11\rangle\right)$
Notice that the + or - signs for $|00\rangle,|01\rangle,|10\rangle$, and $|11\rangle$ are determined by the behavior of f on each of the \mathbf{x} values $00,01,10$, and 11 , according to the term $(-1)^{f(\mathbf{x})}$.

- If f is the "constant 0 " function, $f(\mathbf{x})=0$ for all values of \mathbf{x}, which makes all of the $(-1)^{f(\mathbf{x})}$ coefficients equal to +1 :

$$
\left|\varphi_{4}\right\rangle=\frac{1}{2}(+|00\rangle+|01\rangle+|10\rangle+|11\rangle)
$$

This state is equivalent to $(H \otimes H)|00\rangle$. Applying the 2-qubit operator $H \otimes H$ to this state in effect removes the $(H \otimes H)$, giving $|00\rangle$ as the final state $\left|\varphi_{5}\right\rangle$. When we measure the final state, we will get 00 with 100% certainty, indicating that f is constant.

- If f is the "constant 1 " function, $f(\mathbf{x})=1$ for all values of \mathbf{x}, which makes all of the $(-1)^{f(\mathbf{x})}$ coefficients equal to -1 :

$$
\left|\varphi_{4}\right\rangle=\frac{1}{2}(-|00\rangle-|01\rangle-|10\rangle-|11\rangle)
$$

This state is equivalent to $(H \otimes H)(-|00\rangle)$. Applying $H \otimes H$ to this state gives $-|00\rangle$ as the final state $\left|\varphi_{5}\right\rangle$. When we measure the final state, we will get 00 with 100% certainty, indicating that f is constant.

- If f is the balanced function $00 \rightarrow 1,01 \rightarrow 1,10 \rightarrow 0,11 \rightarrow 0$, we get:

$$
\left|\varphi_{4}\right\rangle=\frac{1}{2}(-|00\rangle-|01\rangle+|10\rangle+|11\rangle)
$$

This state is equivalent to $(H \otimes H)(-|10\rangle)$. Applying $H \otimes H$ to this state gives $-|10\rangle$ as the final state $\left|\varphi_{5}\right\rangle$. When we measure the final state, we will get 10 with 100% certainty, indicating that f is balanced (since the outcome wasn't 00).

- If f is the balanced function $00 \rightarrow 0,01 \rightarrow 1,10 \rightarrow 0,11 \rightarrow 1$, we get:

$$
\left|\varphi_{4}\right\rangle=\frac{1}{2}(+|00\rangle-|01\rangle+|10\rangle-|11\rangle)
$$

This state is equivalent to $(H \otimes H)|01\rangle$. Applying $H \otimes H$ to this state gives $|01\rangle$ as the final state $\left|\varphi_{5}\right\rangle$. When we measure the final state, we will get 01 with 100% certainty, indicating that f is balanced (since the outcome wasn't 00).

- If f is the unbalanced function $00 \rightarrow 0,01 \rightarrow 0,10 \rightarrow 0,11 \rightarrow 1$, we get:

$$
\left|\varphi_{4}\right\rangle=\frac{1}{2}(+|00\rangle+|01\rangle+|10\rangle-|11\rangle)
$$

Applying $H \otimes H$ to this state just gives us back the same state $\left(\frac{1}{2}|00\rangle+\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle-\frac{1}{2}|11\rangle\right)$ for the final state $\left|\varphi_{5}\right\rangle$. When we measure the final state, we will get one of $00,01,10,11$ with 25% probability, but the outcome won't convey any useful information about f.

