Exercises 6.1.1, 6.1.2, and 6.1.3 (pages 172-173)

Here are all the possible binary functions from {0,1} to {0,1}, with their corresponding matrix
representations shown below:

0—0
1—0

01
11

00
11

0—1
1—0

11 0 0 10 01
e e S R
Not all of these functions are reversible. This is because some of the matrices are not unitary. The
condition for a unitary matrix is UUT = UTU = I, but only F, and Fj satisfy this property:

fo: f1 fo f3:

= [-
=[-8
we=f 2 - 9
e = [[-[U

Therefore, instead of trying to use the above matrices as quantum gates, we will construct slightly
more complicated versions of them that are all unitary, and hence reversible. The corresponding
gates will take two qubits as input: |z) and |y), and output the qubits |z) (unchanged) and
ly @ f(x)). These new 4 x 4 matrices will operate on 2 qubits at a time, by taking as input a
4-dimensional state vector representing both qubits together, and producing a new 4-dimensional
state vector as output. Each gate U, will transform |z) and |y) to |2’) and |y’) according to the
truth tables below, with the corresponding matrices shown to the right:

Up: z gy y D fo(z) 'y 00 01 10 11
0 0|0 fo(0)=080]0 O ool 1 0 0 017
0 1|1 fr0)=100]0 1 Uhb=90110 1 0 0
1 0|0 fo(l)=0®0|1 O 10l 0 0 1 0
1 1|1 fo()=1®0| 1 1 1110 o o 1
Upi: z y y® fi(z) 'y 00 01 10 11
0 0|0® f1(0)=0®1]0 1 00T 0 1 0 0]
0 1|1®fi(0)=1d1]0 0 Ur=9091l1 0o 0o o0
1 0j0®fi(l)=0@1 |1 1 1000 0 0 1
1 1|lefil)=1®1|1 O 1110 o 1 0

~

~

Uy z y y D fo(z) y
0 0(/0©f(00=0@0]0 0
0 1|1®f0)=1®0|0 1
1 0|0@f(l)=0®1|1 1
1 1{1efl)=101|1 0
Us: z y y @ f3(z) 'y
0 0[/0a@fz(0)=0@1[0 1
0 1|1@f0)=101]0 0
1 0|0@fz3(1)=0®0| 1 O
1 1{1efpl)=100|1 1

U =

Us =

00
01
10
11

00
01
10
11

00 01 10 11

1 0

o O = O

0 0
0 0
0 1

o= O O

00 01 10 11

0 0

o O o

1 0
0 1
0 0

— o O O

Each of these matrices has the property U, = U,,, meaning they are all hermitian. Furthermore,
each one is unitary, since UnT acts as U,’s inverse: UnUnT = UnTUn = I. Hence, each one is

reversible and its own inverse:

UsUot = UTUy = UyU,

uU =0ty = ooy

UsUst = UsTU, = UL U,

UsUst = UsTUs = UsUs

===

' o~ o

===

O O = O

O O = O o O O o O = O

OO O

_ o O O _ o O O o= O O

o = O O

o O = O o O O o O = O

o O O

_ o O O _ o O O o = O O

O = O O

1000
0100
00101
0 0 0 1]
10 0 0]
0100
00101
0 0 0 1]
10 0 0]
0100
0010 1
0 0 0 1]
10 0 0]
0100
00101
0 0 0 1]

For each of the corresponding gates, if we hold the y input fixed at 0 and ignore the 2’ output,
focusing only on how the x input is transformed into the 3/ output, we get the following behaviors,

which match the functions fy, fi1, fo, and fs:

/

Up: 0 fo(z) Yy
0/0@ fo(0)=0@0] 0
1{0®fo(1)=0®0] 0

Uy 0® fa(x) y
0[0df(0)=050]0
1103 f(l)=031|1

Ui: z 0 fi(z) y
0l0@fA(0)=0a1] 1
1|0@fA(l)=0@1 | 1

Us: w 0& f3(z) y
0l0@fz(000=001]1
1{0@f1)=0®0] 0

Deutsch’s algorithm (standard version)

o) —#]
Uy
1) @
| %) K2y |2y %)
lpo) = [0) ® [1) o

1 1
lp1) = H|0) ® H|1) = (%|0>+ ;§yl>) ® (ﬁ\m —%ID) = [fﬁ] ® [Vf
1 IRV

—
Il
|
Nl= Nl— o= N

100 of [3 :
010 of -2 _1 1 1
Uolr) = f = f = \? ® \f =+H|0) ® H|1) (constant)
001 0[] 2 : NG -
0o o0 o0 1] [-3] |-}
0 1 0 of [3] [-3]
100 0|3 ! = 4=
Uiler) = f = i = j ® f = —H|0) ® H|1) (constant)
000 1]] 2 —i - =
0010 -3 |3
100 o] [L] T 3]
010 0]][-3 -1 + +
2 2
Uslpr) = A= 1514194 =+H|l)® H|1) (balanced)
000 1]] 2 -1 = =L
00 10| |-3] | 3]
[0 1 0 o] [1] [-1]
100 0|3 ! NG NG
2 2
Uslp1) = =1 1= 12 ® _f =—H|l)® H|1) (balanced)
001 0[] 42 : NG ~
0 0 0 1| [-3] |-3]

+ H|0) ® H|1) if f is constant

In general, =U =
g |p2) = Uslen) {i H|1)® H|1) if f is balanced

The first qubit of |p2) will be in one of the states +=H|0) or £H|1), in which the component
amplitudes are all :I:%. Therefore, measuring this qubit will not provide any useful information,

because the probability of obtaining |0) or |1) is £ in all cases. However, since the H operator is

unitary and hermitian, applying an H gate to =H|0) will give H(:I:H|O>) = +HH|0) = £[|0), and
likewise applying it to +H|1) will give +|1):

1 1
2 V2
_% =1 1 1
(Ho DUolpr)= | H®I = vl o ® _/f = +/0) ® H|1) (constant)
1 0 o] |
1
i I L=zl L0
_ 11 SEE
2 V2
1 1 1 1
(Ho DUilp)= | H®I ? = |2 = ® _/f = —|0) ® H|1) (constant)
-1 0 0 =
_ Izl [o]
_ . o
§ 0
_% 0 0 %
(Ho DUslpr) = | HOI =1 =125 =+HneHL) (balanced)
-2 |v| W [:
1 =1
L 1L 2] L2
_ 11 o
-1 0
RORBEE
(H® DUslpr) = | H®I =1 = ® ||| =-11)®H|[1) (balanced)
2 Y22 L S R RV
1 1
L 1L 2] Lv2.]

+10) ® H|1) if f is constant

In general, =(H&®I)U =
g lps3) = (Wrler) {im ® H|1) if f is balanced

We can now obtain useful information by measuring the first qubit of |¢3). If we get |0), that
means f is constant; if we get |1), that means f is balanced. Thus with only a single application
of Uy we can determine with certainty whether f is constant or balanced, whereas with a classical
computer we would have had to evaluate f twice.

Summary:

1. (H® I)Us(H @ H)|01)

2. Measure first qubit: |0) = f is constant, |1) = f is balanced

Deutsch’s algorithm (Marshall’s variation)

o —H]
Uy
1) [H] 1)

o

) @)

We can apply H to both output qubits instead of just the top one, although this is not necessary.
Doing so turns the bottom qubit H|1) back into |1). The final output state |p3) is then:

3 0
—1 1 1 0
(H® H)Uplpr) = | H®H = 0 = 0 ® = +|0) ® |1) (constant)
2
I I l=2) L9}
_ - __%_ o]
3 —1 -1 0
(H® H)Uilp1) = HeH = = ® =—]0)®|1) (constant)
-1 0 0
I JLa) Lo
i, S %_ 0
-1 0 0 0
(H® H)Us|pr) = | H®H = 0 = . ® =+[1) ® 1) (balanced)
T2
I JLa) Lt
_ - __%_ o]
3 0 0 0
(H® H)Uslpr) = | HOH = = 2| | =-|1)®[1) (balanced)
5 0 —1
2
I IR
+10) ®[1) if f is constant
In general, =(H® H)U =
& Ipa) = (WWilen {:l:\1> ®|1) if f is balanced

Analysis of Deutsch’s algorithm

[%)

%)

Uy
) ly ® f(x))

When |y) is the basis state [0) or |1), applying Uy gives:

o U(l)@10) = |2} @108 f(x)) = |2) @ | ()
(

o Uy(jo) @11) = |2) @ 16 f(2)) = |o) @ ()

When |y) is the superposition state %]0) - %|1>, applying Uy gives:

—=|z) ®]O)) - Uy (*]$> ®]1)) since Uy is a linear operator

since Uy is a linear operator

2@ (510) = L) =lo) @ +(Hl0) - HI) if fz) =0

2)® (511 - 510)) = o) & (L5100 — 1)) i flw) =

which, using some fancy notation, we can write more concisely as:
= |2y @ (-1)/@ (LJ0) - L11))

since (—1)/®) is +1 when f(2) = 0 and —1 when f(z) =

In general, A ® aB = aA ® B, so we can move the sign coefficient (—1)7(*) from the second qubit
to the first qubit, which gives us a general expression for the output of Uy when applied to the
input qubits |x) and %\m - %H):

(1) (5100 i)

Now let’s put the first qubit in the superposition state |z) = —=|0) + %]1) The output becomes:

10 (510 + 5) & (100 -)
= (070 + 195) & (o) - i)

_ ((_1)f(0)\/1§|0> + <_1)f<1>¢1§y1>> ® (;E\m - j§!1>>

The precise state of the first output qubit depends on the behavior of the function f at 0 and 1,
whereas the state of the second output is the same as the second input. Specifically, the first output
qubit is:

%\m + %H) if f is the “constant 0” function
—%|0) — %|1> if f is the “constant 1” function
1O L0y + (=)D L7y =
- ﬁ’ A \/i| > %|O> — %H} if f is the identity function
—%]0) + %\D if fis the NOT function

which we can rewrite in the equivalent form below:

if f is the “constant 0” function

if f is the “constant 1”7 function

state of the first output qubit =

if f is the NOT function

+ (12!0> — 12\1>> if f is the identity function

We now apply a final Hadamard gate H to the first output qubit. Since H is a linear operator,
H(a|y)) = aH(]1))), which means that the + signs remain the same:

+]0) if f is the “constant 0” function
—[0) if f is the “constant 1” function

state of the first output qubit =
+[1) if f is the identity function

—|1) if f is the NOT function

Now when we measure the first output qubit, we will get 0 with 100% certainty if f is a constant
function, or 1 with 100% certainty if f is a balanced function (identity or NOT). We can thus
determine, using just one application of Uy, whether the function f is constant or balanced. With
a classical computer, we would need to evaluate f twice in order to determine this.

