
Deutsch-Jozsa algorithm (Marshall’s variation)

Now let’s generalize x to be an arbitrary n-bit binary string, which we will write as x. Whereas
|xi represented a single qubit, |xi will represent an n-qubit quantum register. Instead of creating
an equal superposition of |0i and |1i as before, we will create an equal superposition of all n-bit
binary strings |000 . . . 0i to |111 . . . 1i using n Hadamard gates applied to |000 . . . 0i:
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Applying Uf to |'1i will produce the output:
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We can turn the second qubit back into |1i by applying a single H gate to it:
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Since we’re only interested in the top n qubits, we will just ignore the bottom qubit:
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We then apply n Hadamard gates to the top n qubits and measure the result. If we obtain 0n, then
f is constant. If we obtain anything else, then f is balanced (assuming that f was either constant
or balanced to begin with). If f is neither constant nor balanced, the measurement will not yield
reliable information.



Some examples

To make things more concrete, consider the case when n = 2, that is, when |xi consists of 2 qubits.
The top two output qubits after applying Uf are then:
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Notice that the + or � signs for |00i, |01i, |10i, and |11i are determined by the behavior of f on
each of the x values 00, 01, 10, and 11, according to the term (�1)f(x).

• If f is the “constant 0” function, f(x) = 0 for all values of x, which makes all of the (�1)f(x)

coe�cients equal to +1:
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This state is equivalent to (H ⌦H)|00i. Applying the 2-qubit operator H ⌦H to this state
in e↵ect removes the (H ⌦H), giving |00i as the final state |'5i. When we measure the final
state, we will get 00 with 100% certainty, indicating that f is constant.

• If f is the “constant 1” function, f(x) = 1 for all values of x, which makes all of the (�1)f(x)

coe�cients equal to �1:
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This state is equivalent to (H ⌦ H)(�|00i). Applying H ⌦ H to this state gives �|00i as
the final state |'5i. When we measure the final state, we will get 00 with 100% certainty,
indicating that f is constant.

• If f is the balanced function 00 ! 1, 01 ! 1, 10 ! 0, 11 ! 0, we get:
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� |00i � |01i+ |10i+ |11i
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This state is equivalent to (H ⌦ H)(�|10i). Applying H ⌦ H to this state gives �|10i as
the final state |'5i. When we measure the final state, we will get 10 with 100% certainty,
indicating that f is balanced (since the outcome wasn’t 00).

• If f is the balanced function 00 ! 0, 01 ! 1, 10 ! 0, 11 ! 1, we get:
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This state is equivalent to (H ⌦H)|01i. Applying H ⌦H to this state gives |01i as the final
state |'5i. When we measure the final state, we will get 01 with 100% certainty, indicating
that f is balanced (since the outcome wasn’t 00).

• If f is the unbalanced function 00 ! 0, 01 ! 0, 10 ! 0, 11 ! 1, we get:
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Applying H⌦H to this state just gives us back the same state
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for the final state |'5i. When we measure the final state, we will get one of 00, 01, 10, 11
with 25% probability, but the outcome won’t convey any useful information about f .


