
Assignment 20
Due by class time Tuesday, December 6

Here is the standard mathematical definition of exponentiation, for integer exponents x ≥ 0:

ax =

{
1 if x = 0

a× ax−1 if x > 0

According to this definition, computing ax requires x multiplication operations. For example:
a3 = a× a2 = a× a× a1 = a× a× a× 1. However, we can compute ax much more efficiently
by rewriting the above definition as follows:

ax =


1 if x = 0

(a
x
2 )2 if x > 0 and x is even

a× (ax−1) if x > 0 and x is odd

With this approach, computing a1000 requires only 15 multiplications, instead of 1000. In
general, the number of multiplications needed by the second approach is proportional to the
logarithm of x, which results in many fewer multiplications performed.

1. Write a recursive Python function called power(a, x) that computes (and returns) the value
ax using the second approach. A simple way to find out how many multiplications occur is
to just put in a print("times") statement wherever a multiplication or squaring operation
occurs in the code. For example, your output should look something like this:

>>> print(power(2, 100))

times

times

times

times

times

times

times

times

times

1267650600228229401496703205376

2. Define a new version of your exponentiation function called powermod(a, x, M ), which
takes an extra parameter M called the modulus. Instead of computing ax, your function
should compute (and return) the value ax mod M , where p mod q is the remainder obtained
when dividing p by q, which in Python can be written as p % q. Try to write your function
so that it keeps all intermediate products within the range 0 to M − 1, instead of computing
the full value of ax first and then reducing it to the range 0 to M − 1. See pages 205-207 of
the textbook for more information about modular arithmetic. Examples:

powermod(2, 3, 9) => 8

powermod(2, 3, 5) => 3

powermod(3, 3, 25) => 2

powermod(2, 100, 17) => 16

powermod(24, 76, 371) => 333

3. Read section 6.5 of Quantum Computing for Computer Scientists (pages 204–218).


