
Chapter 2: Review of Linear Algebra

Complex conjugate

Let z = a+ bi. The complex conjugate of z is a� bi and is written z⇤ or z

• geometric interpretation of �z

• geometric interpretation of z⇤

• the conjugate operation z⇤ complements (negates) the phase of z (“the other slice of the 2⇡”)

• zz⇤ = z⇤z = a2 + b2 = |z|2 = ⇢2

• z2 is in general complex, but z⇤z = |z|2 is always real (and non-negative)

• r⇤ = r for all real numbers r

• (x+ y + z + . . .)⇤ = (x⇤ + y⇤ + z⇤ + . . .)

Vectors and vector spaces

flatland

x-ray vision

hypercubes

what is a “vector space”?

• just a collection of elements, which we’ll call “points”

• there is a special element called the “origin”

• a “vector” tells how to reach a particular element starting from the origin

• people often use “vector” and “point” interchangeably

examples of vector spaces

• real vectors in 1-D, 2-D, 3-D, and higher dimensions

• corners of a hypercube

• complex number plane (1-D complex vector space ⌘ 2-D real vector space)

• complex vectors in 2, 3, and higher dimensions

• qubit states (2-D complex vector space ⌘ 4-D real vector space)



visualizing operations on vectors:

• inverse of a vector (negation)

• multiplication by a scalar (positive or negative)

• vector addition

• these operations all behave as expected for commutativity, associativity, and distributivity:
cV = V c, (V1 + V2) + V3 = V1 + (V2 + V3), c(V1 + V2) = cV1 + cV2, etc.

“every complex vector space is also a real vector space” (example 2.2.2, page 35)

An example of a real vector space is the real number line. This is a 1-D real vector space. If
you take any vector from this space and multiply it by any real scalar, the resulting vector is still
“trapped” in the same space. There is no way to jump out of this space by multiplying one of its
elements by a real scalar. But if we were to multiply the real vector 3 by a complex scalar, say i,
we would end up with the vector 3i, which no longer lies “inside” the real number line: in fact, it
is perpendicular to it. Multiplying by i jumps us out of the space. So although the real number
line is a real vector space, it is not a complex vector space.

Now consider the complex plane. This is a 1-D complex vector space. If you take any vector from
this space and multiply it by any complex scalar, the resulting complex vector will still lie in the
plane. You can’t jump out of the plane by multiplying by a complex scalar. So the complex plane
is a complex vector space. But it is also a real vector space, because if you multiply any complex
vector by a real scalar, you’ll still be somewhere in the complex plane.

length (“norm”) of a complex vector kAk =
q
|a0|2 + |a1|2 + |a2|2 =

p
a0⇤a0 + a1⇤a1 + a2⇤a2

example: norm of


3 + 4i
2� i

�
=

p
|3 + 4i|2 + |2� i|2 =

p
(3 + 4i)(3� 4i) + (2� i)(2 + i) =

p
30

norm kAk vs. magnitude |z|

linear combinations of vectors

linear dependence and independence

v1 =


1
2

�
, v2 =


�3
1

�
, and v3 =


�5
11

�
are not linearly independent, because v3 = 4v1 + 3v2

basis vectors

orthogonal basis

orthonormal basis

standard/canonical basis example:


�3
5

�
= �3


1
0

�
+ 5


0
1

�



Bra and ket notation

“ket”: |V i =

2

4
x
y
z

3

5 = [x, y, z]T “bra”: hV | = V † =
⇥
x⇤ y⇤ z⇤

⇤

“bra-ket”: hV1 |V2i

The inner product

Let |Ai =

2

4
a0
a1
a2

3

5 = [a0, a1, a2]T and |Bi =

2

4
b0
b1
b2

3

5 = [b0, b1, b2]T .

hA |Bi = A†B =
⇥
a0⇤ a1⇤ a2⇤

⇤
2

4
b0
b1
b2

3

5 = a0⇤b0 + a1⇤b1 + a2⇤b2

Conjugate * has no e↵ect when vector elements are real

Important property: hA |Bi = hB |Ai⇤

Alternative form of condition (iii) on page 54:

• To move a scalar from the outside to the inside of an inner product:

c · hA |Bi = hc ·A |Bi = hA | c ·Bi

• To move a scalar from the inside to the outside of an inner product:

hc ·A |Bi = c · hA |Bi
hA | c ·Bi = c · hA |Bi

We can compute the norm of A (its size/magnitude) using the inner product:

hA |Ai = a0⇤a0 + a1⇤a1 + a2⇤a2 = |a0|2 + |a1|2 + |a2|2 = kAk2

so kAk =
p
hA |Ai

Notation: kAk is typically used for vectors, and |z| for numbers, but they mean the same thing:
the length/size/magnitude of a quantity with “direction”.

Since hA |Bi = hB |Ai⇤, we know that hA |Ai = hA |Ai⇤, which means that hA |Ai must be real.

hA |Bi = 0 means that A and B are orthogonal.



Basis vectors

If {B1, B2, . . . , Bn} is any set of n orthonormal basis vectors, then a vector V can be decomposed
into its basis components by using the inner product to project V onto each of the basis vectors:

V = hB1 |V iB1 + hB2 |V iB2 + . . .+ hBn |V iBn

That is, the inner products give the coe�cients or “amplitudes” of the basis vectors.

Example: consider two di↵erent orthonormal basis sets A and B:

|A1i =

1
0

�
and |A2i =


0
1

�

|B1i =

2

4
1p
2

1p
2

3

5 and |B2i =

2

4
1p
2

� 1p
2

3

5

and a vector V =

2

4
1
2
p
3
2

3

5

The description of V in the “language” of basis set A is expressed as a linear combination of the
building blocks |A1i and |A2i. To calculate the coe�cient or “amplitude” of each building block,
we use the inner product:

amplitude of |A1i = hA1 |V i =
⇥
1⇤ 0⇤

⇤
2

4
1
2
p
3
2

3

5 = 1 · 1
2 + 0 ·

p
3
2 = 1

2

amplitude of |A2i = hA2 |V i =
⇥
0⇤ 1⇤

⇤
2

4
1
2
p
3
2

3

5 = 0 · 1
2 + 1 ·

p
3
2 =

p
3
2

so V = 1
2 |A1i+

p
3
2 |A2i

= 0.5 |A1i+ 0.866 |A2i

To express V in the language of basis set B, we calculate B’s amplitudes in the same way:

amplitude of |B1i = hB1 |V i =
h

1p
2

⇤ 1p
2

⇤i
2

4
1
2
p
3
2

3

5 = 1p
2
· 1
2 + 1p

2
·
p
3
2 =

1 +
p
3

2
p
2

= 0.966

amplitude of |B2i = hB2 |V i =
h

1p
2

⇤ � 1p
2

⇤i
2

4
1
2
p
3
2

3

5 = 1p
2
· 1
2 � 1p

2
·
p
3
2 =

1�
p
3

2
p
2

= �0.259

so V = 0.966 |B1i � 0.259 |B2i



Example: RGB colors

Imagine a 3-D real vector space with elements [r, g, b]T , where 0  r  1, 0  g  1, and 0  b  1.

red = [1, 0, 0]T

green = [0, 1, 0]T

blue = [0, 0, 1]T

magenta = [1, 0, 1]T

yellow = [1, 1, 0]T

white = [1, 1, 1]T

black = [0, 0, 0]T

gray = [0.5, 0.5, 0.5]T

Basis vectors:

|Ri = red = [1, 0, 0]T

|Gi = green = [0, 1, 0]T

|Bi = blue = [0, 0, 1]T

Arbitrary color vector: V = r|Ri+ g|Gi+ b|Bi

Intensity is the vector length kV k, but suppose we don’t care about intensity, only hue.

RGB “spheramid” restricts color intensity to kV k = 1, so that |r|2 + |g|2 + |b|2 = 1

So no black or white allowed! Only red, green, blue, and linear combinations thereof. We can still
make magenta, yellow, orange, etc. (and even gray), but they just won’t be as intense as they were
in the RGB cube.

red = [1, 0, 0]T

green = [0, 1, 0]T

blue = [0, 0, 1]T

magenta = [ 1p
2
, 0, 1p

2
]T

yellow = [ 1p
2
, 1p

2
, 0]T

cyan = [0, 1p
2
, 1p

2
]T

gray = [ 1p
3
, 1p

3
, 1p

3
]T

turquoise = [0.18, 0.72, 0.67]T = 0.18 |Ri+ 0.72 |Gi+ 0.67 |Bi



Combining two vector spaces with the Cartesian product ⇥

• Elements of vector space A specify my shirt color. A is an “RGB spheramid” space (18 of the
surface of a 3-D sphere), with basis vectors |R1i, |G1i, and |B1i

2

4
a0
a1
a2

3

5 =

2

64
amount of |R1i
amount of |G1i
amount of |B1i

3

75 Example:

2

4
0.18
0.72
0.67

3

5 = 0.18 |R1i+ 0.72 |G1i+ 0.67 |B1i

• Elements of vector space B specify your shirt color. B is a separate “RGB spheramid” space,
with basis vectors |R2i, |G2i, and |B2i

2

4
b0
b1
b2

3

5 =

2

64
amount of |R2i
amount of |G2i
amount of |B2i

3

75 Example:

2

4
0.50
0.84
0.22

3

5 = 0.50 |R2i+ 0.84 |G2i+ 0.22 |B2i

The Cartesian product or cross product A ⇥ B (read “A cross B”) represents the combination of
my shirt color and your shirt color together. It is a 6-D real vector space. In general, if A is an
m-dimensional space and B is an n-dimensional space, the combined vector space A ⇥ B is an
(m+ n)-dimensional space.

2

4
a0
a1
a2

3

5⇥

2

4
b0
b1
b2

3

5 =

2

6666664

a0
a1
a2
b0
b1
b2

3

7777775
=

2

6666666664

amount of |R1i
amount of |G1i
amount of |B1i
amount of |R2i
amount of |G2i
amount of |B2i

3

7777777775

=

2

6666664

0.18
0.72
0.67
0.50
0.84
0.22

3

7777775
=

2

4
0.18
0.72
0.67

3

5⇥

2

4
0.50
0.84
0.22

3

5

This vector, like all vectors from A⇥B, can be trivially decomposed into the Cartesian product of
a vector from A and a vector from B. Notice that the length of the vector is not equal to 1.

Both wearing red = [1, 0, 0, 1, 0, 0]T

Both wearing green = [0, 1, 0, 0, 1, 0]T

Both wearing blue = [0, 0, 1, 0, 0, 1]T

Me wearing red and you wearing green = [1, 0, 0, 0, 1, 0]T

Both wearing magenta = [0.71, 0, 0.71, 0.71, 0, 0.71]T

Both wearing gray = [0.58, 0.58, 0.58, 0.58, 0.58, 0.58]T

Me wearing yellow and you wearing red = [0.71, 0.71, 0, 1, 0, 0]T

Me wearing yellow and you wearing gray = [0.71, 0.71, 0, 0.58, 0.58, 0.58]T

. . .etc.



Combining two vector spaces with the tensor product ⌦

The tensor product A⌦ B is a 9-dimensional real vector space. The tips of the 9 basis vectors all
touch the curved 8-D “surface” of a 9-D hypersphere. This surface is 1

512 the total surface of the
hypersphere.

In general, if A is an m-dimensional space and B is an n-dimensional space, the combined vector
space A⌦B is (m · n)-dimensional.

2

4
a0
a1
a2

3

5⌦

2

4
b0
b1
b2

3

5 =

2

6666666666664

a0b0
a0b1
a0b2
a1b0
a1b1
a1b2
a2b0
a2b1
a2b2

3

7777777777775

=

2

666666666666666664

joint amount of |R1i and |R2i
joint amount of |R1i and |G2i
joint amount of |R1i and |B2i
joint amount of |G1i and |R2i
joint amount of |G1i and |G2i
joint amount of |G1i and |B2i
joint amount of |B1i and |R2i
joint amount of |B1i and |G2i
joint amount of |B1i and |B2i

3

777777777777777775

=

2

6666666666664

0.09
0.15
0.04
0.36
0.60
0.16
0.34
0.56
0.15

3

7777777777775

=

2

4
0.18
0.72
0.67

3

5⌦

2

4
0.50
0.84
0.22

3

5

This particular vector is separable, because it can be decomposed into the tensor product of a vector
from A and a vector from B. However, most vectors from A⌦B cannot be decomposed in this way.
Such vectors are entangled. The 9-dimensional space A⌦B is vastly larger than the 6-dimensional
space A⇥B. This is where the quantum phenomenon of entanglement comes from.

Both wearing red = [1, 0, 0, 0, 0, 0, 0, 0, 0]T

Both wearing green = [0, 0, 0, 0, 1, 0, 0, 0, 0]T

Both wearing blue = [0, 0, 0, 0, 0, 0, 0, 0, 1]T

Me wearing red and you wearing green = [0, 1, 0, 0, 0, 0, 0, 0, 0]T

Both wearing magenta = [0.5, 0, 0.5, 0, 0, 0, 0.5, 0, 0.5]T

Both wearing gray = [0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33, 0.33]T

Me wearing yellow and you wearing red = [0.71, 0, 0, 0.71, 0, 0, 0, 0, 0]T

Me wearing yellow and you wearing gray = [0.41, 0.41, 0.41, 0.41, 0.41, 0.41, 0, 0, 0]T

. . .etc.

Notice that the length of a vector from A⌦B is always equal to 1.



Rules for tensor products

• |Ai ⌦ |Bi can be abbreviated as |ABi

• ⌦ does not commute: |Ai ⌦ |Bi 6= |Bi ⌦ |Ai

• ⌦ distributes over +:

|Ai ⌦
✓
|Bi+ |Ci

◆
= |Ai ⌦ |Bi+ |Ai ⌦ |Ci

✓
|Ai+ |Bi

◆
⌦ |Ci = |Ai ⌦ |Ci+ |Bi ⌦ |Ci

• scalar multiplication “semi-distributes” over ⌦:

↵

✓
|Ai ⌦ |Bi

◆
= ↵|Ai ⌦ |Bi = |Ai ⌦ ↵|Bi

Example: a separable state

“me wearing yellow” ⌦ “you wearing red”

=

2

4
0.71
0.71
0

3

5⌦

2

4
1
0
0

3

5

=

0

@0.71

2

4
1
0
0

3

5+ 0.71

2

4
0
1
0

3

5

1

A⌦

2

4
1
0
0

3

5

=

✓
0.71 “me wearing red” + 0.71 “me wearing green”

◆
⌦ “you wearing red”

=

✓
0.71 |R1i+ 0.71 |G1i

◆
⌦ |R2i

= 0.71 |R1i ⌦ |R2i+ 0.71 |G1i ⌦ |R2i

= 0.71

✓
|R1i ⌦ |R2i

◆
+ 0.71

✓
|G1i ⌦ |R2i

◆

= 0.71 |R1R2i+ 0.71 |G1R2i

= 0.71 “me wearing red and you wearing red” + 0.71 “me wearing green and you wearing red”

= 0.71

0

@

2

4
1
0
0

3

5⌦

2

4
1
0
0

3

5

1

A+ 0.71

0

@

2

4
0
1
0

3

5⌦

2

4
1
0
0

3

5

1

A

= [0.71, 0, 0, 0.71, 0, 0, 0, 0, 0]T



Example: an entangled state

2

4
a0
a1
a2

3

5⌦

2

4
b0
b1
b2

3

5 =

2

6666666666664

a0b0
a0b1
a0b2
a1b0
a1b1
a1b2
a2b0
a2b1
a2b2

3

7777777777775

=

2

66666666666664

1p
2
0
0
0
0
0
0
0
1p
2

3

77777777777775

=

2

6666666666664

0.71
0
0
0
0
0
0
0

0.71

3

7777777777775

a0b0 = 0.71, so a0 cannot be 0, and a2b2 = 0.71, so b2 cannot be 0.

But a0b2 = 0, so at least one of a0 and b2 must be 0. This is a contradiction, so there is no way to
choose values to make the above relationship true, and thus no way to write this 9-D state as the
tensor product of two 3-D states.

Thus, the state [0.71, 0, 0, 0, 0, 0, 0, 0, 0.71]T is entangled.

It can, however, be written as a linear combination of tensor products of 3-D states, since in general
any 9-D state can be expressed as a combination of basis states:

↵

0

@

2

4
1
0
0

3

5⌦

2

4
1
0
0

3

5

1

A+ �

0

@

2

4
0
0
1

3

5⌦

2

4
0
0
1

3

5

1

A = 0.71

2

6666666666664

1
0
0
0
0
0
0
0
0

3

7777777777775

+0.71

2

6666666666664

0
0
0
0
0
0
0
0
1

3

7777777777775

= 0.71 |R1R2i+0.71 |B1B2i =

2

6666666666664

0.71
0
0
0
0
0
0
0

0.71

3

7777777777775

This entangled state is a linear combination of the 9-D basis states “both of us wearing red”
and “both of us wearing blue”, with amplitudes 0.71 and 0.71. Likewise, the separable state
[0.71, 0, 0, 0.71, 0, 0, 0, 0, 0]T — “me wearing yellow and you wearing red” — is a linear combination
of the 9-D basis states “both of us wearing red” and “me wearing green and you wearing red”:

↵

0

@

2

4
1
0
0

3

5⌦

2

4
1
0
0

3

5

1

A+�

0

@

2

4
0
1
0

3

5⌦

2

4
1
0
0

3

5

1

A = 0.71

2

6666666666664

1
0
0
0
0
0
0
0
0

3

7777777777775

+0.71

2

6666666666664

0
0
0
1
0
0
0
0
0

3

7777777777775

= 0.71 |R1R2i+0.71 |G1R2i =

2

6666666666664

0.71
0
0

0.71
0
0
0
0
0

3

7777777777775



Matrices

formal structure

• dimensions of an M ⇥N matrix

• 0-based indexing of elements by row and column number

matrices as operations on vectors

• we will almost always use square matrices

• square matrices of complex numbers represent (1) operations on quantum systems,
and (2) observable properties of quantum systems

• how to multiply an M ⇥N matrix and an N -vector

• geometric interpretation

• examples

potential point of confusion: we might think of a length-N vector as a “1-dimensional array”
in a programming language, but it represents an N-dimensional quantum system. Likewise, we
might think of an N ⇥N matrix as a “2-dimensional array”, but it represents an operation on an
N-dimensional quantum system.

identity matrix

transforming and combining matrices

• addition

• scalar multiplication

• matrix multiplication

• matrix multiplication does not commute (source of Heisenberg’s uncertainty principle)

• transpose MT

• conjugate M⇤ = M

• adjoint M † = (MT )⇤ = (M⇤)T

important properties:

• (AB)⇤ = A⇤B⇤

• (AB)T = BTAT

• (AB)† = B†A†



Matrix multiplication

2

6664

1 2 3

4 5 6

7 8 9

3

7775

2

6664

10

11

12

3

7775
=

2

664

1 · 10 + 2 · 11 + 3 · 12

4 · 10 + 5 · 11 + 6 · 12

7 · 10 + 8 · 11 + 9 · 12

3

775 =

2

664

10 + 22 + 36

40 + 55 + 72

70 + 88 + 108

3

775 =

2

664

68

167

266

3

775

2

4
2 �i

3i 1

3

5

2

64
1 + i

1� i

3

75 =

2

4
2(1 + i) + (�i)(1� i)

3i(1 + i) + 1(1� i)

3

5 =

2

4
2 + 2i� i� 1

3i� 3 + 1� i

3

5 =

2

4
1 + i

�2 + 2i

3

5

Linearity

if you have two vectors V1 and V2, and an operation M :

you can combine the vectors first and then apply the operation to the resulting vector, or you can
apply the operation first to each vector individually, and then combine the resulting vectors:

M(V1 + V2) = MV1 +MV2

you can scale the vector first and then apply the operation to the resulting vector, or you can apply
the operation first and then scale the resulting vector:

M(cV ) = c(MV )

Eigenvectors and eigenvalues

Example of a matrix A =


4 �1
2 1

�
operating on various vectors:


4 �1
2 1

� 
2
3

�
=


5
7

�


4 �1
2 1

� 
�1
2

�
=


�6
0

�


4 �1
2 1

� 
�1
�1

�
=


�3
�3

�
= 3


�1
�1

� 
�1
�1

�
is an eigenvector of A with eigenvalue 3


4 �1
2 1

� 
0.5
1

�
=


1
2

�
= 2


0.5
1

� 
0.5
1

�
is an eigenvector of A with eigenvalue 2


4 �1
2 1

� 
5
10

�
=


10
20

�
= 2


5
10

� 
5
10

�
is an eigenvector of A with eigenvalue 2


