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Abstract

This paperdescribesMetacat,anextensionof theCopycatmodelof analogy-making.Thede-
velopmentof Copycatfocusedon modelingcontext-sensitive conceptsandthewaysin which
they interactwith perceptionwithin anabstractmicroworldof analogyproblems.Thisapproach
differsfrom mostothermodelsof analogyin its insistencethatconceptsacquiretheirsemantics
from within thesystemitself, throughperception,ratherthanbeingimposedfrom theoutside.
Thepresentwork extendstheseideasby incorporatingself-perception,episodicmemory, and
remindinginto the model. ThesemechanismsenableMetacatto explain the similaritiesand
differencesthatit perceivesbetweenanalogies,andto monitorandrespondto patternsthatoc-
cur in its own behavior asit worksonanalogyproblems.This introspectivecapacityovercomes
several limitationsinherentin theearliermodel,andaffordstheprograma powerful degreeof
self-control. Metacat's architectureincludesaspectsof both symbolicandconnectionistsys-
tems.Thepaperoutlinestheprincipalcomponentsof thearchitecture,analyzesseveralsample
runsandexamplesof program-generatedcommentaryaboutanalogies,anddiscussesMetacat's
relationto someotherwell-known modelsof analogy.

1 Intr oduction

This paperdescribesa computationalmodel of analogy-makingand perceptioncalled Metacat,

which is basedon the earlierCopycatmodeldevelopedby HofstadterandMitchell (Hofstadter,

1984;Mitchell, 1993).Like Copycat,Metacatmodelsthecomplex interplayof bottom-upandtop-

down processesinvolved in perception,using an emergent architecturethat incorporatesaspects

of both symbolic and connectionistsystems. Metacat,however, builds on the earlier model by

focusingon self-perceptionandits relationto othercognitiveprocesses.Thelong-termgoalof this

line of researchis to understandhow high-level cognitivephenomenasuchasconcepts,analogical

thinking, creativity, andself-awarenesscanemerge from a subcognitive substratecomposedof a

large numberof �ne-grained,nondeterministicactions,eachof which is far too small by itself to

supportsuchphenomena.
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Few peoplewould claim that theindividualneuronsmakingup a humanbrainare“conscious”

in anything like the normalsensein which humansexperienceconsciousness.We are forced to

acceptthefactthatself-awarenessarises,somehow, outof nothingbutbillions of low-levelchemical

reactionsandneuronal�rings. How canindividuallymeaninglessphysicaleventsin abrain—evena

hugenumberof them—ultimatelygiveriseto meaningfulawarenessandunderstanding?Hofstadter

hasarguedthattwo ideasareof paramountimportance:

Whatseemsto makebrainsconsciousis the specialway they are organized—in par-
ticular, the higher-level structuresand mechanismsthat comeinto being. I seetwo
dimensionsasbeingcritical: (1) the fact thatbrainspossessconcepts, allowing com-
plex representationalstructuresto be built that automaticallycomewith associative
links to all sortsof prior experiences,and(2) the fact thatbrainscanself-monitor, al-
lowing acomplex internalself-modelto arise,allowing thesystemanenormousdegree
of self-controlandopen-endedness.(Hofstadter& FARG, 1995)

The developmentof Copycatwas intendedto explore the �rst idea, by creatinga computer

modelof analogy-makingin which the representationof conceptsis deeplyintertwinedwith the

program'smechanismsfor high-level perceptualprocessing.Conceptsin Copycatarenot modeled

asstaticrepresentationalstructures;rather, they aredynamicentitiesthatrespondto perceptualpro-

cessingin ahighly context-sensitiveway, bendingandadaptingto thesituationathandin a �e xible

manner. Furthermore,they actively in�uence perceptualprocessingitself. This tight couplingof

conceptsandperceptionin the modelgivesrise to an ability to perceive similaritiesbetweendif-

ferentsituationsby describingthemin termsof a commonsetof underlyingconceptsapplicableto

bothsituations.Theability of Copycatto makeanalogiesis a directconsequenceof thenatureof

theprogram's representationof concepts.

The Metacatmodelexploresthe secondidea,by endowing Copycatwith a capacityfor self-

watching, de�ned hereastheability of asystemto perceive—andto createexplicit representations

of—its own perceptualprocesses.Our objective hasbeento develop mechanismsthat allow the

programto monitor its own activity andto explicitly characterizethe conceptualassociationsthat

implicitly ariseasit solvesanalogyproblems(Marshall& Hofstadter, 1997;Marshall,1999).This

canbe thoughtof asaddinga higher “cognitive” layer on top of Copycat's “subcognitive” layer,

enablingtheprogramto watchandrememberwhathappensat its subcognitivelevel asperceptual
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structuresarebuilt, recon�gured,anddestroyed.This typeof self-re�ective awarenessis common

in humans,whoarequitecapableof payingattentionto, andexplicitly articulating,patternsin their

own thinking (Chi, Bassok,Lewis, Reimann,& Glaser, 1989;Chi, deLeeuw, Chiu,& LaVancher,

1994).

CopycatandMetacatareconcernedwith high-level perception,by which we meanthat level

of perceptualprocessingin which conceptsplay a critical role (Chalmers,French,& Hofstadter,

1992). In contrast,low-level perceptionrefersto the processingof raw, modality-speci�csensory

dataobtaineddirectly from the environment,suchasthe detectionof edgesin retinal images,or

the processingof audio frequenciesfrom the inner ear, without regard to the meaningof this in-

formation. Low-level perceptualprocessingis the �rst stepalong the path leadingto high-level

perception,with many intermediateprocessingstageslying in-betweeninvolving ever greaterde-

greesof abstraction.Theendresultof thisprocessis theconsciousrecognitionor understandingof

theinput stimulusasaninstanceof a particularmentalconceptor setof concepts.

Consider, for example,theeverydayexperienceof recognizingyour mother. A patternof light

falls on the hundredmillion or so photoreceptorcells in your retina, anda fraction of a second

later, the idea of your mothercomesto mind. A particularmentalconcepthasbecomehighly

activated,while mostothersremaindormant.This processof recognition,for themostpart, takes

placebelow thelevel of consciousawareness.Onedoesnothave to do muchdeliberatethinking in

orderto recognizeone'smother(at leastin theabsenceof degradedenvironmentalconditionssuch

aspoor lighting). High-level perceptiondependslargely on subcognitiveprocessingmechanisms

(Hofstadter, 1985b).

Theactivationof theconceptof motherelicitedby a facial imageis a relatively simpleexample

of high-level perceptionin action.This samephenomenon,however, oftenoccursin moreabstract

contexts,suchaswhenapersonhearsanunfamiliarpieceof musicfor the�rst timeandrecognizesit

ascomingfrom aparticularmusicalperiodor composer, or whenapaintingis recognizedto be,say,

anImpressionistwork,orasbelongingtoPicasso's“Blue period”. Moving to anevenhigherlevelof

abstraction,a complicatedsocialsituationinvolving tangledwebsof people,objects,relationships,

andcon�icting choicesmaycollectivelybeperceivedasa“Catch-22”situation.Eventheconceptof
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motheris, in reality, a subtlematter. Dependingon context, a wide varietyof thingscanbeviewed

asabstractinstancesof this concept.TheEarth,for example,is sometimesdescribedasthemother

of all living things,an ideacommonlyexpressedby thephrase“Mother Earth”. Strictly speaking,

of course,consideringa planetto bea mothermakesno sense,but giventhe right context we can

effortlesslyseehow theideaapplies,thanksto thenatural�e xibility of humanconcepts.

In general,conceptsin themind arenot sharply-de�nedentitieswith clear-cut boundaries,al-

waysapplyingto certainthingsbutneverto others.Rather, theboundariesof conceptsareinherently

ill-de�ned andblurry, andarestrongly in�uenced by thecontext in which perceptionoccurs. We

referto this typeof inherent�e xibility asconceptual�uidity , in orderto stresstheideaof concepts

asnonrigid, adaptable,andhighly context-sensitive. Much work hasbeendonein cognitive psy-

chologyinvestigatingthenatureof thedistancesbetweenconceptsandcategories(see,for example,

Tversky, 1977; Smith & Medin, 1981; Goldstone,Medin, & Gentner, 1991). In particular, the

strengthof associationsbetweenconceptscanchangedynamically, accordingto context. Underthe

right pressures,conceptsthatarenormallyfar apartmaybebroughtclosetogether, sothatthey are

bothseenasapplyingto aparticularsituation(suchaswhentheEarthis regardedsimultaneouslyas

aninstanceof planetandmother). This phenomenon,which we referto asconceptualslippage, is

whatenablesapparentlydissimilarsituationsto beperceivedasbeing“the same”atadeeper, more

abstractlevel.

CopycatandMetacatdiffer in importantwaysfrom many othermodelsof analogyproposed

by researchersin AI andcognitivescience.SeeFrench(2002)for a recentoverview. Probablythe

mostimportantdifferenceis theemphasisour modelsplaceon the representationof concepts,and

the role playedby conceptsin makinganalogies.Otherwell-known modelshave focusedon the

mechanismsandpsychologicalconstraintsinvolvedin mappinga sourcesituationto a targetsitua-

tion (Gentner, 1983;Falkenhainer, Forbus,& Gentner, 1990;Forbus,Ferguson,& Gentner, 1994);

on thesatisfactionof multiple competingconstraintswhenconstructingthis mapping(Holyoak&

Thagard,1989);on the mechanismsthat allow storedanalogsto be retrieved from memory(For-

bus, Gentner, & Law, 1995;Thagard,Holyoak,Nelson,& Goch�eld, 1990;Kolodner, 1993);on

theintegrationandmutualinteractionof processesresponsiblefor retrieval, mapping,andtransfer
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(Kokinov & Petrov, 2001;Eskridge,1994);andondistributedrepresentationsof structure(Hummel

& Holyoak,1996,1997;Holyoak& Hummel,2001;Halford,Wilson,Guo,Gayler, Wiles,& Stew-

art, 1994;Wilson,Halford, Gray, & Phillips, 2001).All of theseissuesareimportant,andany full

andsatisfyingtheoryof analogyshouldcertainlyincludeanaccountof them.In ourview, however,

a completetheorymustalsointegrateconcepts,perception,andmeaninginto thepicture.

Whenhumansmakeanalogies,wenotonly constructmentalmappingsaccordingto constraints,

wealsounderstandthemeaningof theconceptsconnectedby thesemapping-structures.For exam-

ple, a personmakingan analogybetweena situationinvolving waterandanotherinvolving heat

presumablymapsmentalstructuresrepresentingwaterto structuresrepresentingheat,atsomelevel

of abstraction.But peoplealsounderstandwhat theunderlyingconceptsof waterandheatmean,

from long experiencewith theseconceptsin the world. Of course,theact of makingtheanalogy

deepensthis understandingby facilitating a transferof knowledgefrom onesituationto theother.

But theimportantpointis thattheconstituentconceptsunderlyingtheanalogyarethemselvesmean-

ingful to theperson.Likewise,a computermodelof analogyshouldoffer someaccountof how the

underlyingsymbolsandstructuresthat representconceptsin an analogyacquiremeaningthem-

selves,in additionto anaccountof thestructure-mappingprocessesinvolved.Thatis, thestructures

that the programusesto representanalogiesshouldbe meaningfulto the program itself. This is

essentiallythefamiliar symbol-groundingproblem(Harnad,1990),recastin analogicalguise.

Someconnectionistmodelsof analogyhaveattemptedto addressthisproblemby moving away

from the useof symbolic representationsof sourceand target situations. Much recentwork has

focusedontheuseof distributedencodingtechniquessuchasPlate'sholographicreducedrepresen-

tations(Plate,1994,1998),Kanerva's binaryspattercode(Kanerva, 1996,1998),or Smolensky's

tensorproducts(Smolensky, 1990). Examplesof suchmodelsincludeDrama(Eliasmith& Tha-

gard,2001)andthe STAR modelsof Halford et al. (1994)andWilson et al. (2001). All of these

approachesencodeexplicitly-structuredrepresentationsof sourceandtargetsituationsasdistributed

activationpatterns,which aresuitablefor processingby connectionistnetworks. Theserepresen-

tationscanbe manipulatedin a holistic fashion,without having to be decomposedinto their con-

stituentcomponents(Chalmers,1990;Chrisman,1991;Blank, Meeden,& Marshall,1992).How-

5



ever, currently the representationsusedby thesemodelsdo not acquiretheir meaninginternally

throughthesystem'sown perceptionsor throughlearning. Instead,meaningis imposedfrom out-

sidethesystemthroughanessentiallyarbitraryassignmentof semanticsto thepatternsof activation

that serve asthe constituentbuilding blocksof representations.The hopeis that eventuallythese

systemswill beableto uselearnedpatternsbaseddirectly on sensorystimuli—insteadof arbitrary

patterns—asrepresentationalbuilding blocks,which will makethe representationsmeaningfulto

thesystemitself.

Blank's (1997)Analogatormodelattemptsto integratelearningandanalogy-makinginto a sin-

gleconnectionistframework usingdistributedrepresentationsbasedontensorproducts.Analogator

learnsto makeanalogiesbetweenvery simplevisualscenescomposedof geometricshapes,on the

basisof spatialrelationshipssuchasaboveor below. Unlike themodelsmentionedpreviously, how-

ever, Analogatordoesnot startwith explicitly-structuredrepresentations.Instead,thesystemitself

learnsthemeaningof spatialrelationshipsby creatingits own internalrepresentationsof analogies,

throughdirectexperiencewith visualscenes.In otherwords,themeaningof theunderlyingcom-

ponentsof Analogator's analogiesis acquiredthroughthe system's own perceptions.SeeGasser

(1993)for a moregeneraldiscussionof perceptualgroundingwithin the context of simplevisual

scenes.

In bothAnalogatorandMetacat,perceptionis tightly interwovenwith analogy-making.Analoga-

tor, however, focusesmoreon thelearningof analogicalbehaviorthanon theexplicit modelingof

concepts. In contrast,Metacatemphasizesconceptsandthewaysin which they interactwith per-

ception,but doesnotattemptto modellearning.Anotherdifferenceis thatMetacat'srepresentations

haveamoresymbolic�a vor thanthepurelydistributedrepresentationscreatedby Analogator. Nev-

ertheless,therepresentationscreatedby bothmodelsaremuchmorecloselytied to perceptionthan

thetraditionalpredicate-calculus-basedrepresentationsusedby many of themodelscitedearlier.

2 Analogy-Making in an Idealized World

How cansomethingaselusiveasthemeaningof conceptsbemodeledin acomputerprogram?The

approachtakenby CopycatandMetacatis to startsmall, by eschewing real-worldcomplexity in
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favor of a microworld—atiny, idealizedworld designedto stripaway asmany distracting,surface-

level detailsaspossiblefrom analogy-makingwhile still preservingthefundamentalessenceof the

phenomenon(Hofstadter, 1984).This philosophydiffersfrom thatof mostothercurrentcomputer

modelsof analogy, whichtypically operateonrepresentationsof “real-world” situationsthatarenot

groundedin theprogram'sown perceptions.We believe,however, thatthis is a deepandimportant

issuethatshouldbetackledhead-on,ratherthanbeingsidesteppedor ignored.In ourapproach,we

restrict the numberof conceptsavailablein the world, which makesit possiblefor our modelsto

representconceptsin averyrich anddynamicwaythattiesthemintimatelyto perception.A limited

setof concepts,however, neednot imply a limited setof interestinganalogyproblems.Despitethe

microworld'sapparentsimplicity, it harborsanexceedinglyrich varietyof subtleanalogyproblems,

in whichmany surprisinglycreative andnon-obviousanswersarepossible.

Theraw materialof this world consistsof 26 abstractobjects,representedaslowercaseletters

for convenience,amongwhich only threerelationsare meaningful: sameness,predecessorship,

andsuccessorship.All lettersexcepta have an immediatepredecessor, andall except z have an

immediatesuccessor. All otherinformationpertainingto lettershasbeenfactoredout,suchastheir

shapesor semanticconnotations.Analogiesarestatedin termsof short letter-strings(calledthe

initial string, the modi�ed string, andthe targetstring, respectively), which canbe thoughtof as

idealizedsituations.For example:“If abcchangesto abd, how doesmrrjjj changein ananalogous

way?” Or, moresuccinctly:

abc) abd
mrrjjj ) ?

Most people,on seeingthis problemfor the �rst time, answermrrkkk or mrrjjk (Mitchell,

1993). The rightmostcomponentof abc (the letter c) is perceived as changingto its successor,

sodoing the “samething” to mrrjjj amountsto changingthe rightmostcomponentof mrrjjj to its

successor—eitherjjj viewed asa chunk,or just the rightmostletter j. Thereare,however, many

otherpossibleanswersto thisproblem,whichpeopletendto give lessoften,including:

� mrrjjd (changetherightmostletterliterally to d)

� mrrddd (changetherightmostchunkto d's)
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� mrrjjj (changejust thec's,of which therearenone)

� mrrjkk (view mrrjjj asmr–rj–jj andchangetherightmostpair to its successor)

� mrrjdd (view asmr–rj–jj , but changetherightmostpair to d's)

� mrsjjj (changethethird letterto its successor)

� mrdjjj (changethethird letterto d)

� mrsjjk (view asmrr–jjj andchangethethird letterof eachchunkto its successor)

� mrskkk (changeall lettersafterthe�rst two to their successors)

� mssjjj (changeeveryoccurrenceof thethird letterto its successor)

� mrrjjjj (view mrrjjj abstractlyas1–2–3andincreasetherightmostlengthby one)

� mrrkkkk (view as1–2–3but changeboththelengthandlettersof therightmostchunk)

� abd(changethewholestringliterally to abd)

� abbddd(changethelettersto a's,b's,andd'sbut retainthe1–2–3structure)

� mrk (changej's to k'sbut makeeverythingsingleletters)

� mrd (changej's to d'sbut makeeverythingsingleletters)

Clearly, someof theseanswersaremoreobviousor plausiblethanothers,but eachoneis de-

fensible,andmakesmore sensethana completelyrandomresponsesuchaspxznntg. Thereis,

however, no single,indisputably“correct” answer. In fact, a wide rangeof answersis possiblefor

almostevery conceivableproblemin this world. Thesubtletyandrichnessof analogy-makinghas

notbeensacri�cedat theexpenseof simplicity; on thecontrary, it hasbeenbroughtinto focusmore

clearlypreciselybecauseof theworld'sausterity.

It is also importantto stressthe intendeduniversalityof the microworld. “Letters” hereare

really nothingmore than instancesof abstract,atomiccategories,amongwhich only a small set

of relationsare meaningful(i.e., successorship,predecessorship,and sameness).It is therefore

misleadingto regardCopycat'sor Metacat'sanalogiesasbeingaboutalphabeticalstringsof letters

per se. Rather, stringsshouldbe viewed as representingidealizedsituationsinvolving abstract

categoriesandrelations.The architectureof Copycatis “con�gured” so that thesecategoriesand

relationsmirror our intuitive notionsaboutsuccessorship,predecessorship,andsamenessamong

lettersof the alphabet,but this neednot be the case.A differentcon�guration could in principle
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be used,re�ecting a differentsetof abstractrelationships,without signi�cantly alteringthe basic

model. In fact, a programsimilar to Copycat,calledTabletop,modelsspatialaspectsof high-level

perceptionwithin a differentdomain: that of ordinaryobjectson a table,suchascups,glasses,

andsilverware(French,1995; Hofstadter& FARG, 1995). Importantdifferencesexist between

CopycatandTabletop,but thetwo programscanberegardedessentiallyasdifferentinstantiations

of a singleunderlyingarchitecture,eachof which operatesin an abstractworld of categoriesand

relations.Copycatis con�guredsothatthesecategoriesandrelationsre�ect propertiesof lettersof

thealphabet,while Tabletopis con�guredsothatthey re�ect propertiesof objectson a table.

Copycat's microworld is sometimescriticizedasbeingunableto representanalogiesbetween

differentdomainsof knowledge. So-called“cross-domain”analogies—forexample,betweenthe

solarsystemandtheRutherford-Bohrmodelof theatom,or betweenwater�o wing througha pipe

and heat�o wing througha metal bar (Gentner, 1983; Holyoak & Thagard,1989; Falkenhainer

etal., 1990)—typicallyinvolvesourceandtargetsituationscharacterizedby very differentkindsof

“real-world” concepts.Accordingto thisview, thetruepowerof analogycomesfrom beingableto

mapquitedifferentdomainsontooneanother, allowing a transferof knowledgeto occurbetween

them. In contrast,it is argued,sinceCopycat's sourceandtargetsituationsarerestrictedto letter-

stringconceptsonly, themodelis “domain-speci�c”, andhencefails to capturethemostimportant

aspectsof analogicalprocessing.Accordingto Forbus,Gentner, Markman,andFerguson(1998):

Themostdramaticandvisibleroleof analogyis asamechanismfor conceptualchange,
whereit allows peopleto import a set of ideasworked out in one domain into an-
other. Obviously, domain-speci�cmodelsof analogycannotcapturethis signature
phenomenon.. . . If wearecorrectthattheanalogymechanismis adomain-independent
cognitivemechanism,thenit is importantto carryout researchin multiple domainsto
ensurethattheresultsarenothostageto thepeculiaritiesof a particularmicro-world.

However, sucha hastyconclusionoverlookstheprinciple of universalityat the coreof Copy-

cat's microworld. We fully agreethat analogyis a very general,domain-independentcognitive

mechanism.Indeed,this is thefundamentalreasonwhy we have chosenanabstractmicroworld as

our framework for modelinganalogy. Sincethe“letters”—asfar astheprogramis concerned—are

really just atomiccategorieslinked by abstractrelationships,thereis in principle no reasonwhy

idealizedversionsof “cross-domain”analogiescannotbeconstructedwithin thisworld aswell.
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For example, the answermrrjjjj to the earlier problemcould be interpretedas just suchan

analogy. On thesurface,differentsetsof conceptsapplyto thesituationsrepresentedby thestrings

abcandmrrjjj . In anabstractsense,thesestringscanbeviewedassituationstakenfrom two very

differentdomains,eachof which encompassesa distinct subsetof the conceptsavailable in the

larger“universe”of theletter-stringmicroworld. Theconceptof successor, for instance,is relevant

to abc but not (at �rst glance)to mrrjjj , while theconceptof group playsa centralrole in mrrjjj .

If thetwo situationsarelookedat in theright way, however, by seeingthestringmrrjjj in termsof

group-lengthsratherthanletter-categories,the ideaof successorshipcanbe transferredover from

the �rst situationto thesecond,resultingin a kind of mini paradigmshift that revealsthe parallel

1–2–3successorshipstructureof mrrjjj , whichconsequentlyleadsto theanswermrrjjjj . Of course,

bothof these“domains” involve conceptsfrom Copycat's letter-stringworld, but thecrucialpoint

is that they involve differentsubsetsof concepts,just asthedomainsof “cross-domain”analogies

from therealworld involvedifferentsubsetsof conceptstakenfrom thelargeruniverseof real-world

conceptsandrelationships.

In fact,oncloserexamination,thedistinctionbetweendifferentdomainsis oftenfar from clear.

For instance,Holyoak andThagard(1995)discussa complex analogybetweenWorld War II and

the 1991PersianGulf War. Shouldthis analogybe regardedasa “cross-domain”analogy, or as

an analogybetweentwo situationswithin the commondomainof military con�icts? What about

the analogybetweenthe solarsystemandthe Rutherford-Bohratom? Doesthis analogyinvolve

two distinctdomains(i.e., thedomainof atomicphysicsandthedomainof astronomy),or thesin-

gle domainof scienti�c theories?In our view, the purporteddistinctionbetween“cross-domain”

and“intra-domain” analogies,aswell asthe distinctionbetween“domain-general”and“domain-

speci�c” modelsof analogy, is arti�cial, anddependson the particularde�nition of the domains

involved,which in turn dependson how we asresearcherschooseto carve the world up into cat-

egories. The power of a microworld derivespreciselyfrom its ability in principle to modelany

numberof differentsubdomainsof therealworld within acommonabstractframework.
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xyzfamily

abc) abd
xyz) xyd

abc) abd
xyz) wyz

abc) abd
xyz) dyz

rst ) rsu
xyz) xyu

rst ) rsu
xyz) wyz

rst ) rsu
xyz) uyz

mrrjjj family

abc) abd
mrrjjj ) mrrkkk

abc) abd
mrrjjj ) mrrjjjj

xqc ) xqd
mrrjjj ) mrrkkk

xqc ) xqd
mrrjjj ) mrrjjjj

eqefamily

eqe) qeq
abbba) baaab

eqe) qeq
abbba) aaabaaa

eqe) qeq
abbbc) qeeeq

eqe) qeq
abbbc) aaabccc

Figure1: Threefamiliesof letter-stringanalogies

3 Thr eeFamiliesof Analogy Problems

Fig. 1 shows threefamilies of analogyproblems,which will be usedasexamplesthroughoutthe

remainderof the paperto illustratethe principal mechanismsandcapabilitiesof Metacat. These

problemsgiveasenseof thetypesof parallelsanddistinctionsthatcanbemadebetweenanalogies

in theletter-stringworld. Eachfamily consistsof two distinct(but similar) analogyproblems,with

horizontalrowsshowing asetof possibleanswersfor eachproblem.

The�rst family consistsof theproblemabc) abd; xyz) ? andits variantrst ) rsu; xyz) ?

(top of Fig. 1). Viewing c aschangingto its successorin abc) abd; xyz) ? suggestschanging

z to its successor. However, this is not possiblein the letter-string world, so oneis forcedto try

somethingelse. One way out is to adopta literal-mindedapproachandchangez to d, yielding

xyd. On the other hand,if the alphabeticsymmetrybetweena andz is noticed, then the more

abstractanswerwyzmaycometo mind,basedonseeingabcandxyzasmirror imagesof eachother

wedgedagainstoppositeendsof thealphabet.In thissymmetricinterpretationof theproblem,doing
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the “samething” to xyz meanschangingthe leftmostletter to its predecessorinsteadof changing

the rightmostletter to its successor. Many peopleconsiderthis answerto be more elegant and

compellingthanxyd.

Now considerthevariantproblemrst ) rsu; xyz) ?. The literal-mindedanswerxyu andthe

symmetricanswerwyzarebothpossible,andarisefor thesamereasonsasin thepreviousproblem—

with oneimportantdifference.In this problemthereis far lessjusti�cation for seeingrst andxyz

asmirror imagesof eachother, unlike in thecaseof abc andxyz, with their stronga-z symmetry,

whichmakestheanswerwyzaweakeranalogyherethanin thepreviousproblem.While it couldbe

arguedthatwyzis still a betteranalogythanxyu in thisproblem,it is clearlynot assuperiorto xyu

aswyzwasto xyd in thepreviousproblem.Thetwo wyzanalogies,therefore,arequitedifferentin

character, eventhoughthey involveidenticalanswers.Indeed,thepresenceor absenceof alphabetic

symmetryis thefundamentaldifferencebetweenthem.Theliteral-mindedanswersxydandxyu, on

theotherhand,representessentiallyidenticalanalogies,despitetheir surface-level differences.

Two other answersarealso worth mentioning. The answerdyz, althoughperhapsa bit far-

fetched,is certainlypossiblefor abc) abd; xyz) ?. Thisanswerdependson noticingtheabstract

symmetrybetweenabcandxyz (andthuschangingthex in xyz insteadof thez) but takinga very

literal-mindedview of abc) abd (thuschangingx to d insteadof to its predecessor).Theanswer

uyzto theproblemrst) rsu; xyz) ? arisesin asimilar fashion,exceptthatonceagain,thereis no

goodreasonto seerst andxyzasmirror imagesin the �rst place. This blendof abstractnessand

literal-mindednessmakesbothof theseanswersseemincoherent.It couldevenbearguedthatsince

abcandxyzarecompletelysymmetricin every way, while rst andxyzarenot, changingx to d in

abc) abd; xyz) ? is even more incoherent thanchangingx to u in rst) rsu; xyz) ?, making

dyzamoreincoherentanalogythanuyz. Justlike thetwo wyzanalogies,thekey distinctionbetween

dyzanduyz is the presenceor absenceof alphabeticsymmetry. In otherwords,theway in which

thetwo wyzanalogiesaredifferentis analogousto theway in which thedyzanduyzanalogiesare

different.Herewe havea simpleexampleof a “meta-analogy”in theletter-stringmicroworld.

Thesecondfamily of analogiesconsistsof theanswersmrrkkk andmrrjjjj to thepair of prob-

lemsabc) abd; mrrjjj ) ? andxqc) xqd; mrrjjj ) ? (middle of Fig. 1). Eachof theseanalo-
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gies relies on seeingthe target string mrrjjj in terms of its three componentsm, rr , and jjj —

correspondingto the threelettersof the initial string—andon viewing the rightmostletter of the

initial stringaschangingto its successor. Therightmostcomponentof mrrjjj (thejjj group)accord-

ingly changesto its successor, yielding mrrkkk if mrrjjj is viewedin termsof letter-categories(as

m–r–j ), or mrrjjjj if it is viewedin termsof group-lengths(as1–2–3).

In the problemabc) abd; mrrjjj ) ?, the answermrrjjjj representsa strongeranalogythan

mrrkkk, becauseviewing mrrjjj as1–2–3revealsanabstractsimilarity betweenthe targetstring's

structureandtheparallela–b–cstructureof theinitial string.Ontheotherhand,theanswermrrkkk

makesfor the strongeranalogyin the problemxqc) xqd; mrrjjj ) ?. Unlike abc, thestringxqc

possessesno internalsuccessorshipstructure,so viewing mrrjjj in an unstructuredway asm–r–j

more closely parallelsxqc, while viewing it as1–2–3 amountsto being unnecessarily“clever”.

In short, the two mrrkkk answersareactuallyquite different in character, asare the two mrrjjjj

answers.

The third family of analogiesconsistsof the problemeqe) qeq; abbba) ? and its variant

eqe) qeq; abbbc) ? (bottomof Fig. 1). In theseproblems,eqecanbe viewedas“turning itself

inside-out” by swappingthe letter-categoriesof its constituentletters to yield qeq. If abbbais

viewedasa–bbb–a, correspondingto thethreelettersof eqe, thena naturalwayof doingthesame

thing to abbbais simply to swapthe letter-categoriesof the components,yielding baaab. This

approach,however, leadsto a“snag” in thecaseof abbbc, becauseswappingthreeletter-categories

makesnosense.Onewayaroundthisdif�culty is to view thelettersof eqeaschangingindividually

to q, e, andq, insteadof gettingcollectively swapped.Changingabbbcin ananalogouswaywould

thenamountto changingits threecomponentsto q, eee, andq, yielding theanswerqeeeq.

A moreelegantwayof avoidingthesnagis to perceiveabbbcabstractlyas1–3–1andthenswap

thelengthsof thecomponentsinsteadof theletter-categories,yieldingaaabccc. This is reminiscent

of theanswermrrjjjj to theproblemabc) abd; mrrjjj ) ?.

On the other hand,we can do this in the problemeqe) qeq; abbba) ? as well, swapping

lengthsinsteadof letter-categoriesto yield aaabaaa. However, asin theearlieranalogyxqc) xqd;

mrrjjj ) mrrjjjj , viewingabbbaas1–3–1isunnecessarily“clever”, sinceswappingletter-categories
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works just �ne. Thus the differencebetweenthe answersbaaab and aaabaaain the problem

eqe) qeq; abbba) ? is like thedifferencebetweentheanswersmrrkkk andmrrjjjj in theproblem

xqc) xqd; mrrjjj ) ?, becausein bothproblemsviewing thetargetstringabstractlyactuallymakes

for a weakeranalogy.

In contrast,viewing the target string abstractlyin the problemseqe) qeq; abbbc) ? and

abc) abd; mrrjjj ) ? makesfor a strongeranalogyin eachcase—althoughnot for preciselythe

samereasons.In thecaseof eqe) qeq; abbbc) ?, viewing abbbcas1–3–1 hasthe addedben-

e�t of enablinga snagto be avoided,whereasno snagarisesin abc) abd; mrrjjj ) ?. In other

words, the answeraaabcccis strongfor both pragmaticand aestheticreasons,while mrrjjjj is

strongfor aestheticreasonsonly. Likewise,eqe) qeq; abbba) aaabaaais aweakeranalogythan

eqe) qeq; abbbc) aaabccc, eventhoughbothinvolveseeingthetargetstringas1–3–1, because

payingattentionto lengthsis justi�ed in the latter analogyon accountof the snag,but not in the

former.

4 The Copycat Model

This sectionsummarizesthe architectureandprocessingmechanismsof Copycat,which serve as

thefoundationfor Metacat'sarchitecture.Severalimportantlimitationsof theoriginalmodel,which

have beenaddressedin Metacat,arealsopointedout.

TheCopycatarchitecturehasbeendiscussedat lengthelsewhere(Mitchell, 1993;Hofstadter&

FARG, 1995),sodetailswill beomittedhere.Brie�y , theprogramconsistsof a long-termmemory

for concepts,calledtheSlipnet, togetherwith ashort-termmemoryfor perceptualstructures,called

theWorkspace. TheSlipnetis a semanticnetworkof nodesrepresentingconceptsabouttheletter-

stringworld (seeFig. 2), with weightedlinks betweennodesencodingthestrengthof associations

betweenconcepts.Somelinks arelabeledby particularnodes,andmaystretchor shrinkaccording

to the activation of the label node,allowing the Slipnet to dynamicallyadaptto the perceptual

context at hand. Someconceptnodes,shown capitalizedin Fig. 2, representcategoriesof other

concepts.For example,left andright areboth instancesof the moreabstractDirection category,

andtheconceptsletter andgrouparebothinstancesof ObjectCategory.
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Figure2: TheSlipnet

The Workspaceis the site of subcognitive processingactivity. In the Workspace,small non-

deterministiccomputationalagentscalledcodeletsexaminethe lettersof an analogyproblemand

attemptto build a coherentsetof structuresaroundthe letters,representinga particularinterpre-

tationof theproblem. Codeletslook for sameness,successor, or predecessorrelationshipsamong

letters,possiblychunkingthemtogetherinto groupsbasedona commonrelationship(for example,

creatinga “samenessgroup” from the threej's in mrrjjj , or chunkingthe individual lettersof abc

into asingle“successorgroup”). Theprogram'shigh-levelbehavior emergesin abottom-upfashion

from thecollectiveactionsof many codeletsworking in parallel,analogousto theway in which an

antcolony'shigh-level behavior emergesfrom theindividualbehaviorsof theunderlyingants,with

no centralizedlocusof control.
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In general,the letter-stringsof an analogyproblemcan be viewed in many different ways,

giving riseto avastspaceof potentialcon�gurationsof Workspacestructures.In orderto discovera

goodcon�gurationin areasonableamountof time,many potentialpathwaysthrough“interpretation

space”mustbeexploredsimultaneously, with proportionallymoreattentionbeingpaidto promising

pathwaysthanto thosethatdon't seemto beleadinganywhereinteresting.This typeof differential

parallelism,calledtheparallel terracedscan, is oneof thecentralideasof theCopycatarchitecture.

To achieve this differentialeffect, structuresarebuilt in stagesby chainsof codelets.At �rst, a

codeletsimply proposesa new structureasa possibility. The proposedstructureis thenevaluated

by othercodeletsat laterstagesin thechain. If thestructureseemspromisingenough,it getsbuilt,

andacquiresa strengthvalueindicatinghow well it �ts into its surroundingcontext. By distribut-

ing structurecreationover several interleavedstages,many differentpathwayscanbeexploredin

parallel. In addition,every codelethasan urgencyvaluethat re�ects the estimatedpromiseof the

pathwayit is exploring. Codeletsareselectedto run, probabilistically, on thebasisof their urgen-

cies. Thereforepromisingregionsof the searchspacetendto be exploredmorequickly andto a

greaterdepth,on average,thanlesspromisingregions.

Fig. 3 shows a set of perceptualstructuresat the end of a run on the problemabc) abd;

mrrjjj ) ?. Severalgroupscanbeseen,includingonebuilt from othergroupsandoneconsistingof

thesingleletterm. Oneproposedgroup(shown asadashedstructure),whichwasbeingtentatively

exploredbut hadnot yet beenbuilt by codelets,canalsobeseen.In this run, theprogramhasper-

ceivedtheabstract1–2–3successorshipof mrrjjj andmappedthisontothea–b–csuccessorshipof

abc. Horizontalandverticalstructurescalledbridgesshow thecorrespondencesbetweenanalogous

componentsof eachsituation.For example,thec–jjj bridgeindicatesthat, in this interpretationof

theproblem,c andjjj playanalogousrolesin their respectivestrings.Concept-mappingsassociated

with eachverticalbridgecanalsobeseen(they arenotshown for horizontalbridges).For example,

rightmost) rightmostand letter) group areassociatedwith the c–jjj bridge,sincec andjjj are

bothrightmostobjects,but oneis a letterandtheotheris a group.Non-identityconcept-mappings

suchasletter) group arecalledslippages, andserve asthe basisfor generatingan answer. For

instance,theLetterCategory ) Length slippageunderlyingthehigh-level bridgebetweenabcand
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Figure3: An interpretationof theproblemabc) abd; mrrjjj ) ?

mrrjjj re�ects thefact thatthe“successorshipfabric” of abcis basedon letter-categories,while that

of mrrjjj is basedongroup-lengths.Thisslippage,togetherwith theletter) groupslippages,leads

theprogramto producetheanswermrrjjjj by changingthelengthof therightmostgroupin mrrjjj

to its successor, insteadof changingtheletter-category of therightmostletteraswasdonein abc.

Conceptsin theSlipnetin�uencethesearchfor amutually-consistentsetof perceptualstructures

by acquiringactivationin responseto codeletactivity in theWorkspace.Thisactivation,whichmay

spreadto neighboringconcepts,stronglyaffectsthenondeterministicdecisionsmadeby codelets,

resultingin top-down pressurethat guidesthe programin its searchfor a good interpretationof

a problem. Eachconcepthasa �x ed conceptualdepthvalueassociatedwith it, which represents

its intrinsic degreeof abstractnessor generality. Theactivationof a conceptgraduallydecaysat a

ratethatdependson its conceptualdepth,with highly abstractconceptssuchasoppositetendingto

decaymoreslowly thanshallow, surface-level conceptssuchasd.

To be sure,Slipnetconceptscomenowherecloseto capturingthe full power and �uidity of

humanconcepts.Nevertheless,thereis a sensein which they are genuinelymeaningfulentities—

not simply passive, static tokensmanipulatedby the program. For example,a Slipnetnodesuch
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assuccessorrespondsto situationsin a continuous,context-dependentway, with its level of acti-

vationchangingto re�ect thecurrentdegreeof perceivedrelevanceof theideaof successorshipin

theproblemat hand. A wide rangeof super�cially dissimilarsituations,representedabstractlyas

letter-strings,canin principleactivateit—stringssuchasabc, ijk , pqrst, iijjkk , mrrjjj , xxsssbbbb,

axypqr, andaababcabcd. Underthe right circumstances,all of thesestringscanbe interpretedby

theprogramasexamplesof successorgroups.Thesemanticsof thesuccessornodearisesprecisely

from theway in which this noderespondsto differentsituationsperceivedin the“environment”of

the letter-stringmicroworld. In otherwords,its meaningis determinedby its behavior within the

system,not by a particularinterpretationimposedon it from outsidethesystem.GivenCopycat's

ability to �e xibly recognizea wide rangeof instances—somefairly abstract—ofthesameconcept,

it seemsreasonableto saythattheprogram'sconceptshaveat leastsomesmalldegreeof meaning-

fulness,or genuinesemantics,within the con�nes of its tiny, idealizedworld. SeeHofstadterand

FARG (1995,Chapter6) for anin-depthdiscussionof thispoint.

Slipnetconceptsalsoserve asthebasicbuilding blocksfor otherstructurescalledrules, which

describehow stringschange.1 For example,in Fig. 3, two rulescanbeseen.Thetop rule,Change

letter-category of rightmostletter to successor, describeshow theprogramviews abcaschanging

to abd. The bottomrule, Increaselengthof rightmostgroup by one, describesmrrjjj ) mrrjjjj .

Internally, rulesarestructuredcollectionsof Slipnetnodes.Outwardly, they aredisplayedasshort

Englishphrasesfor readability, but this is really just a surface-level “veneer”maskingthe under-

lying conceptualrepresentation.For instance,the top rule in Fig. 3 is composedof the concepts

LetterCategory, StringPosition, rightmost, letter, andsuccessor. Thebottomrule is composedof

Length, StringPosition, rightmost, group, andsuccessor.

Copycatplacessevererestrictionson thetypesof changesthatareallowedin theinitial string.

At most,oneletter is allowedto change,suchasin abc) abd. For instance,all of theanalogies

in the eqefamily shown in Fig. 1 arebeyond Copycat's ability to handle.This is becausethede-

velopmentof Copycatconcentratedon designingmechanismsfor perceiving similarities between

the initial string andthe target string via bridgesandslippages,ratherthanon characterizingdif-

1This usageof theterm“rule” differssigni�cantly from thetraditionalAI meaningof theterm.Rulesin Copycatand
Metacatarecompletelyunrelatedto the“if-then” rulesusedin expertsystemsor otherrule-basedproductionsystems.
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ferencesbetweenstringsvia rules.Developingrobustmechanismsfor mappingtheinitial stringto

the modi�ed string,andfor creatingrulesbasedon this mapping,waspostponedto a later phase

of the project. Thesemechanismshave now beenextendedandgeneralizedin Metacatto handle

arbitrarymappingsbetweenstrings,enablinga muchwider classof stringchangesto bedescribed

by rules,including eqe) qeq. SeeMarshall (1999,Chapter3) for a full discussionof Metacat's

new rule-building mechanisms.

Theoveralldegreeof Workspaceorganizationis measuredby anumberfrom 0 to 100calledthe

temperature. Thisnumberis a functionof thetotalqualityof structurespresentin theWorkspace—

wherethequalityof astructureis determinedby its strength.Temperaturealsoregulatestheamount

of randomnessusedby codeletsin making decisions. In other words, temperatureplaysboth a

passive andan active role. At high temperatures,whenfew Workspacestructuresexist, decisions

aremadein a highly randommanner, sincenot muchis yet known abouttheproblem. However,

as relationshipsamongthe lettersarenoticedandnew structuresarebuilt, the temperaturefalls,

andCopycatbegins to gain “con�dence” in theemerging interpretationof theproblem. At lower

temperatures,decisionsaremadelessrandomly, beingmorestronglybiasedby theestimatedquality

of newly emerging structures,all of which competefor the attentionof codelets. At very low

temperatures,codeletspay attentionto only themostpromisingstructures,anddecisionsbecome

largely deterministic. Thus the type of strategy usedby the programto explore its searchspace

graduallyshifts from beingvery diffuseandstochasticat high temperaturesto beingvery focused

anddeterministicat low temperatures.

To reiterate,processingin Copycatis driven by a large numberof �ne-grained probabilistic

decisionsthatdependon thecurrenttemperature.Thesedecisionsmaycausenew structuresto be

built or existingstructuresto bedestroyed,which in turnchangesthetemperatureandconsequently

affectsprocessing,forminga feedbackloop. Temperaturethusservesasaverysimpleform of self-

watchingin Copycat,sinceit enablestheprogramto regulateits own behavior to alimited extent. In

otherwords,tying thestochasticactivity of codeletsto thetemperaturemakestheprogramsensitive

to its own actions.

Thistypeof self-watching,however, is veryprimitiveandunfocused.TemperatureallowsCopy-
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cat to respondto its immediatesituationin a reactive way, but the programremainsoblivious to

longer-term patternsthat arisein its processingover time. This can result in very unhumanlike

behavior. For instance,whenpresentedwith theproblemabc) abd; xyz) ?, Copycatusuallyat-

temptsto changezto its successor, which is impossiblein theprogram'smicroworld. It hitsasnag,

andis forcedto try somethingelse. However, it typically endsup just trying the samething over

andover again,oftenasmany astenor twentytimesin arow beforestumblingby chanceon anal-

ternativeanswer(suchasxyd). Unlike people,theprogramis unableto recognizewhenit hasfallen

into a repetitive andfutile patternof behavior. Becauseit hasno memoryof its pastexperiences,

it cannotrecognizethat it hasalreadyencounteredsomesituationbefore,or tried the samesetof

actionsin response.

5 From Copycat to Metacat

SinceCopycatis incapableof rememberingits pastactionsor experiences,it hasno knowledgeof

how it arrivesat its answers,andis thereforeunableto explain therationalebehindtheanalogiesit

makes,or why oneanalogyis betteror worsethananother. In contrast,Metacat's architecturein-

cludesseveralnew componentsandmechanismsthatallow theprogramto monitoritself, enablingit

to recognize,remember, andrecallpatternsthatoccurin its “train of thought”asit makesanalogies.

To dothis,Metacatcreatesanexplicit temporalrecordof themostimportantprocessingeventsthat

occurduringa run. This recordis continuallyexaminedby codeletsfor patterns,in muchthesame

way thatcodeletsexamineletter-stringsfor patterns.It alsoprovidesthebasisfor constructingan

abstractdescriptionof an answerin termsof thekey conceptsandeventsthat led to its discovery.

Consequently, Metacatis ableto constructmuchricherrepresentationsof analogies,enablingit to

compareandcontrastthemin an insightful way. Furthermore,by monitoringits own processing,

Metacatcanrecognizewhen it hasbecomestuck in a rut, enablingthe programto breakout of

the rut by explicitly focusingon ideasotherthantheonesthat seemto be leadingnowhere. This

capabilityaffordstheprogramapowerful degreeof self-control.

The remainderof the paperdescribesthe architectureof Metacat,focusingon the ways in

which it extendsthe capabilitiesof Copycat,andanalyzesseveral sampleruns that illustratedif-
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ferentaspectsof the model. SinceMetacatis an extensionof Copycat,its architectureincludes

theWorkspace,theSlipnet,andthemechanismsfor codeletprocessing.It alsoincludesthreenew

components:theEpisodicMemory, theThemespace, andtheTemporal Trace.

5.1 The EpisodicMemory

Metacatstoresdescriptionsof analogiesin its long-termEpisodicMemory. Whena new answeris

found,an answerdescriptionis createdfrom the informationavailablein the temporalrecordand

theWorkspace.This descriptionincludesthefour letter-stringsof theanalogy, aswell astherules,

bridges,slippages,andotherstructuresthatgive riseto theanswer. Otherstructurescalledthemes

arealsoincluded,whichdescribethekey underlyingconceptsof theanalogy.

Themesprovide a basisfor comparingandcontrastinganswers,aswell asa metricfor judging

thedegreeof similarity betweenthem.For instance,whenMetacatmakesanew analogy, it maybe

remindedof asimilaranalogyit hasseenin thepastif thethemesassociatedwith thenewly-created

answerdescription,actingasamemoryretrieval cue,matchthoseof somepreviouslystoredanswer

descriptionsuf�ciently well. In effect, thepatternof themesin ananswerdescriptionservesasan

index for storingandretrieving ananswerfrom memory.

In additionto rememberinganswers,Metacatalsoremembersthesnagsthatit encounterswhile

solvingproblems.On hitting a snagfor the �rst time, theprogramcreatesa new snagdescription

that characterizesthe failure in termsof the themesandotherstructuresinvolved, which it then

storesin the EpisodicMemory. Snagdescriptionscanbe comparedon the basisof their themes,

enablingMetacatto evaluatethesimilarity of differentfailure situations.Furthermore,comparing

thethemesof snagdescriptionsandanswerdescriptionscanprovidecluesasto how failurescanbe

avoidedin certainproblems.

5.2 Themesand the Themespace

Themesareshort-termmemorystructuresthat describethe characteristicsof mappingsbetween

letter-stringsin a high-level, abstractway. They arecomposedof Slipnetconcepts,andarecreated

in Metacat'sThemespacein responseto structure-building activity in theWorkspace.For example,
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in the problemabc) abd; xyz) ?, if a crosswisemappingis built betweenabc and xyz as a

result of noticing the alphabeticsymmetrybetweena and z, a themecomposedof the concepts

AlphabeticPositionandoppositewill be created. A StringPosition:oppositethemewill also be

created,representingtheideathatobjectsin oppositepositionsin theirrespectivestringscorrespond

to oneanother, asexpressedby the bridgesa–z andc–x. On the otherhand,if the a-z symmetry

is not noticedanda parallelmappingconsistingof the bridgesa–x, b–y, andc–z is built instead,

noAlphabeticPositionthemewouldbecreated.In thiscase,aStringPosition:identity themewould

describetheparallelmapping.Thusthemescapturetheessentialaspectsof ananalogyby concisely

summarizinghow theletter-stringsareperceivedin relationto oneanother.

Like Slipnetconcepts,themestakeonvaryinglevelsof activation,re�ecting theextentto which

theideasthey representplayarole in theprogram'scurrentperceptionof theproblem.In thissense

they behave aspassive representationalstructures.However, in certainsituations,to be explained

below, themescanexert strongtop-downthematicpressureonperceptualprocessing.Thispressure,

which canbe turnedon or off by the programitself, selectively weakensor strengthensexisting

structuresin the Workspace,andmay causecodeletsto focus on building speci�c typesof new

structures.In fact, unlike Slipnetconcepts,themescanassumeboth positive andnegative levels

of activation.With thematicpressureturnedon,positively-activatedthemesencouragethecreation

of structurescompatiblewith theideasrepresentedby thethemes.Negatively-activatedthemes,on

the otherhand,discouragethe creationof suchstructures;instead,they promotethe creationof

alternativestructuresincompatiblewith themselves.Thusthemesact like a setof “knobs” thatcan

be usedto focusthe attentionof the programon speci�c setsof ideas. By twisting the knobs—

that is, by varyingthepatternof themeactivationsunderthematicpressure—Metacat's perceptual

processingcanbesteeredin particulardirections,guidedby theideasexplicitly representedby the

themes.

5.3 The Temporal Trace

TheTemporal Trace(or theTracefor short)servesasthelocusfor self-watchingin Metacat.Like

theWorkspaceandThemespace,it is a short-termmemorythatstoresinformationover thecourse
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of a single run. The Tracestoresan explicit temporalrecordof the most importantprocessing

eventsthatoccurduringproblemsolving.Examplesof sucheventsincludethestrongactivationof

athemeor concept,makingaconceptualslippage,creatinganew rule,hitting asnag,or discovering

anew answer. Of course,a largenumberof eventsof all sizesoccurduringtheprocessingof almost

any analogyproblem,rangingfrom local“micro” eventssuchasindividualcodeletactionsto global

“macro” eventssuchasthediscoveryof new answers.However, only thoseeventsaboveathreshold

level of importancegetrepresentedin theTrace.This allows Metacatto �lter out all but themost

signi�cant events,giving theprograma veryselective,high-level view of whatit is doing.

Oneway to appreciatethe abstract,chunkednatureof the informationin the Traceis to con-

sider the typical numberof stepsthat occurduring a run of Metacat. This dependson the level

of granularityusedto describesteps.At a very �ne-grained level of description,whereeachstep

correspondsto anactionperformedby asinglecodelet,arunmayconsistof many hundredsor even

thousandsof steps.At this level of description,no two runsareever exactly thesame,evenif they

involve thesameletter-strings(unlessbothrunsstartwith thesamerandomnumberseed).On the

otherhand,at thelevel of descriptionof theTrace,a typical run consistsof a few dozensteps.At

thislevel of granularity, eachstepcorrespondstoasingleeventrecordedin theTrace,andrepresents

theactionsof many codelets.

For example,Fig. 4 shows the contentsof the Traceafter a run on the problemabc) abd;

xyz) ?, in which the program,after trying unsuccessfullya coupleof times to changez to its

successor, answeredxyd. The eventsthat occurredduring the run appearin chronologicalorder

from left to right. This run involved a total of 1,558codelets,but the high-level pictureshown

in the Traceconsistsof just twelve events,which representthe “major milestones”encountered

alongtheway in theprogram'ssearchfor ananswer. For instance,theSlipnetconceptidentity got

activatedearlyon, dueto theprogramperceiving thea's andb's in abcandabd ascorresponding

to oneanother. This wasfollowedby thechunkingof abc andxyz into predecessorgroupsgoing

in thesamedirection(bothto theleft). Next, therule Changeletter-category of rightmostletter to

successorwascreatedfor describingabc) abd, which led inevitably to a snag.In theaftermathof

thesnag,anotherrule wascreated(Changeletter-category of rightmostletter to `d'), andabcand
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Figure4: Thetemporalrecordof a runontheproblemabc) abd; xyz) ?

xyzwerereperceivedassuccessorgroups(againgoingin thesamedirection—onlythis time to the

right). However, the programthenattemptedto usethe �rst rule again,resultingin anothersnag.

Finally, aftercreatinga third ruleandagainperceiving xyzasasuccessorgroup,theprogramfound

theanswerxyd.

Onceprocessingeventshave beenexplicitly representedin theTemporalTrace,they arethem-

selvessubjectto examinationby codelets.This allows Metacatto perceive patternsin its own be-

havior in muchthesameway thatCopycatperceivespatternsin letter-strings:via codeletslooking

for relationshipsamongperceptualstructures.In Metacat'scase,theseperceptualstructuresinclude

the“rei�ed” processingeventsin theTrace.Whena new answeris found,ananswerdescriptionis

createdby examiningthetemporalrecordto seewhicheventscontributedto theanswer'sdiscovery.

This approachis similar in �a vor to work on derivational analogy, in which the traceof a

problem-solvingsessionis storedin memoryfor futurereference,togetherwith a seriesof annota-

tionsdescribingtheconditionsunderwhich eachstepin thesolutionwastaken(Carbonell,1986;

Veloso& Carbonell,1993;Veloso,1994).In Metacat's case,however, theinformationin theTrace

is usedasthebasisfor constructinganabstractdescriptionof theanswerfound,ratherthanbeing

permanentlystoreditself.

6 Pattern-Clamping and Self-Control

The Traceallows Metacatto monitor the processingactivity in the Workspaceat a very abstract

andhighly chunkedlevel of description,enablingthe programto “see” what it is doing during a

run. Equally important,however, is the program's ability to respondto what it seesby clamping

particularthemesandconceptsathighactivation,resultingin strongtop-down pressureon process-

ing. Varioustypesof patterns, consistingof setsof themes,concepts,or codeleturgencies,canbe
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clampedby theprogramin responseto eventsin theTrace.Clampinga patternalterstheprobabili-

tiesthatcertaintypesof codeletswill run,or thatcertaintypesof Workspacestructureswill bebuilt,

which may leadtheprogramto revise its interpretationof a problemby reorganizingstructuresin

the Workspacein accordancewith the ideasrepresentedby the pattern. Thuspatternsserve asa

“medium” throughwhich theprogramis ableto wield controlover its own behavior.

Whenan event is recordedin the Trace,the themesmost active at the time of the event are

storedalong with it. Thesethemesserve as the event's thematiccharacterization. In the case

of a snagevent, the thematiccharacterizationrepresentsa failed way of interpretingtheproblem.

For example,in solvingabc) abd; xyz) ?, Metacatusually�rst perceivesabcandxyzasgoing

in the samedirection,which leadsto a snagwhosethematiccharacterizationincludesthe theme

StringPosition:identity. If Metacatcontinuesto hit the samesnagover andover, a seriesof snag

eventswill accumulatein theTrace,all with verysimilar thematiccharacterizations.Thissimilarity

maybe noticedby codelets(theprobabilitybecominghigherasmoresnagsaccumulate),causing

themto takeactionby clampingthe “offending” themes,including StringPosition:identity, with

strongnegativeactivation.This encouragestheprogramto explorealternativewaysof interpreting

the problem,which may subsequentlyleadit to discover otheranswerssuchaswyz. In this way,

Metacatcanrecognizeits own repeatedfailuresandrespondaccordingly.

CodeletscalledProgress-watchersare responsiblefor decidingwhetheror not to unclampa

clampedpattern. In general,the purposeof clampinga patternis to catalyzea seriesof events

thatreorganizetheperceptualcon�gurationof theWorkspacein someway. It is thereforebetterto

wait until thestructure-building activity occurringin thewakeof a clamphassettleddown before

concludingthat theclamphas“run its course”. If a Progress-watchercodeletrunswhile a pattern

is clamped,it examinesthemostrecenteventin theTraceto determinehow muchtimehaselapsed

sincethe event occurred. If the amountof elapsedtime is lessthana minimum settling period,

then the codeletsimply �zzles, leaving the clampedpatternstill in effect. On the other hand,if

enoughtime haspassedwithout any new importanteventshaving transpired,thecodeletunclamps

the patternand then evaluatesthe amountof progressthat was madesincethe clamp occurred.

Dependingontheamountof progressachieved,thecodeletmaydecideto spawnafollow-upcodelet
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to seewhetheranew answercanbemadebasedon thenewly-createdstructures.

Thecriteriafor evaluatingthesuccessof aclampcanvary. Sometimes,thepurposeof clamping

a patternis to promotethe creationof speci�c typesof Workspacestructures.Other times, the

purposeis to encouragethecreationof structuresof any type,so long asthey arecompatiblewith

theclampedpattern.Theprogressachievedby a clampcanbemeasuredby observingthenumber

of structuresthatgetbuilt in theimmediateaftermathof theclamp,andtheextentto which they are

compatiblewith thepattern.

If no patternsareclampedwhena Progress-watcher codeletruns,theninsteadof checkingon

theprogressionof eventsin the Trace,thecodeletcheckson the currentrateof structure-building

activity in theWorkspace.This activity is measuredby a numberfrom 0 to 100,which servesasa

quickestimateof the“freshness”of thecurrentstructuresin theWorkspace.Moreprecisely, it is an

inversefunctionof theaverageageof themostrecentlycreatedstructures.Thustheactivity level

tendsto remainhigh aslong asnew structuresarebeingbuilt, but eventuallydropsto zeroin the

absenceof new structures.

If theactivity level is zero,indicatingthat nothingmuchis happeningin the Workspace,then

Metacatmayhavearrivedatanimpassein its searchfor answersto thecurrentproblem.This is not

quiteasbadashitting a snag,but it still oughtto prodtheprograminto trying somethingdifferent.

However, in thecaseof animpasse,thereis usuallyno clearsetof “offending”structuresor themes

to pin theblameon,unlike in thecaseof a snag.Indeed,theimpassemaywell arisefrom a lack of

appropriatestructures,ratherthanfrom theexistenceof the “wrong” structures.Therefore,in the

absenceof Workspaceactivity, Progress-watchercodeletscheckto seewhetherparticulartypesof

new structuresmaybeneeded.If so,they mayclampa patternof codeleturgenciesin response,in

anattemptto catalyzestructurecreation.

For example,a Progress-watcher might examinethe quality of the rules that have beenbuilt

so far. If no goodrulesyet exist, the codeletmight try to encouragethe creationof betterrules

by clampinga patternof codeleturgenciesthatstronglyincreasestheprobability that rule-seeking

codeletswill run,while inhibiting othertypesof codelets.Eventually, otherProgress-watcherswill

turnoff theclamponceenoughtimehaspassedwith nomoreeventshaving beenaddedto theTrace.
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Sincethisparticularclampis only concernedwith thecreationof new rules,theamountof progress

achievedis judgedsolelyonthebasisof thequalityof therulesthatgetcreatedin theclamp'swake

(if any).

6.1 Answer Justi�cation

Metacat's pattern-clampingmechanismsgive it anotherimportantcapability, which Copycatlacks.

Unlike Copycat,Metacatis able to evaluateanalogiessuggestedto it by the user, in addition to

makinganalogieson its own. Whenprovided with a speci�c answerto a problem,the program

“works backwards”from the answertoward an understandingof why it makessense.Oncethe

answerhasbeenunderstood,it canbecomparedandcontrastedwith otheranswersthattheprogram

haseitherbeenshown or hasdiscoveredon its own.

This type of “hindsight understanding”presentslittle dif�culty for humans.Peoplewho are

askedtosolvetheproblemabc) abd; mrrjjj ) ?, for example,maynot think of theanswermrrjjjj ,

evenwhengivenanunlimitedamountof time. However, assoonasthisanswerissuggestedto them,

they have no troubleseeingwhy it makessense,eventhoughthey didn't think of it themselves. In

a similar vein, suggestingthe somewhat tongue-in-cheekanswerabd usuallyelicits a few laughs,

along with noddingagreementthat it makessensein a silly way, althoughfew peoplegive this

answeron their own (Mitchell, 1993).This is not to saythateverysuggestedanswercanbereadily

understoodin retrospect(for example,apersonmightnever�gure out thejusti�cation for ananswer

suchasmssjjj), but for many non-obviousanswers,noadditionalexplanationbeyondjusttheanswer

itself is needed.

WhenMetacatrunsin justify mode, it attemptsto discover a way of interpretingthe problem

suchthat the given answermakessense.To do so, it begins by building up perceptualstructures

amongthe letter-strings,as usual. This bottom-upapproach,however, may lead it to build an

inconsistentinterpretationof theproblemthatdoesnot supporttheanswerin question.Neverthe-

less,examiningpartsof this interpretationmaysuggestnew ideasto focuson. More precisely, an

Answer-justi�er codeletmaycomparethe rule structuresinvolvedand,basedon their differences,

clampa patternof themesdesignedto reorganizethe mappingbetweenthe initial string andthe
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targetstringin awayconsistentwith therulesandtheanswer.

For example, when Metacat is askedto justify the answerwyz to the problemabc) abd;

xyz) ?, it usuallystartsoutby building same-directionmappingsbetweenall of thestrings.(Snags

do not arisein justify mode,sincethe answeralreadyexists.) In addition,the “top” rule Change

letter-categoryof rightmostletter to successordescribingabc) abd, andthe“bottom” ruleChange

letter-categoryof leftmostletter to predecessordescribingxyz) wyzmaybecreated.This stateof

affairs is shown in Fig. 5. Althoughthe threestringmappingsarelocally consistentwhenconsid-

eredin isolation,togetherthey do not makesenseata globallevel. Thelettersc andx arenot seen

ascorrespondingto eachother, yet they areboth identi�ed by the rulesasbeingthe objectsthat

changein their respectivestrings(thec to its successorandthex to its predecessor).

Comparingthetwo rulesto eachother, however, suggeststheideaof rightmost-leftmost sym-

metry, aswell assuccessor-predecessorsymmetry. This ideacanbecapturedby apatternof themes

includingStringPosition:opposite, Direction:opposite, andGroupType:opposite.2 Metacatcanex-

plore the rami�cations of this ideaby positively clampingthesethemesin the Themespace.The

stateof theTemporalTraceat the time of theclampis shown above theWorkspacein Fig. 5. As

canbe seen,clampingthepatterncausestheconceptof oppositein the Slipnetto becomehighly

activated.Theensuingtop-downthematicpressurestronglypromotesthecreationof new structures

thatsupportmappingabcandxyzontoeachotherin acrosswisefashion,andsigni�cantly weakens

existing incompatiblestructuressuchasthe a–x andc–z bridges. As a result, the original map-

ping betweenabc andxyzshown in Fig. 5 is swiftly reorganizedby codeletsinto a new mapping

consistentwith theclampedthemes.

Fig. 6 shows the �nal, globally consistentinterpretation,in which c andx areseenascorre-

sponding.Furthermore,in thewakeof theclamp,thepreviouslyunrecognizedalphabeticsymmetry

betweena andz hasbeennoticedon accountof theincreasedattentionfocusedon theselettersby

top-down pressure,resultingin a �rst ) last slippagebeingmade.Several otherconceptualslip-

pagesinducedby theactive oppositeconceptarealsovisible in theTrace.Consequently, the�nal

answerdescriptionfor wyzincludesthe themesAlphabeticPosition:opposite, Direction:opposite,

2GroupType andObjectType aresynonymsfor theconceptsGroupCategory andObjectCategory.
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Figure5: An inconsistentinterpretationof theanswerwyz

Figure6: The�nal, consistentinterpretationof wyz
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GroupType:opposite, andStringPosition:opposite.

6.2 Jootsing

Anothertypeof codeletthatwatchestheactionfrom thehigh-level vantagepoint of theTemporal

Traceis called a Jootser (a term coinedby Hofstadter, short for “ jumping out of the system”).

Thesecodeletsare responsiblefor noticing repetitive behavior that the programhasfallen into.

An exampleof suchbehavior arising from repeatedlyhitting a snagin abc) abd; xyz) ? was

mentionedearlier. However, Jootsercodeletsaresensitive to otherkindsof situationsaswell. For

example,it is possiblefor Metacatto become“�xated” onsomeidea,suchthatit endsup clamping

the samepatternover andover again,without makingany signi�cant progress.In this case,too,

Jootsercodeletsmaynoticea seriesof recurringeventsin theTraceandtakeaction.

For instance,if an analogyproblemhappensto involve a string that changesin somecompli-

catedway, it may be too dif�cult for the programto build a rule that describesthis change.The

programmayenduprepeatedlyclampingpatternsin afutile effort to spurthecreationof new rules.

Repetitive clampingbehavior can even arisefrom unsuccessfulattemptsto breakout of a cycle

of snags.That is, clampinga patternin responseto a recurringsnagmay prove to be ineffective,

leadingonly to furthersnagsandmorepattern-clamping,ratherthanto a new interpretationof the

problem.

Facedwith severalsimilarclampeventsin theTrace,aJootsercodeletdecidesprobabilistically

whetherto “joots” basedon thenumberof clampsandtheaverageamountof progressachievedby

each.Themoreclampeventsthereare,themorelikely jootsingis to occur, especiallyif theamount

of progressis low, unlessrecentclampsappearto be making more headwaythan earlier ones.

Jootsingfrom repeatedclamps,however, doesnot involve clampingany new patternsin response,

in contrastto jootsingfrom repeatedsnags.Instead,Metacatsimply“givesup” in agracefulmanner

andstops.

The following two examplesillustratethe ideaof jootsing. In the �rst, Metacattries to justify

the answeraaabcccto the problemeqe) qeq; abbbc) ?. It eventuallygivesup after trying un-

successfullyseveraltimesto connecttheconceptof LetterCategory in eqeto theconceptof Length
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Figure7: An emerging but still incompleteinterpretationof aaabccc

in aaabccc.

By time step2437, the programhasperceived both abbbcand aaabcccas successorgroups

basedon the letter-categoriesa–b–c, andhascreateda varietyof top andbottomrulesdescribing

eqe) qeqandabbbc) aaabccc(seeFig. 7). Over thenext 2000time steps,theprogramclamps

severalpatternsof themesasaresultof comparingvarioustopandbottomrulesto oneanother. For

example,at time step4363,the programcomparesa top rule that describesthe objectsof eqeas

swappingtheir letter-categorieswith a similar bottomrule that describesthe objectsof abbbcas

swappingtheir lengths. Theserulesdiffer by only oneconcept,but to maketheminter-translatable,

aLetterCategory ) Lengthslippagemustsomehow bemadebetweeneqeandabbbc. Theprogram

thereforeclampspatternsof themesdesignedto inducethe creationof a mappinginvolving this

slippage(seeFig. 8). Unfortunately, however, building sucha mappingrequireseqeto beseenasa

single,chunkedgroup,which is impossiblein thecurrentversionof Metacat,sinceonly successor-

ship,predecessorship,or samenessrelationsarerecognizedamongletters.Thustheprogramfalls

into an unsuccessfulcycle of pattern-clamping.Eventually, at time step6196,a Jootsercodelet

noticestheseriesof repeatedclampsin theTraceanddecidesto terminatetherun, without having

achieveda completeunderstandingof aaabccc(seeFig. 9).
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Figure8: Attemptingto inducea LetterCategory ) Length slippageby clampingthemes

Figure9: The�nal, unjusti�ed interpretationof aaabccc
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As this exampleshows, onceMetacatrecognizesthat its attemptsto justify an answerarenot

succeeding,it maydecideto settlefor anunjusti�ed answer, dependingon how closeit cancome

to a completejusti�cation. In general,if valid rulesexist for describingboth the top andbottom

string changes,and if theserules are almost the sameundertranslation,differing by at most a

few concepts,thentheprogramwill throw in thetowel, reportingits failure to understandhow the

unjusti�ed slippagesarise. It will alsoincludeunjusti�ed themesbasedon theseslippagesin the

answerdescriptionthatis createdat theendof therun.

The moreunjusti�ed slippagesthereare,however, the lesslikely jootsingis to occur. Never-

theless,thereis alwaysthepossibility thattheprogramwill give up too easily, reportingananswer

asunjusti�ed whenin fact it couldbecompletelyjusti�ed with furthereffort, althoughin practice

this doesnot happenvery often.On theotherhand,of course,it is impossiblefor Metacatto know

which answersarebeyond its ability to justify in principle,sincethis would requirea typeof self-

knowledgefar beyond thecapabilityof thepresentprogram(for example,Metacatwould have to

know thatit is notcapableof seeingeqeasasinglegroup).In any case,theprogramat leastknows

thatit hassettledfor anunjusti�ed answer, andnotesthis fact,alongwith theassociatedunjusti�ed

themes,in its EpisodicMemory.

The secondexampleof jootsing involvesthe sameproblem,eqe) qeq; abbbc) ?, but this

timeMetacatmustsolveit on its own, insteadof beinggivenananswerto startwith. In this run,the

programbeginsby structuringabbbcasa successorgroupcomposedof thelettera, thegroupbbb,

andtheletterc, asin thepreviousexample.Thetwo rulesshown below arealsocreatedto describe

eqe) qeq:

� Swapletter-categoriesof all objectsin string

� Changeletter-categoryof leftmostletter to `q'
Changeletter-categoryof middleletter to `e'
Changeletter-categoryof rightmostletter to `q'

Aroundtimestep1100,theprogramattemptsto applythe�rst rule to abbbc, which resultsin a

snag,sincea three-wayswapbetweena, b, andc is impossible(seeFig. 10). If thesecondrulehad

beenchoseninsteadof the�rst, theprogramwould have foundtheanswerqeeeq, but becausethis

rule is lessabstractthanthe�rst, it is lesslikely to bechosenon average.
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Figure10: Attemptingto swapthecomponentsof abbbc

Over thenext 3000time steps,Metacattriesagainandagainto swapthecomponentsof abbbc,

often breakingvariousstructuresin the process,but alwaysrebuilding themin the sameway as

before.Eventually, at time step4280,a Jootsercodeletnoticesthepatternof recurringsnagevents

in the Trace,all of which involve the themesStringPosition:identity, ObjectType:identity, and

ObjectType:different. Thesethemesarise from the program's interpretationof the letterse, q,

ande in eqeascorresponding,respectively, to thelettera, thegroupbbb, andtheletterc in abbbc.

TheObjectType:identity themeis basedonthee–a ande–c bridges,while theObjectType:different

themeresultsfrom thebridgebetweenq andbbb, sinceoneis a letterandtheotheris agroup.

In aneffort to avoid therecurringsnag,thecodeletprobabilistically decidesto negatively clamp

theObjectType:identity theme.Theensuingthematicpressureresultsin abbbcbeingreinterpreted

asa predecessorgroupgoing to the left, anda new rule beingcreatedto describeeqe) qeq, but

thesenew structuresdo not really changethe basicsituation. Soonafterwards,anotherJootser

codelettries again,this time clampingboth ObjectType themes,which effectively paralyzesthe

programfor thedurationof theclampperiod,sinceno structurescanbe built that arecompatible

with both of thesethemessimultaneously. Fig. 11 shows thestateof the WorkspaceandTraceat

thetimeof thelatterclamp.
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Figure11: Thesituationlatein therun,afterseveralsnagsandclampshave occurred

A few hundredcodeletslater, theprogramhits thesnagagain.This is followedshortlythereafter

by anotherclamp. This clamp,like theonebeforeit, achievesno new progress.After hitting the

snagyet again,theprogram�nally decidesto giveup. More precisely, at time step5933,a Jootser

codeletnoticesthethreeclampeventsin theTrace,all of whichhaveoverlappingsetsof associated

themes.Moreover, neitherof thetwo mostrecentclampshave resultedin any discernibleprogress,

which further increasestheprobabilityof jootsing.Consequently, theprogramprintsa termination

messageandendstherun, insteadof just continuingto cycle.

6.3 Levelsof Control in Self-Watching Systems

Settlingfor anunjusti�ed answerafterrepeatedlytrying to makesenseof it, asin the�rst example,

or attemptingto circumventa recurringsnagby clampingthemes,asin thesecondexample,canbe

thoughtof as“�rst-order” jootsing. In contrast,recognizingwhenrepeatedattemptsto circumvent

asnagareleadingnowhere,asin thesecondexample,canbethoughtof as“higher-order”or “meta-

level” jootsing—thatis, jootsingfrom repeatedattemptsat jootsing.

This importantdistinctioncanbeframedmoreclearly in termsof event typesin theTemporal
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Trace.Let usdesignateasTypeI aneventthatoccursdirectly in responseto processingWorkspace

structures.For example,snageventsareof TypeI, becausethey arisefrom afailedattemptto apply

a rule to a string (asshown earlierin Fig. 10). A clampevent thatoccursasa resultof comparing

two ruleswhentrying to justify ananswer(asshown in Fig.8) is alsoof TypeI. Likewise,clamping

a patternof codeleturgenciesin an effort to spur the creationof new structuressuchas rules is

a Type I event aswell, sincethis happensin responseto poor-quality (or nonexistent)structures

in the Workspace.In otherwords,Type I eventsin the Tracearisefrom �rst-order, subcognitive

processingactivity in theWorkspace.

On the other hand,a Type II event is one that occursdirectly in responseto Type I events

in the Trace. For example,clampinga patternof themesin responseto a recurringsnag(as in

the secondexampleof section6.2) is a Type II event, sinceit is triggeredby noticing a series

of snageventsin the Trace. In otherwords,Type II eventsarisefrom patternsof activity at the

cognitiveprocessinglevel,or, saidanotherway, from viewing subcognitiveprocessingactivity at an

appropriatelyabstractlevelof description. Thus�rst-order jootsingcorrespondsto noticingaseries

of Type I eventsin the Tracethat all sharesimilar thematiccharacterizations,andrespondingin

someappropriateway, while meta-level jootsingcorrespondsto noticingandrespondingto TypeII

events.

Theimportantpoint is thatthesamemechanismsareresponsiblefor both�rst-order andmeta-

level jootsingin Metacat—namely, Jootsercodeletsandthe explicit representationof processing

eventsin the TemporalTrace. This re�ects our belief that a self-watchingsystemshouldnot be

organizedasa rigid hierarchyof distinct levels,with eachlevel responsibleonly for detectingand

respondingto patternsoccurringat thelevel immediatelybelow it, implying theneedfor anin�nite

stackof separate“watcher” mechanisms.Instead,a singlesetof mechanismsshouldbe capable

of detecting�rst-order patterns,higher-order patternswithin thesepatterns,patternsof patterns

of patterns,and so on, with all levels fused togetherand no limit in principle on the potential

complexity of thepatternsinvolved(Hofstadter, 1985a).
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7 Program-Generated Commentary

AsMetacatworksonananalogyproblem,it displaysarunningcommentaryin Englishsummarizing

the “ideas” that occur to it asit tries to discover an answer(or to makesenseof oneprovided to

it). This narrative, which appearsin Metacat's Commentarywindow, correspondsclosely to the

chain of events in the TemporalTrace,althoughit is not an event-by-event transcriptionof the

informationrecordedthere.Rather, it consistsof explanatorymessagesgeneratedfrom timeto time

by codeletsasthey goabouttheirbusiness.For example,whenMetacatencountersasnag,it reports

this fact andbrie�y explainswhy thesnaghasoccurred.Upondiscoveringa new answer, it states

its “opinion” of theanswer'squality, andmentionsany otheranswersit hasseenin thepastthatthe

newly-found answerremindsit of. Theprogramalsomentionswhenit is getting“frustrated”by a

lack of progress,suchasin the caseof failing to creategoodrulesfor describingstring changes.

Furthermore,afterattemptingto focuson somenew ideaby clampinga patternof themes,it gives

a brief assessment,in retrospect,of the progressachieved by the clamp. The programcan also

commentonthesimilaritiesanddifferencesbetweenvariousanswers,if promptedby theuser.

Fig.12 illustratesthetypeof commentarytypically generatedby theprogramduringarun. The

exampleon theleft shows a run on theproblemabc) abd; xyz) ? in which theprogramhits the

zsnaga coupleof timesandthenanswersxyd (theTemporalTracefrom this runwasshown earlier

in Fig. 4). As it happens,the answerxyd remindsthe programof a similar answerto a different

problemthatit hasalreadysolved.Continuingon, theprogramthen�nds the“do-nothing”answer

xyz, basedon the rule Changeletter-category of letter `c' to `d'. This rule is even more literal-

mindedthanthe rule Changeletter-category of rightmostletter to `d'. At this point, promptedby

theuser, theprogramcomparestheanswerxyzto theanswerxyd, expressinga preferencefor xyd.

Next, Metacatis given the answerdyz to the sameproblemandaskedto justify it (Fig. 12,

right). In this run, theprogramhasdif�culty at �rst discoveringa rule to describethechangefrom

xyzto dyz. Its commentabout“trying harder”arisesfrom clampingapatternof codeleturgenciesin

responseto this lack of rules.As it turnsout, threenew rulesgetcreatedin thewakeof this clamp.

The programthereforejudgesthe amountof progressmadeby the clampassatisfactory. In fact,

analyzingthenewly-createdrulesleadstheprogramto subsequentlyclampa patternof themesin
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Figure12: Metacat'scommentaryfrom a runontheproblemabc) abd; xyz) ? in which it found
the answersxyd and xyz (left), and from a justi�cation run on the sameproblemin which the
programwasgiventheanswerdyz(right).

an effort to createa mappingbetweenabcandxyz that is compatiblewith the rules. This second

clampis indicatedby thecomment,“Aha! I have anotheridea...” This clampspursthecreationof

many new structures,leadingto the interpretationof abc andxyz asmirror imagesof eachother,

which in turn leadsto a successfuljusti�cation of dyz. Theprogramthereforejudgestheprogress

achieved by the secondclampto be very high, even thoughit considersdyzitself to be a “pretty

mediocre”answer. Finally, againpromptedby the user, the programcomparesthis answerto the

answerxyd foundearlier, which it judgesin theendto beof higherquality thandyz.

From theseexamples,it may appearthat Metacatpossessesa sophisticatedlinguistic ability.
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However, it mustbestressedthatthis is not thecase.Theprogram'scommentaryis generatedby a

setof prefabricatedphrase-templates,which get �lled in andcombinedin �e xible waysaccording

to context. SeeMarshall(1999,Chapter4) for a detaileddiscussionof thesemechanisms.In the

run shown in Fig. 12, for example, the explanationof the snagis generatedon the basisof the

WorkspacestructuresandSlipnetconceptsinvolvedin thesnag—namely, theletterz, thestringxyz,

andtheconceptsof LetterCategory andsuccessor. As anaddedtouch,thesecondtime theprogram

hits the snag,it insertsthe word “again”, on accountof the fact that a previous snagevent exists

in the TemporalTrace. In addition,the programusesstockphrasesto describecertainnumerical

values,suchastheoverallmeasureof answerquality (e.g., “pretty mediocre”,“pretty bad”), or the

progressachievedby a clamp(e.g., “some”, “a lot of”), or thestrengthof remindingof oneanswer

by another(e.g., “strongly”). Otherphrasesarecompletelycanned,suchas“I seemto have run

into a little problem”,which theprogramprintsout whenever it hitsa snag,or “Let' s see...”, which

is printedwhenever theprogramcomparesanswers.Furthermore,no typeof linguistic interaction

with theprogramis possible.

Thepurposeof Metacat's commentaryis to show theprogressionof activity thatoccursduring

a run in a very user-friendly andsomewhat whimsical fashion,as if the programwere“thinking

out loud” while it solvesproblems,andalso to summarize,in an easilyunderstandableway, the

parallelsanddistinctionsbetweenanswersthatareperceivedby theprogram.It is not intendedas

a seriousmodelof languageprocessing.As will bediscussedbelow, answersarecomparedon the

basisof theirunderlyingconceptualrepresentations, whichconsistof thethemesandrulesstoredin

answerdescriptions.Metacat's ability to recognizesimilaritiesanddifferencesbetweenanalogies

at this representationallevel is what counts,not its ability to summarizethesecomparisonsin a

human-readableform.

Thatsaid,it is importantto addthatnot all of the wordsusedby theprogramarecompletely

devoid of semanticcontent.To besure,mostof themare:“okay”, “think”, “mediocre”,“I”, “me”,

andsoon. However, someof them,suchas“letter”, “letter-category”, “group”, “successor”,and

“direction”, denoteconceptsthat the programdoesgenuinelyunderstand—ina limited but quite

defensiblesense—withinthecon�nesof its letter-stringworld. Thesewordscorrespondto Slipnet
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Figure13: Commentaryfrom ajusti�cation runwith “Eliza mode”on(left) andoff (right), showing
theone-to-onecorrespondencebetweenthecommentsgeneratedin eachcase.

concepts,whosesemanticsemerge from thecomplex waysin which they interactwith perceptual

processing,asdiscussedearlierin section4.

Although the colloquial toneof Metacat's commentaryis meantto be humorous,it raisesthe

potentialdangerof theso-called“Eliza effect”, which refersto thewidespreadtendency of people

to readfar moremeaningthanis warrantedinto text generatedby acomputerprogram.Clearly, the

outputgeneratedby Metacatmight lead(or mislead)a casualobserver into falling for this effect.

Therefore,in theinterestof transparency, theprogramcanberun in two differentlinguistic output

modes.Whenrunningin “Eliza mode”,Metacatgeneratesthetypeof commentaryshown in Fig.12.

With thismodeturnedoff, theprogramusesmoreneutrallanguageto describetheeventsthatoccur

duringa run (theexplanationsgeneratedwhencomparinganswers,however, arenot affected).For

example,Fig. 13 showstheoutputfrom thesecondrunof Fig. 12,alongsidetheisomorphicoutput

producedwith Eliza modeturnedoff. Exactly the samenumberof paragraphsaregeneratedin

eithercase.

7.1 Comparing Analogies

When Metacatcomparestwo analogies,it retrieves their answerdescriptionsfrom its Episodic

Memory and analyzesthe themesand rules containedtherein. In general,two answerdescrip-
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Problem/Answer Themes Typeof Rule

abc) abd; xyz) wyz AlphabeticPosition:opposite Abstract
StringPosition:opposite

rst) rsu; xyz) wyz StringPosition:opposite Abstract
abc) abd; xyz) xyd StringPosition:identity Literal
rst) rsu; xyz) xyu StringPosition:identity Literal
abc) abd; xyz) dyz AlphabeticPosition:opposite Literal

StringPosition:opposite
rst) rsu; xyz) uyz StringPosition:opposite Literal

Table1: Answerdescriptionsfor thexyzfamily of analogies

tionsmayshareidenticalthemes(calledcommonthemes),they mayhave themesof thesametype

which differ by relation(calleddiffering themes),or oneor both answersmay have themesthat

are not presentin the other answerat all (called unique themes). For example,consideragain

the xyz family of analogiesdiscussedin section3 (Fig. 1). Table1 shows someof the informa-

tion storedin the answerdescriptionscreatedby Metacatfor theseanalogies,including themes

characterizingthe mappingbetweenthe initial string andtarget string. (For clarity, not all of the

storedinformationis shown.) The answersxyd andxyu sharea commonStringPosition:identity

theme.Ontheotherhand,xyu anduyzarebasedonthediffering themesof StringPosition:identity

andStringPosition:opposite. In the caseof the two wyzanswers,the �rst onecontainsa unique

AlphabeticPosition:oppositetheme.

Analyzingthethemesandrulesshown in Table1 bringsout clearly thesimilaritiesanddiffer-

encesbetweentheseanalogies.For example,a crucialdistinctionbetweenthe�rst wyzanswerand

dyz is the abstractnessof the rule usedto describeabc) abd. The descriptionsof xyd andxyu

areidentical,re�ecting thestrongunderlyingsimilarity of thesetwo literal-mindedanalogies.The

differencebetweenthe two wyzanalogieslies in thepresenceor absenceof the ideaof alphabetic

symmetry. Moreover, the way in which theseanalogiesdiffer is preciselythe sameastheway in

whichdyzdiffersfrom uyz.

Thecoherenceof ananswercanbejudgedby comparingtheabstractnessof theanswer'sthemes

with theabstractnessof theconceptsmakinguptheanswer'srule. For example,dyzis characterized

by themesinvolving theabstractconceptof opposite, but dependsonaliteral-mindedinterpretation
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of abc) abd. This “dissonance”is the reasonthat Metacatconsidersdyz to be an incoherent

analogy, asit explainedin Fig. 12.

The following is a samplingof Metacat's explanationsof the similaritiesanddifferencesbe-

tweensomeof theanalogiesin Table1. To generatetheseexplanations,theprogramwas�rst run

(in justify mode)on eachof theanswers,andwasthenaskedto comparethem. The �gures show

theoutputgeneratedby theprogram.

In Fig. 14, theprogramcomparestheanswerswyzandxyd to theproblemabc) abd; xyz) ?,

andexplainswhy it considerswyzto bethebetteranalogy. Thephrase“a richersetof ideas”refers

to thefact thatwyz'sanswerdescriptioncontainsmorethemesthanxyd'sdescription.

Thenext examplesillustrateanswercomparisonacrossdifferentproblems,namely, abc) abd;

xyz) ? andrst ) rsu; xyz) ?. This amountsto comparinganswers“vertically” in Fig. 1. In

Fig. 15, the programexplainswhy it considersthe answersxyd andxyu to be fundamentallythe

sameanalogy. As theprogramnotes,the rulesgiving rise to theseanswersarevery similar, since

they both involve changingthe rightmostletter in a literal-mindedway. The programassignsa

ratingof “pretty mediocre”to eachanswer, basedon thelow degreeof abstractnessof theanswers'

underlyingthemesandrules.

In Fig.16, thetwo wyzanswersarecompared.In thiscase,theprogramrecognizestheessential

differencebetweentheseanalogies—namely, the presenceof alphabeticsymmetryin onebut not

theother—despitethesuper�cial identityof thetwo answers.

In Fig. 17, theprogramcomparestheanswersdyzanduyz, eachof which involvesa somewhat

incoherentblendof abstractandliteral-mindedperspectives.As in thepreviouswyzvs.wyzcase,the

programidenti�es the presenceor absenceof alphabeticsymmetryasthe fundamentaldifference

betweenthesetwo analogies.It alsonotestheir peculiarincoherence,expressinga preferencefor

uyz.

7.2 Reminding

Closelyrelatedto answercomparisonis thephenomenonof reminding,in which oneanswermay

triggertheretrieval from memoryof otheranswersthatarein somewaysimilar. This mayhappen
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Figure14: abc) abd; xyz) xydversusabc) abd; xyz) wyz

Figure15: abc) abd; xyz) xydversusrst) rsu; xyz) xyu

Figure16: abc) abd; xyz) wyzversusrst) rsu; xyz) wyz

Figure17: abc) abd; xyz) dyzversusrst) rsu; xyz) uyz

43



Figure18: Six answerdescriptionsandonesnagdescriptionin memory

wheneveranew answeris discoveredor justi�ed by theprogram.Whenanew answeris found,the

answerdescriptioncreatedfromtheinformationin theTemporalTraceactsasanindex intomemory,

causingotherstoredanswerdescriptionsto becomeactivatedin proportionto theirsimilarity to the

new answer. Similarity betweenanswerdescriptionsis determinedby a numericalmeasurefrom 0

to 100calledthedistance, whichmeasurestheamountof overlapof theanswerdescriptions'themes

andconcepts.If theactivationlevel of ananswerdescriptionexceedsa�x edthreshold,Metacatwill

beremindedof theanswer, with theactivationlevel correspondingto thestrengthof recall.

Fig. 18 shows anexampleof thestateof Metacat's memoryupondiscoveringtheanswerwyz

to theproblemrst) rsu; xyz) ?, afterhaving seena few otheranswersto this problemandto the

problemabc) abd; xyz) ?. Thereis alsoa snagdescriptionfor abc) abd; xyz) ?, indicating

that the programran into a snagwhensolving this problemon its own. The activation levels of

answersareindicatedby shadesof grey, rangingfrom whitefor fully-activatedanswersto darkgrey

for dormantones(sothatthelessstronglyactivatedanansweris, themoreit appearsto fadeinto the

backgroundof Metacat'smemory).In thisexample,wyzis themostactiveanswer, sinceit wasjust

found.It haspartiallyactivatedtheotherwyzanswer, and,to alesserextent,uyz. Theotheranswers,

however, aretoo distantfrom wyzto be recalled.As a result,Metacatreportsin its Commentary

window thatthenewly-foundanswer“somewhat” remindsit of theotherwyzanswer, and“vaguely”
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remindsit of uyz. (Theprogramusestheterms“vaguely”,“somewhat”, and“strongly” to describe

theactivationlevelsof answerdescriptions,correspondingrespectively to thenumericalranges1–

30,31–70,and71–100.)

SnagdescriptionsenableMetacatto “appreciate”certainanswersin waysthatotherwisewould

not be possible. For example, consideragain the answeraaabcccto the problem eqe) qeq;

abbbc) ?. As we saw in the sampleruns of section6.2, the programis unableto get this an-

sweron its own, becauseit is incapableof perceiving e–q–eand1–3–1 asuni�ed chunks,dueto

the absenceof predecessor, successor, or samenessrelationsamongtheparts. Consequently, it is

unableto connecttheideaof letter to theideaof numberatanabstractlevel,andthereforeneversees

theseideasasplayinganalogousrolesin eqeandabbbc. Instead,it endsuprepeatedlyattemptingto

swapthea's,b's,andc's. Ontheotherhand,if thisansweris providedby theuser, theprogramcan

makesenseof it, althoughin anincompleteway. It still considerstheconnectionbetweenletterand

numberto bean“unjusti�ed idea”. More precisely, it includesanunjusti�ed themein theanswer

descriptionfor aaabcccbasedon its failure to maketheslippageLetterCategory ) Length.

Thesameis truefor theansweraaabaaato therelatedproblemeqe) qeq; abbba) ?. Metacat

canalmostmakesenseof it, but cannotget it on its own. However, thereis a crucial difference

betweenaaabaaaandaaabccc, aswaspointedout earlierin section3. In eqe) qeq; abbba) ?,

swappingletter-categoriesis perfectlyfeasible,so thereis no needto view abbbaas1–3–1. That

is, no snagarisesin this problem.In a sense,then,theansweraaabcccis thebetteranalogy, since

seeingabbbcas1–3–1 providesan elegantway arounda snag,while seeingabbbaas1–3–1 is

unnecessary. Metacatcanmakethis observation,but it canonly do soif it knows that theproblem

eqe) qeq; abbbc) ? leadsto a snag. If it hastried this problemon its own, it will know this,

becausea correspondingsnagdescriptionwill exist in memory. Conversely, if it is shown the

answeraaabcccwithout having �rst tried to solve theproblemitself, it will remainunawareof the

possibilityof asnagarising,andwill notperceive thissubtledistinctionbetweenthetwo analogies.

The following experimentillustratesthis behavior. First, Metacat's memorywas clearedin

order to resetthe programto a “tabula rasa” state. It was then shown the analogyeqe) qeq;

abbba) aaabaaaandaskedto justify it. At the endof the run, the programcreatedan answer
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Figure19: aaabaaaversusaaabcccbeforeencounteringthesnag

Figure20: aaabaaaversusaaabcccafterencounteringthesnag

descriptionfor aaabaaa, which it thenstoredin memory. Next, theprogramwasshown theanalogy

eqe) qeq; abbbc) aaabccc. At the endof the secondrun, the programreportedthat aaabccc

stronglyremindedit of the �rst answer, aaabaaa(remindingstrength:80). At this point, thepro-

gramhadnot yet attemptedto solveeqe) qeq; abbbc) ? on its own, andthereforedid not know

thatasnagcanarise.Whenaskedto comparethesetwo analogies,theprogramreportedthatit saw

essentiallyno differencesbetweenthem.Fig. 19 showstheprogram'scommentary.

Theprogramwasthenresetto a tabula rasastateandaskedto justify aaabaaa, just asbefore.

However, it wasnext giventheproblemeqe) qeq; abbbc) ? to work on its own, with no answer

provided. In this run, theprogramattemptedunsuccessfullyto swapthe lettersof abbbca couple

of times,andthenhappenedto discover themoreliteral-mindedanswerqeeeq. Thefailure to swap

theletters,however, causeda snagdescriptionto becreatedfor this problemin memory. Next, the

programwasshown the answeraaabcccto eqe) qeq; abbbc) ?, asbefore,andaskedto justify

it. This time, the programreportedthat aaabcccremindedit only vaguelyof aaabaaa(remind-

ing strength:20), indicatingthat it perceivedtheanalogiesasbeingquitedifferent—althoughstill
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recognizablyrelated.Theprogram'scommentaryis shown in Fig. 20.

8 Discussion

A numberof researchershave developedcognitivemodelsthat incorporatearchitecturalprinciples

similar to thoseof Metacat,including emergent processingarising from many nondeterministic

agentsactingconcurrently, andthespreadingof activationamongnodesof a semanticnetworkin

responseto context-sensitivepressures.Kokinov's DUAL cognitive architecture,which formsthe

basisof theAMBR1 andAMBR2 modelsof analogicalreasoningandmemoryretrieval developed

by Kokinov andPetrov, is a casein point (Kokinov, 1994a,1994b;Kokinov & Petrov, 2001). The

developmentof thesemodelshasbeenguidedby thebelief thatsubprocessesunderlyinganalogy-

makingshouldbe integratedinto a largercognitivesystemcomprisingperception,memory, learn-

ing, andreasoning.As in Metacat,dynamiccontext-sensitiveemergentprocessingplaysa central

role in DUAL andAMBR, allowing for thecloseinteractionof representation-building, mapping,

transfer, andreminding.

Despitetheirarchitecturalsimilarities,however, MetacatandAMBR differ in termsof therela-

tiveemphasiseachmodelplacesondifferentaspectsof cognition.ThemorerecentAMBR2 model

(Kokinov & Petrov, 2001)is particularlystrongin its approachto modelingthestorageandretrieval

of memoryepisodes.In AMBR2, episoderepresentationsarehighly emergent,decentralized,and

context-sensitive,andinteractwith themappingprocessin a psychologicallyplausiblemanner. In

contrast,Metacatcurrentlylackssophisticatedmechanismsfor episodicmemoryindexing andre-

trieval. In thecurrentversionof theprogram,whena new answeris discovered,thenewly-created

answerdescriptionis individually comparedto all othersstoredin memory, in orderto determine

thenew activation levelsof thestoreddescriptions—andhencewhich answerswill berecalledas

a resultof �nding thenew answer. This simplistic approachdoesnot scalewell if many answers

exist in memory, andis thusunsatisfactoryin principle. Furthermore,asKokinov andPetrov have

pointedout, thesememorystructuresareessentiallylocalizedandstatic(althoughtheir activation

levelsmaychange,asmentionedabove). Unlike themesandSlipnetconcepts,answerdescriptions

do not interactwith eachotherthroughspreadingactivation,anddo not actively in�uence percep-
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tual processing,asthey undoubtedlyshouldin orderto modelpriming effectsandotherin�uences

of previousproblem-solvingexperiencesonperception.Developingbettermechanismsfor episodic

memoryorganizationandretrieval in Metacatis thusa highpriority for futureresearch.

On the other hand,Metacatis strongly committedto modelingconceptsas active, dynamic

entitiesthat acquiretheir meaningsfrom within the systemitself, throughtheir interactionswith

perception,asdiscussedearlierin section1. AMBR alsomodelsconcepts,but their meaningsare

not tied to thesystem'sown perceptionsin thesamewayasin Metacat.For example,AMBR may

solve analogyproblemsinvolving the conceptsof water andteapot, but the structuresrepresent-

ing theseconceptsin memorypresumablydo not becomeactivatedby the system's perceptionof

real wateror real teapots.In contrast,the conceptsbehindMetacat's analogies,suchasletter or

successor-group, acquiretheir meaningspreciselyasa consequenceof how they respondto the

perceptionof “real” lettersandgroupsin Metacat'smicroworld.

Anotherimportantdifferenceis Metacat's focuson modelingself-perception, anaspectof cog-

nition thatis not addressedby mostothermodelsof analogy-making.As we saw earlier, theinfor-

mationgleanedfrom self-watchingplaysacrucialrole in thehigh-level characterizationof answers,

enablingtheprogramto perceiveabstractsimilaritiesanddifferencesbetweenanalogiesasawhole.

We believe that a psychologicallyrealistic andcompletemodelof analogy-makingshouldoffer

someaccountof higherperceptuallevels, including thosethat re�ect aspectsof thesystem's own

behavior. In our model, the mechanismsresponsiblefor internal self-perceptionare not funda-

mentallydifferent from thoseresponsiblefor externalperception.Both involve the building and

manipulationof structuresby codelets,whetherin theTemporalTrace(for internalperception)or

in the Workspace(for externalperception).Furthermore,theseprocessesare tightly interwoven,

andarehighly dependenton thecontext-sensitiveactivationsof concepts.

Metacatalsosharessimilaritieswith case-basedreasoning(CBR)approachestoanalogy(Kolod-

ner, 1993,1994;Leake,1996).For instance,Metacat's storedanswerdescriptionscanbelikenedto

casesin CBR, sincethey form a corpusof experienceon which theprogramcandraw whenfaced

with new situations. The discovery of a new answermay trigger the retrieval of similar answers

that theprogramhasseenin thepast,in a way reminiscentof theretrieval of storedcasesin CBR
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accordingto their degreeof similarity to the target situation. In Metacat,retrieved answersare

comparedto thecurrentanswerby analyzingthesimilaritiesanddifferencesbetweentheanswers'

associatedthemes.This is roughly akin to comparingcasesin CBR in orderto determinewhich

aspectsof a retrievedcasecanbe applieddirectly to the targetsituationwithout modi�cation, and

which aspectsmustbeadaptedto �t it. Finally, Metacat's snagdescriptionscanbeviewedascases

thatstorefailure informationaboutanalogies.

However, thereareimportantdifferencesbetweenCBR andMetacat.First of all, eventhough

Metacatsolves analogyproblems,it was not conceived as a model of problem-solvingper se.

Rather, its focus is on modelingthe way in which context-sensitive conceptsallow analogiesto

beperceivedandunderstood.It is moreconcernedwith analogicalperception(andself-perception),

thanwith analogicalreasoningemployedspeci�cally asa tool for solvingproblems.Moreover, the

goalof muchCBR work hasbeento createsystemsthat learnfrom experienceto solve problems

in an increasinglyeffective or ef�cient manner, whereasin Metacatthe notion of improving the

program's performanceon analogyproblemsis not relevant. However, somerecentCBR-based

approachesto modelingcreativity (Bento& Cardoso,2001;Cardoso& Wiggins,2002)seemto be

morein harmony with Metacat'sgoalsthanpreviousCBRsystemshave been.

9 Conclusion

A primeobjectiveof this researchis to explorehow adaptable,context-sensitiveconceptscangive

risetounderstandingbyenablinganalogiesbetweenapparentlydissimilarsituationstobeperceived.

Thepresentworkextendsanddeepenstheideasdevelopedin Copycatby incorporatingmechanisms

for self-watching,episodicmemory, and remindinginto the model. Thesemechanismsmakeit

possiblefor Metacatto compareandcontrastanalogiesin an insightful way. The ability of the

programto perceivesubtleparallelsanddistinctionsbetweenanalogiesrepresentsasigni�cant step

beyondtheperceptualabilitiesof Copycat,althoughmuchwork still remainsto bedone.

Theexamplespresentedin section7 illustrateMetacat'sability to observeanddescribeits own

behavior, to recall previously-encounteredanswers,andto explain thesimilaritiesanddifferences

it perceivesbetweenanalogies.This ability relieson storingabstractdescriptionsof answersand
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processingevents,characterizedby patternsof themes,in memory. It is importantto emphasize

thatanswerdescriptionsarejustorganizedcollectionsof Slipnetconcepts,sincethey arecomposed

of themesandrules,which arein turn composedof concepts.Theseconcepts,asthe fundamental

building-blocksof answerdescriptions,form thesubstrateonwhichtheprogram'sunderstandingof

analogiesis based,andacquiretheirsemanticsthroughthewaysin whichthey respondto situations

in Metacat's letter-stringworld. Consequently, theEnglish-languagecommentarygeneratedby the

programaboutanalogies,althoughjust a surface-level veneerin many ways,ultimately restson a

deeperfoundationof conceptualrepresentationtied to perception.

Appendix: SourceCode

Thecompletesourcecodefor Metacatis available,alongwith instructionsfor downloadingandrun-

ning the program,at http://www.cogsci.indiana.edu/metacat. Demosof the examplesdiscussed

in thispaperandin Marshall(1999)areincludedwith theprogram.

References

Bento,C., & Cardoso,A. (Eds.).(2001). Proceedingsof the Workshopon CreativeSystems:Ap-
proachesto Creativityin AI andCognitiveScience, ICCBR 2001,Vancouver, Canada.

Blank, D., Meeden,L., & Marshall,J. (1992). Exploringthesymbolic/subsymboliccontinuum:A
casestudyof RAAM. In Dinsmore,J. (Ed.), TheSymbolicand ConnectionistParadigms:
ClosingtheGap, pp.113–148.LawrenceErlbaumAssociates,Hillsdale,NJ.

Blank,D. S.(1997).Learningto SeeAnalogies:A ConnectionistExploration. Ph.D.thesis,Indiana
University, Bloomington,IN.

Carbonell,J.(1986).Derivationalanalogy:A theoryof reconstructiveproblemsolvingandexpertise
acquisition. In Michalski, R., Carbonell,J., & Mitchell, T. (Eds.),Machine Learning: An
Arti�cial IntelligenceApproach,Volume2, pp.371–392.MorganKaufmann,SanFrancisco.

Cardoso,A., & Wiggins, G. (Eds.).(2002). Proceedingsof the AISB'02 Symposiumon AI and
Creativityin ArtsandScience, London,England.

Chalmers,D. J. (1990). Syntactictransformationson distributedrepresentations.ConnectionSci-
ence, 2, 53–62.

Chalmers,D. J.,French,R. M., & Hofstadter, D. R. (1992). High-level perception,representation,
andanalogy:A critiqueof arti�cial intelligencemethodology. Journal of Experimentaland
TheoreticalArti�cial Intelligence, 4(3), 185–211.

50



Chi,M., Bassok,M., Lewis, M., Reimann,P., & Glaser, R. (1989).Self-explanations:How students
studyanduseexamplesin learningto solveproblems.CognitiveScience, 13, 145–182.

Chi, M. T. H., de Leeuw, N., Chiu, M.-H., & LaVancher,C. (1994). Eliciting self-explanations
improvesunderstanding.CognitiveScience, 18, 439–477.

Chrisman,L. (1991).Learningrecursive distributedrepresentationsfor holistic computation.Con-
nectionScience, 3(4), 345–366.

Eliasmith,C., & Thagard,P. (2001). Integrating structureand meaning:a distributedmodel of
analogicalmapping.CognitiveScience, 25, 245–286.

Eskridge,T. C. (1994). A hybrid modelof continuousanalogicalreasoning.In Holyoak,K. J.,&
Barnden,J.A. (Eds.),Advancesin ConnectionistandNeural ComputationTheory, Volume2:
AnalogicalConnections, pp.207–246.Ablex, Norwood,NJ.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1990). The structure-mappingengine. Arti�cial
Intelligence, 41(1), 1–63.

Forbus, K. D., Ferguson,R. W., & Gentner, D. (1994). Incrementalstructure-mapping.In Pro-
ceedingsof theSixteenthAnnualConferenceof theCognitiveScienceSociety, pp. 313–318.
LawrenceErlbaumAssociates.

Forbus,K. D., Gentner, D., & Law, K. (1995). MAC/FAC: A modelof similarity-basedretrieval.
CognitiveScience, 19, 141–205.

Forbus,K. D., Gentner, D., Markman,A. B., & Ferguson,R. W. (1998). Analogy just looks like
high-level perception:Why a domain-generalapproachto analogicalmappingis right. Jour-
nal of ExperimentalandTheoreticalArti�cial Intelligence, 10(2), 231–257.

French,R. M. (1995). The Subtletyof Sameness:A Theoryand ComputerModel of Analogy-
Making. MIT Press/BradfordBooks,Cambridge,MA.

French,R. M. (2002). Thecomputationalmodelingof analogy-making.Trendsin CognitiveSci-
ences, 6(5), 200–205.

Gasser, M. (1993). The structuregroundingproblem. In Proceedingsof the FifteenthAnnual
Conferenceof theCognitiveScienceSociety, pp.149–152.LawrenceErlbaumAssociates.

Gentner, D. (1983). Structure-mapping:A theoreticalframework for analogy. CognitiveScience,
7(2), 155–170.

Goldstone,R., Medin,D., & Gentner, D. (1991).Relationalsimilarity andthenonindependenceof
featuresin similarity judgments.CognitivePsychology, 23, 222–262.

Halford, G. S.,Wilson, W. H., Guo,J.,Gayler, R. W., Wiles, J.,& Stewart, J. E. M. (1994). Con-
nectionistimplicationsfor processingcapacitylimitationsin analogies.In Holyoak,K. J.,&
Barnden,J.A. (Eds.),Advancesin ConnectionistandNeural ComputationTheory, Volume2:
AnalogicalConnections, pp.363–415.Ablex, Norwood,NJ.

Harnad,S.(1990).Thesymbolgroundingproblem.PhysicaD, 42, 335–346.

Hofstadter, D. R. (1984). The Copycatproject: An experimentin nondeterminismand creative
analogies.AI Memo755,MIT Arti�cial IntelligenceLaboratory.

Hofstadter, D. R. (1985a). On the seemingparadoxof mechanizingcreativity. In Metamagical
Themas, chap.23,pp.526–546.BasicBooks,New York.

Hofstadter, D. R. (1985b). Wakingup from theBooleandream:Subcognitionascomputation.In
MetamagicalThemas, chap.26,pp.631–665.BasicBooks,New York.

51



Hofstadter, D. R., & FARG (1995). Fluid Conceptsand CreativeAnalogies:ComputerModels
of the FundamentalMechanismsof Thought. BasicBooks,New York. Co-authoredwith
membersof theFluid AnalogiesResearchGroup.

Holyoak,K. J.,& Hummel,J. E. (2001). Towardanunderstandingof analogywithin a biological
symbolsystem. In Gentner, D., Holyoak,K., & Kokinov, B. (Eds.),TheAnalogicalMind:
PerspectivesfromCognitiveScience, pp.161–195.MIT Press,Cambridge,MA.

Holyoak,K. J., & Thagard,P. (1989). Analogicalmappingby constraintsatisfaction. Cognitive
Science, 13(3), 295–355.

Holyoak, K. J., & Thagard,P. (1995). Mental Leaps: Analogy in Creative Thought. MIT
Press/BradfordBooks,Cambridge,MA.

Hummel,J. E., & Holyoak, K. J. (1996). LISA: A computationalmodelof analogicalinference
andschemainduction. In Proceedingsof theEighteenthAnnualConferenceof theCognitive
ScienceSociety, pp.352–357.LawrenceErlbaumAssociates.

Hummel, J. E., & Holyoak, K. J. (1997). Distributedrepresentationsof structure:A theory of
analogicalaccessandmapping.PsychologicalReview, 104, 427–466.

Kanerva, P. (1996). Binary spatter-coding of orderedK -tuples. In von der Malsburg, C., von
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