Deutsch-Jozsa algorithm (Marshall’s variation)

‘0n> E //"5 ; Hen ; n
; Ur §
iy —{A- 1)
2 @) 2) e @) %)

Now let’s generalize x to be an arbitrary n-bit binary string, which we will write as x. Whereas
|x) represented a single qubit, |x) will represent an n-qubit quantum register. Instead of creating
an equal superposition of |0) and |1) as before, we will create an equal superposition of all n-bit
binary strings [000...0) to [111...1) using n Hadamard gates applied to |000...0):

1
H®0") = (H®H® ... ® H)|00...0) = x
07) = ()|) NoT > Ix)
x €{0,1}7
We apply Uy to the n-qubit superposition H ®n]0™), which represents the binary codes of all of the

integers from 0 to 2" — 1 simultaneously, and the 1-qubit superposition H|1) = --|0) — %H)

5 :

|po) = 107) @ 1)

|o1) = HZ"|0") @ HI1)

:(\/17 > |x>>®<;§|o>;§|1>)

x €{0,1}n

Applying Uy to |¢1) will produce the output:

o= (= X C0W0) 8 (0 -)

xe€{0,1}m

We can turn the second qubit back into |1) by applying a single H gate to it:

a) = (3 <—1>f<x>rx>)®u>

xe€{0,1}m

Since we’re only interested in the top n qubits, we will just ignore the bottom qubit:

oa) = \/} S (-1 W)

xe€{0,1}™

We then apply n Hadamard gates to the top n qubits and measure the result. If we obtain 0™, then
f is constant. If we obtain anything else, then f is balanced (assuming that f was either constant
or balanced to begin with). If f is neither constant nor balanced, the measurement will not yield
reliable information.

Some examples

To make things more concrete, consider the case when n = 2, that is, when |x) consists of 2 qubits.
The top two output qubits after applying Uy are then:

[pa) = 3 ((=1)7©100) + (=1)/CV]o1) + (~1)1[10) + (~1)/1D[11))

Notice that the + or — signs for |00), |01), |10), and |11) are determined by the behavior of f on
each of the x values 00, 01, 10, and 11, according to the term (—1)/®),

e If f is the “constant 0” function, f(x) = 0 for all values of x, which makes all of the (—1)/®*)
coefficients equal to +1:

|pa) = %(+ 100) + [01) + [10) + 111>>

This state is equivalent to (H ® H)|00). Applying the 2-qubit operator H ® H to this state
in effect removes the (H ® H), giving |00) as the final state |¢5). When we measure the final
state, we will get 00 with 100% certainty, indicating that f is constant.

e If f is the “constant 17 function, f(x) = 1 for all values of x, which makes all of the (—1)7®)
coefficients equal to —1:

) = £(= 100) = [o1) — 10) — [11))

This state is equivalent to (H ® H)(—|00)). Applying H ® H to this state gives —|00) as
the final state |¢5). When we measure the final state, we will get 00 with 100% certainty,
indicating that f is constant.

e If f is the balanced function 00 — 1,01 — 1,10 — 0,11 — 0, we get:
) = £(— 100) = 01) + 10) + [11))

This state is equivalent to (H ® H)(—|[10)). Applying H ® H to this state gives —|10) as
the final state |p5). When we measure the final state, we will get 10 with 100% certainty,
indicating that f is balanced (since the outcome wasn’t 00).

e If f is the balanced function 00 — 0,01 — 1,10 — 0,11 — 1, we get:
) = (= 100) = [01) + 10) — [11))

This state is equivalent to (H ® H)|01). Applying H ® H to this state gives |01) as the final
state |p5). When we measure the final state, we will get 01 with 100% certainty, indicating
that f is balanced (since the outcome wasn’t 00).

e If f is the unbalanced function 00 — 0,01 — 0,10 — 0,11 — 1, we get:

1) = 3 (+100) +01) + J10) — 1))

Applying H® H to this state just gives us back the same state ($[00)+ 1|01) + 3[10) — 3|11))
for the final state |¢5). When we measure the final state, we will get one of 00, 01, 10, 11
with 25% probability, but the outcome won’t convey any useful information about f.

