Assignment 20

Due by class time Tuesday, December 6

Here is the standard mathematical definition of exponentiation, for integer exponents $x \geq 0$:
$a^{x}= \begin{cases}1 & \text { if } x=0 \\ a \times a^{x-1} & \text { if } x>0\end{cases}$
According to this definition, computing a^{x} requires x multiplication operations. For example: $a^{3}=a \times a^{2}=a \times a \times a^{1}=a \times a \times a \times 1$. However, we can compute a^{x} much more efficiently by rewriting the above definition as follows:
$a^{x}= \begin{cases}1 & \text { if } x=0 \\ \left(a^{\frac{x}{2}}\right)^{2} & \text { if } x>0 \text { and } x \text { is even } \\ a \times\left(a^{x-1}\right) & \text { if } x>0 \text { and } x \text { is odd }\end{cases}$
With this approach, computing a^{1000} requires only 15 multiplications, instead of 1000 . In general, the number of multiplications needed by the second approach is proportional to the logarithm of x, which results in many fewer multiplications performed.

1. Write a recursive Python function called power $(\boldsymbol{a}, \boldsymbol{x})$ that computes (and returns) the value a^{x} using the second approach. A simple way to find out how many multiplications occur is to just put in a print("times") statement wherever a multiplication or squaring operation occurs in the code. For example, your output should look something like this:
```
>>> print(power(2, 100))
times
times
times
times
times
times
times
times
times
1267650600228229401496703205376
```

2. Define a new version of your exponentiation function called powermod $(\boldsymbol{a}, \boldsymbol{x}, \boldsymbol{M})$, which takes an extra parameter M called the modulus. Instead of computing a^{x}, your function should compute (and return) the value $a^{x} \bmod M$, where $p \bmod q$ is the remainder obtained when dividing p by q, which in Python can be written as $\mathrm{p} \% \mathrm{q}$. Try to write your function so that it keeps all intermediate products within the range 0 to $M-1$, instead of computing the full value of a^{x} first and then reducing it to the range 0 to $M-1$. See pages 205-207 of the textbook for more information about modular arithmetic. Examples:
```
powermod(2, 3, 9) => 8
powermod(2, 3, 5) => 3
powermod(3, 3, 25) => 2
powermod(2, 100, 17) => 16
powermod(24, 76, 371) => 333
```

3. Read section 6.5 of Quantum Computing for Computer Scientists (pages 204-218).
