Assignment 6

Due by class time Thursday, September 29

- 0. More practice exercises from the book (NOT to turn in; answers are in Appendix B)
 - (a) Exercise 2.4.1 (page 55) inner product
 - (b) Exercise 2.4.5 (page 56) norm of a vector
 - (c) Exercise 2.4.7 (page 57) norm of a vector
- 1. Calculate the inner product $\langle V_1 | V_2 \rangle$ of the vectors $V_1 = \begin{bmatrix} 2+i\\ 1+3i\\ 4 \end{bmatrix}$ and $V_2 = \begin{bmatrix} 2+i\\ -i\\ -2+i \end{bmatrix}$.
- 2. Calculate the norm ||V|| of the vector $V = \begin{bmatrix} 1+i\\ 3-2i\\ 2 \end{bmatrix}$.
- 3. Now calculate $\sqrt{\langle V | V \rangle}$ where V is the vector in the previous exercise, and verify that the result is equal to the norm of V.
- 4. In class, we expressed the vector $V = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$ in two different ways, one in terms of the basis vectors $|A_1\rangle$ and $|A_2\rangle$:

$$V = 0.5 |A_1\rangle + 0.866 |A_2\rangle$$
 where $|A_1\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix}$ and $|A_2\rangle = \begin{bmatrix} 0\\ 1 \end{bmatrix}$

and the other in terms of the basis vectors $|B_1\rangle$ and $|B_2\rangle$:

$$V = 0.966 |B_1\rangle - 0.259 |B_2\rangle \qquad \text{where } |B_1\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \text{ and } |B_2\rangle = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Consider the basis vectors $|C_1\rangle = [-0.809, 0.588]^T$ and $|C_2\rangle = [0.588, 0.809]^T$, where the values 0.809 and 0.588 are approximations of $\cos(\frac{9\pi}{5})$ and $\sin(\frac{4\pi}{5})$, respectively.

- (a) Show that this basis is *orthonormal*. That is, use the inner product to show that the norm of each basis vector is 1, and that the vectors are orthogonal. Hint: two vectors are orthogonal if and only if their inner product is 0.
- (b) Express V in terms of this basis, that is, as a linear combination of $|C_1\rangle$ and $|C_2\rangle$. Show your work.