
Quantum state vectors

Suppose our state vector is | i = [2 � i, 2i, 1 � i, 1,�2i, 2]T . How many basis states are there?

Calculate the probabilities of finding the system in each basis state.

This is a 6-dimensional system, so there are 6 basis states, which we can label |b0i through |b5i.
The squared magnitudes of the amplitudes of | i are:

|2� i|2 = 5, |2i|2 = 4, |1� i|2 = 2, |1|2 = 1, |� 2i|2 = 4, and |2|2 = 4

and the sum of the squared magnitudes
P

|ci|2 = 5 + 4 + 2 + 1 + 4 + 4 = 20

An alternative way of computing the sum of the squared magnitudes is to use the inner product:
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= (2 + i)(2� i) + (�2i)(2i) + (1 + i)(1� i) + (1)(1) + (2i)(�2i) + (2)(2)

= 5 + 4 + 2 + 1 + 4 + 4 = 20

which is the same thing as the norm squared, since k k =

p
h | i

So the probabilities of finding the system, respectively, in each basis state when the system is

observed are:

P (b0) =
5
20 , P (b1) =

4
20 , P (b2) =

2
20 , P (b3) =

1
20 , P (b4) =

4
20 , and P (b5) =

4
20

which, reduced to lowest terms, gives:

P (b0) =
1
4 , P (b1) =

1
5 , P (b2) =

1
10 , P (b3) =

1
20 , P (b4) =

1
5 , and P (b5) =

1
5

In general, given any state vector | i expressed as a linear combination of the basis states |bii with
amplitudes ci:

| i = c0 |b0i+ c1 |b1i+ . . .+ cn�1 |bn�1i

we can calculate the probability that the system, when observed, will be found in basis state bi:

P (bi) =
|ci|2

|c0|2 + |c1|2 + . . .+ |cn�1|2
=

|ci|2P
|ci|2

=
|ci|2

h | i



Why size does not matter

Suppose we start with a “bigger” version of our state vector:

7| i = [14� 7i, 14i, 7� 7i, 7,�14i, 14]T

What are the probabilities of observing each basis state now?

The squared magnitudes are now: |14 � 7i|2 = 245, |14i|2 = 196, |7 � 7i|2 = 98, |7|2 = 49,

|� 14i|2 = 196, and |14|2 = 196, so the sum of the squared magnitudes is 245 + 196 + 98 + 49 +

196 + 196 = 980, which is 7
2
times the previous sum of 20. Thus, the probabilities are:

P (b0) =
245
980 , P (b1) =

196
980 , P (b2) =

98
980 , P (b3) =

49
980 , P (b4) =

196
980 , and P (b5) =

196
980

which, when reduced to lowest terms, gives:

P (b0) =
1
4 , P (b1) =

1
5 , P (b2) =

1
10 , P (b3) =

1
20 , P (b4) =

1
5 , and P (b5) =

1
5

which are exactly the same probabilities as before. So scaling the state vector has no e↵ect on

the observed probabilities. In general, all vectors c| i for any c 2 C represent exactly the same
physical quantum state, as far as we the observers are concerned. So we might as well choose | i to
be normalized, so that k k =

p
h | i = 1, which makes calculating the probabilities much easier:

P (bi) = |ci|2

An equivalent way of calculating the probabilities from a normalized state vector is to compute

|hbi | i|2. Since hbi| is just [0, 0, . . . , 1, . . . , 0], with the single 1 in the ith position, calculating hbi | i
just “grabs” the ith amplitude from | i. We then square its magnitude to obtain the probability

of the system transitioning from | i to |bii when observed.

Normalizing a state vector

We can normalize | i by simply dividing it by its length (norm), which we calculated before as

k k =

p
h | i =

p
20.

So the normalized | 0i = | i
k k =

| ip
h | i

=
[2� i, 2i, 1� i, 1,�2i, 2]Tp
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From this it is easy to calculate the probabilities of observing each basis state. For example:
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Expressing a state vector | i in the eigenbasis of an observable ⌦

Suppose we have an observable ⌦ with eigenvalues �0,�1, . . . ,�n�1 and associated orthonormal
eigenbasis vectors |e0i, |e1i, . . . , |en�1i. We can express any normalized state vector | i “in this
eigenbasis” by writing it explicitly as a linear combination of the basis vectors:

| i = c0|e0i+ c1|e1i+ . . .+ cn�1|en�1i

where the sum of the squared magnitudes |c0|2 + |c1|2 + . . .+ |cn�1|2 = 1.

However, if the state vector | i is written in the conventional way as [z0, z1, . . . , zn�1]T , the zi’s
are generally not the amplitudes of ⌦’s eigenbasis vectors. In fact, the zi’s are the amplitudes
of the standard canonical basis vectors [1, 0, 0, . . . , 0]T , [0, 1, 0, . . . , 0]T , etc. To express | i in the
eigenbasis of ⌦, we first need to compute the amplitudes of the eigenbasis vectors using the inner
product:

c0 = he0 | i
c1 = he1 | i
. . .
cn�1 = hen�1 | i

We can then rewrite the state vector in the eigenbasis as | i = c0|e0i+ c1|e1i+ . . .+ cn�1|en�1i.

The expected value of an observable ⌦ in a state | i

Since the |eii’s are eigenvectors of ⌦, applying ⌦ to each of them gives ⌦|eii = �i|eii. Therefore:

⌦| i = ⌦(c0|e0i+ c1|e1i+ . . .+ cn�1|en�1i) by expanding | i into its components
= ⌦c0|e0i+ ⌦c1|e1i+ . . .+ ⌦cn�1|en�1i since ⌦ is a linear operator
= c0⌦|e0i+ c1⌦|e1i+ . . .+ cn�1⌦|en�1i since ⌦ is a linear operator
= c0�0|e0i+ c1�1|e1i+ . . .+ cn�1�n�1|en�1i since the |eii’s are eigenvectors of ⌦

Computing the inner product h |⌦ | i gives:

h |⌦ | i = c0⇤c0�0 + c1⇤c1�1 + . . .+ cn�1
⇤cn�1�n�1 since the amplitudes of h | are ci⇤

= |c0|2�0 + |c1|2�1 + . . .+ |cn�1|2�n�1 since ci⇤ci = |ci|2

Since the |ci|2 values are each in the range 0–1, and together sum to 1, the above expression is simply
the weighted average of the �i’s, with each �i weighted by its coe�cient |ci|2. The value h |⌦ | i
thus represents the expected value or mean value of the �i’s in the state | i, and is sometimes
abbreviated as h⌦i . In other words, if we repeatedly observe ⌦ in the state | i, we will obtain a
sequence of eigenvalues, the average value of which will approach h |⌦ | i more and more closely
as the number of observations increases.

If | i happens to be an eigenstate, say |eki, then the amplitude of |eki in the expansion of | i is 1,
with all other amplitudes 0, which means that h |⌦ | i reduces to |1|2�k = �k. In other words, the
expected value of observing ⌦ in an eigenstate is exactly that eigenstate’s associated eigenvalue.



In general, writing h�|⌦ | i is equivalent to writing h� |⌦ i, with ⌦ applied to the right side of the
inner product. If ⌦ is a hermitian operator, we can move it to the left side:

h� |⌦ i = �†(⌦ ) by rewriting hA |Bi as A†B
= (�†⌦) by associativity
= (�†⌦†) since ⌦ is hermitian
= (⌦�)† since B†A† is equivalent to (AB)†

= h⌦� | i by rewriting A†B as hA |Bi

So applying a hermitian operator ⌦ to either side of an inner product h� | i yields the same result:

h� |⌦ i = h⌦� | i

In the special case when � =  :

h |⌦ i = h⌦ | i
= h |⌦ i⇤ since hA |Bi = hB |Ai⇤

which implies that h |⌦ i must be real, because it is equal to its own conjugate. This is the
same as h |⌦ | i, the expected (or mean) value of observing ⌦ repeatedly in state | i. Thus the
expected value of an observable is always a real number.

The e↵ect of measurement

If a quantum system is in state | i when we measure an observable ⌦, the result obtained will always
be one of the eigenvalues of ⌦, and the state of the system will jump to one of the eigenstates.
This “transition” is in general nondeterministic, and depends on the transition amplitudes for each
eigenstate, which are just the coe�cients ci in the expansion of | i:

| i = c0|e0i+ c1|e1i+ . . .+ ci|eii+ . . .+ cn�1|en�1i

Since | i is normalized, the probability that the system will transition to eigenstate |eii is just
the squared magnitude |ci|2 of the amplitude ci. However, if | i is instead written in the stan-
dard canonical basis as [z0, z1, . . . , zn�1]T , we first need to change from the canonical basis to the
eigenbasis of ⌦ by computing the amplitudes of the eigenbasis vectors using the inner product:

c0 = he0 | i
c1 = he1 | i
. . .
cn�1 = hen�1 | i

We can then rewrite the state vector in the new eigenbasis as | i = c0|e0i+c1|e1i+ . . .+cn�1|en�1i,
and from there calculate the probability of observing eigenvalue �i as |ci|2 = |hei | i|2.



Example: Spin state |lefti

1. Express the state |lefti in terms of each of the three spin operator eigenbases.

• For operator X, we compute the projection of |lefti onto the eigenvectors of X to find the
amplitudes of |righti and |lefti:
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So |lefti = 0 |righti+ 1 |lefti

• For operator Y , we compute the projection of |lefti onto the eigenvectors of Y to find the
amplitudes of |ini and |outi:
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So |lefti = 1+i
2 |ini+ 1�i
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• For operator Z, we compute the projection of |lefti onto the eigenvectors of Z to find the
amplitudes of |upi and |downi:
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2. What are the probabilities of obtaining +1 or �1 if we measure Z in state |lefti?

• The probability p1 of +1 is the squared magnitude of the amplitude of |upi: | 1p
2
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2

• The probability p2 of �1 is the squared magnitude of the amplitude of |downi: |�1p
2
|2 = 1

2

3. What is the expected value of measuring Z in state |lefti?

• Weighted average of eigenvalues: p1 · �1 + p2 · �2 = 1
2 · (+1) + 1

2 · (�1) = 0
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