Assignment 12

Due by class time Tuesday, November 1

- 0. Read sections 5.1 and 5.2 of Quantum Computing for Computer Scientists (pages 138–151).
- 1. Suppose we have a 2-qubit register in state $\frac{1}{\sqrt{2}}|00\rangle \frac{1}{\sqrt{6}}|01\rangle + \frac{i}{\sqrt{3}}|11\rangle$.
 - (a) Write this state in the form of a column vector.
 - (b) If we measure both qubits, what are the probabilities of obtaining as the outcome of the measurement 00, 01, 10, or 11, respectively? Fill in the table below accordingly:

outcome	probability
00	
01	
10	
11	

2. Complete the truth table for the logic circuit below, showing the output values of c and d for each combination of input values a and b:

3. Complete the truth table for the logic circuit below, showing the values indicated in each column for each combination of input values **a** and **b**:

4. Complete the truth table for the logic circuit below, showing the values indicated in each column for each combination of input values a, b, and c:

а	b	С	NOT b	NOT c	(NOT b) AND (NOT c)	circuit output
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

5. The truth table for NOR is given below. Show that NOR, like NAND, is a universal logic gate. Hint: show how to make NOT and AND (and thus NAND) gates using only NOR gates.

а	b	a NOR b
0	0	1
0	1	0
1	0	0
1	1	0
$ \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array} $	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array} $	1 0 0 0