Assignment 6

Due by class time Thursday, September 29
0. More practice exercises from the book (NOT to turn in; answers are in Appendix B)
(a) Exercise 2.4.1 (page 55) - inner product
(b) Exercise 2.4.5 (page 56) - norm of a vector
(c) Exercise 2.4 .7 (page 57) - norm of a vector

1. Calculate the inner product $\left\langle V_{1} \mid V_{2}\right\rangle$ of the vectors $V_{1}=\left[\begin{array}{c}2+i \\ 1+3 i \\ 4\end{array}\right]$ and $V_{2}=\left[\begin{array}{c}2+i \\ -i \\ -2+i\end{array}\right]$.
2. Calculate the norm $\|V\|$ of the vector $V=\left[\begin{array}{c}1+i \\ 3-2 i \\ 2\end{array}\right]$.
3. Now calculate $\sqrt{\langle V \mid V\rangle}$ where V is the vector in the previous exercise, and verify that the result is equal to the norm of V.
4. In class, we expressed the vector $V=\left[\begin{array}{c}\frac{1}{2} \\ \frac{\sqrt{3}}{2}\end{array}\right]$ in two different ways, one in terms of the basis vectors $\left|A_{1}\right\rangle$ and $\left|A_{2}\right\rangle$:
$V=0.5\left|A_{1}\right\rangle+0.866\left|A_{2}\right\rangle \quad$ where $\left|A_{1}\right\rangle=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left|A_{2}\right\rangle=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
and the other in terms of the basis vectors $\left|B_{1}\right\rangle$ and $\left|B_{2}\right\rangle$:
$V=0.966\left|B_{1}\right\rangle-0.259\left|B_{2}\right\rangle \quad$ where $\left|B_{1}\right\rangle=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ and $\left|B_{2}\right\rangle=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array}\right]$

Consider the basis vectors $\left|C_{1}\right\rangle=[-0.809,0.588]^{T}$ and $\left|C_{2}\right\rangle=[0.588,0.809]^{T}$, where the values 0.809 and 0.588 are approximations of $\cos \left(\frac{9 \pi}{5}\right)$ and $\sin \left(\frac{4 \pi}{5}\right)$, respectively.
(a) Show that this basis is orthonormal. That is, use the inner product to show that the norm of each basis vector is 1 , and that the vectors are orthogonal. Hint: two vectors are orthogonal if and only if their inner product is 0 .
(b) Express V in terms of this basis, that is, as a linear combination of $\left|C_{1}\right\rangle$ and $\left|C_{2}\right\rangle$. Show your work.

