Assignment 8

Due by class time Thursday, October 6

1. Calculate the tensor products $\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right] \otimes\left[\begin{array}{c}3 \\ -1 \\ 0 \\ 2\end{array}\right]$ and $\left[\begin{array}{c}3 \\ -1 \\ 0 \\ 2\end{array}\right] \otimes\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]$.

In general, does \otimes commute?
2. The standard RGB triplet for orange is $(255,165,0)$, which, when normalized to length 1 in our 3 -dimensional "RGB spheramid" vector space, is (approximately) the vector $[0.84,0.54,0]^{T}$.
(a) Give the 9 -dimensional tensor product state vector representing both me and you wearing orange shirts.
(b) Give the tensor product state vector representing me wearing an orange shirt and you wearing a blue shirt.
(c) Give the tensor product state vector representing me wearing a blue shirt and you wearing an orange shirt.
3. Suppose our 9 -dimensional tensor product state vector is $\left[0,0,0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0\right]^{T}$. What are the colors of my shirt and your shirt? Justify your answer by showing how this state vector can be written as the tensor product of two 3-dimensional "RGB spheramid" state vectors.
4. Show that in general, if the vectors $V_{1}=\left[a_{0}, a_{1}, a_{2}\right]^{T}$ and $V_{2}=\left[b_{0}, b_{1}, b_{2}\right]^{T}$ are both of length 1 , then their tensor product $V_{1} \otimes V_{2}$ will also be of length 1 .

