
Assignment 3
Due by class time Tuesday, September 20

Note: in the exercises below, natural (base e) logarithms are written as log(x), whereas logarithms
using a different base b are written as logb(x).

1. Calculate the following natural logarithms. Give three distinct answers for each, including a
real-valued answer if one exists. Express your answers in Cartesian form, and show your work.

(a) log(e5)

(b) log(−e)
(c) log(1√

2
+ 1√

2
i)

2. Calculate the common (base 10) logarithm of−100. Show your work. Hint: logb(x) = log(x)/ log(b)
for any base b.

3. We can even use negative or imaginary bases for logarithms. Perhaps we could call base −10
logarithms “uncommon”, base −e logarithms “unnatural”, and base −i logarithms “unreal”.

(a) Calculate the unnatural logarithm log−e(e). Show your work.

(b) Calculate the uncommon logarithm log−10(−100). Show your work.

(c) Calculate the unreal logarithm log−i(−1). Show your work.

4. Calculate the two square roots of i, and express them in both exponential and Cartesian form,
showing your work. Draw a picture of i and its roots as vectors (arrows) in the complex plane,
as accurately as you can. Hint: first rewrite i in exponential form.

5. Figure 1.6 on page 19 of our textbook Quantum Computing for Computer Scientists isn’t quite
right. Briefly describe why the figure is inaccurate, and explain how to fix it.

6. Figure 1.10 on page 24 is also not right. Briefly describe why the figure is inaccurate, being as
specific as you can, and draw the figure as it should appear.

7. Calculate the sixth-roots of unity (that is, 6
√

1), expressing each root in exponential form (Carte-
sian form is not required), and draw them as vectors (arrows) in the complex plane, as accurately
as you can.

Extra Credit (optional)

8. Write a Python program to compute the phase θ of an arbitrary complex number a + bi. Your
program should accept a and b as input parameters, and return the phase as an angle in radians
from 0 to 2π. You may assume that a and b will never both be 0, but one or the other might be.
Your program will need to check for several special cases to ensure that the result is in the range
0 ≤ θ < 2π, and to avoid division by zero. Note: you are not allowed to use Python’s atan2

function for this exercise; but you may use standard atan. Test your program thoroughly on at
least the following examples:

phase(1, 0) -> 0.0 phase(-1, 0) -> 3.141592

phase(2, 2) -> 0.785398 phase(-2, -2) -> 3.926990

phase(0, 1) -> 1.570796 phase(0, -1) -> 4.712388

phase(-2, 2) -> 2.356194 phase(2, -2) -> 5.497787

