Assignment 7

Due by class time Tuesday, October 4

- 0. More practice exercises from the book (NOT to turn in; answers are in Appendix B):
 - (a) Exercise 2.5.1 (page 62) eigenvalues
 - (b) Exercise 2.6.1 (page 63) hermitian matrices
- 1. Consider the matrix $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ and the vectors $|E_1\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{bmatrix}$ and $|E_2\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \end{bmatrix}$.
 - (a) Show that $|E_1\rangle$ and $|E_2\rangle$ are both eigenvectors of Y.
 - (b) What are their associated eigenvalues?
 - (c) Using the inner product, show that these vectors form an *orthonormal basis*. That is, show that they are perpendicular to each other, and that the length of each vector is 1.
- 2. For what values of θ , if any, is the matrix below *hermitian*? Explain.

$\cos \theta$	$-\sin \theta$	0
$\sin \theta$	$\cos heta$	0
0	0	1

- 3. Show that the above matrix is *unitary* for all values of θ . Hint: remember that $\sin^2 \theta + \cos^2 \theta = 1$.
- 4. The standard RGB triplet for orange is (255, 165, 0). What would the corresponding vector for orange be in our "RGB spheramid" vector space? Hint: just normalize it to length 1.
- 5. Imagine a solid 3-dimensional sphere centered on (0,0,0). The portion of the sphere containing points with only non-negative coordinate values (*i.e.*, $x \ge 0$ and $y \ge 0$ and $z \ge 0$) is $\frac{1}{8}$ of the entire sphere. What is the analogous fraction for a 9-dimensional hypersphere? For a *D*-dimensional hypersphere?