## Assignment 1

Due by class time Tuesday, September 13

For these problems, keep in mind the following mathematical relationships between the four "component parts" of a complex number, which we are calling its real part (a), its imaginary part (b), its magnitude $(\rho)$, and its phase $(\theta)$ :

$$
a=\rho \cos \theta \quad b=\rho \sin \theta \quad \rho=\sqrt{a^{2}+b^{2}} \quad \theta=\tan ^{-1} \frac{b}{a}
$$

We can represent any complex number $z$ either in terms of $a, b, i$, addition, and multiplication, as $z=a+b i$, or equally well in terms of $\rho, \theta, e, i$, multiplication, and exponentiation as $z=\rho e^{\theta i}$.

1. The complex numbers below are written in the Cartesian form $a+b i$. Rewrite each one in the exponential form $\rho e^{\theta i}$, with the phase $\theta$ expressed in radians from 0 to $2 \pi$. Show your work.
(a) $3+4 i$
(b) $-3+4 i$
(c) $-3-4 i$
(d) $3-4 i$
(e) $4 i$
(f) 7
(g) $-i$
(h) $-2+i$
2. The complex numbers below are written in the exponential form $\rho e^{\theta i}$, with the phase $\theta$ in radians. Rewrite each one in the Cartesian form $a+b i$. Show your work.
(a) $4 e^{\pi i / 3}$
(b) $2 \sqrt{3} e^{4 \pi i / 3}$
(c) $5 e^{2 \pi i}$
(d) $5 e^{3 \pi i / 2}$
(e) $3 e^{\pi i / 2}$
(f) $e^{-i}$
(g) $\sqrt{2} e^{\pi i / 4}$
(h) $e^{-2 \pi i / 3}$
3. Calculate $\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)^{100}$. Show your work. Hint: don't do it the hard way!
