Assignment 1

Due by class time Tuesday, September 13

For these problems, keep in mind the following mathematical relationships between the four "component parts" of a complex number, which we are calling its *real part* (a), its *imaginary part* (b), its *magnitude* (ρ) , and its *phase* (θ) :

 $a = \rho \cos \theta$ $b = \rho \sin \theta$ $\rho = \sqrt{a^2 + b^2}$ $\theta = \tan^{-1} \frac{b}{a}$

We can represent any complex number z either in terms of a, b, i, addition, and multiplication, as z = a + bi, or equally well in terms of ρ , θ , e, i, multiplication, and exponentiation as $z = \rho e^{\theta i}$.

- 1. The complex numbers below are written in the Cartesian form a + bi. Rewrite each one in the exponential form $\rho e^{\theta i}$, with the phase θ expressed in radians from 0 to 2π . Show your work.
 - (a) 3 + 4i
 - (b) -3 + 4i
 - (c) -3 4i
 - (d) 3 4i
 - (e) 4*i*
 - (f) 7
 - (g) -i
 - (h) -2+i
- 2. The complex numbers below are written in the exponential form $\rho e^{\theta i}$, with the phase θ in radians. Rewrite each one in the Cartesian form a + bi. Show your work.
 - (a) $4e^{\pi i/3}$
 - (b) $2\sqrt{3} e^{4\pi i/3}$
 - (c) $5e^{2\pi i}$
 - (d) $5e^{3\pi i/2}$
 - (e) $3e^{\pi i/2}$
 - (f) e^{-i}
 - (g) $\sqrt{2} e^{\pi i/4}$
 - (h) $e^{-2\pi i/3}$
- 3. Calculate $(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i)^{100}$. Show your work. Hint: don't do it the hard way!