Assignment 9

Due by class time Thursday, October 13

1. Write a Python program called showVectors (\boldsymbol{n}) that takes an integer $n \geq 1$ as input and prints out all 2^{n} binary vectors of dimension n, in binary order, one vector per line. For example, if $n=2$, your program should print out $[0,0],[0,1],[1,0]$, and $[1,1]$, in that order. For example:
```
>>> showVectors(2)
[0, 0]
[0, 1]
[1, 0]
[1, 1]
>>> showVectors(3)
[0, 0, 0]
[0, 0, 1]
[0, 1, 0]
[0, 1, 1]
[1, 0, 0]
[1, 0, 1]
[1, 1, 0]
[1, 1, 1]
```

2. Now let the dimensionality of vector space A be any integer $m \geq 1$ and the dimensionality of vector space B be any integer $n \geq 1$. Write a program called showTensors (m, n, mode) that takes m and n as input parameters and does what we did in class. That is, your program should determine all of the distinct separable and entangled (non-separable) tensor product vectors in $A \otimes B$, and print them out, one vector per line, with the basis vectors highlighted in some way. It should also report the dimensionality of $A \otimes B$, the total number of vectors in $A \otimes B$, the number of separable vectors, and the number of entangled vectors.

The third input parameter (called mode) should be the string "brief" or "all", and should control the amount of output produced by the program. When mode is "brief", the individual vectors should not be printed - only the dimension of $A \otimes B$, the total number of vectors in $A \otimes B$, and the total number of separable and entangled vectors, should be reported. When mode is "all", all information should be reported, including the individual vectors.
IMPORTANT: You should include comments at the top of your code clearly explaining how to run your programs, and a separate demo program that tests showVectors and showTensors on some sample inputs.
For example, the next page shows sample output for the case of $m=3$ and $n=2$:

```
>>> showTensors(3, 2, "all")
Tensor product space is 6-dimensional
22 distinct separable tensor product vectors out of 64 possible
[0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1] <-- basis vector
[0, 0, 0, 0, 1, 0] <-- basis vector
[0, 0, 0, 0, 1, 1]
[1, 1, 1, 1, 1, 1]
42 entangled (non-separable) tensor product vectors out of 64 possible
[0, 0, 0, 1, 1, 0]
[0, 0, 0, 1, 1, 1]
[0, 0, 1, 0, 0, 1]
[0, 0, 1, 0, 1, 1]
[1, 1, 1, 1, 1, 0]
>>> showTensors(3, 2, "brief")
Tensor product space is 6-dimensional
22 distinct separable tensor product vectors out of 64 possible
42 entangled (non-separable) tensor product vectors out of 64 possible
```

3. What happens to the relative proportion of separable and entangled vectors in $A \otimes B$ as the dimensionality of A and B increases? Use your program to fill in the table below for the values of m and n shown. Beware of larger values!

$m \otimes n$	dimensionality	total \# of vectors	\# of separable	\# of entangled
$1 \otimes 2$				
$2 \otimes 2$				
$3 \otimes 2$	6	64	22	42
$2 \otimes 3$				
$3 \otimes 3$				
$4 \otimes 4$				

