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Abstract

This paperdescribedvietacat,an extensionof the Copycatmodelof analogy-makingThede-
velopmentof Copycatfocusedon modelingcontext-sensitive conceptsandthe waysin which
they interactwith perceptiorwithin anabstractnicroworld of analogyproblems.Thisapproach
differsfrom mostothermodelsof analogyin its insistencehatconceptsacquiretheir semantics
from within the systemitself, throughperceptionratherthanbeingimposedfrom the outside.
The presentwork extendstheseideasby incorporatingself-perceptiongpisodicmemory and
remindinginto the model. Thesemechanism&nableMetacatto explain the similaritiesand
differenceghatit percevesbetweeranalogiesandto monitorandrespondo patternghatoc-
curin its own behaior asit worksonanalogyproblems.Thisintrospectve capacityovercomes
severallimitationsinherentin the earliermodel,andaffordsthe programa powerful degreeof
self-control. Metacats architecturencludesaspectof both symbolicand connectionissys-
tems.The paperoutlinesthe principalcomponent®f the architectureanalyzeseveral sample
runsandexamplesof program-generatetbmmentaryaboutanalogiesanddiscusse$/etacats
relationto someotherwell-known modelsof analogy

1 Intr oduction

This paperdescribesa computationalmodel of analogy-makingand perceptioncalled Metacat,
which is basedon the earlier Copycatmodel developedby Hofstadterand Mitchell (Hofstadtey
1984;Mitchell, 1993).Like CopycatMetacatmodelsthe comple interplayof bottom-upandtop-
down processesnvolved in perception,usingan emegent architecturethat incorporatesaspects
of both symbolic and connectionistsystems. Metacat,however, builds on the earlier model by
focusingon self-perceptiorandits relationto othercognitive processesThelong-termgoal of this
line of researchs to understandiow high-level cognitive phenomenauchasconceptsanalogical
thinking, creatvity, and self-avarenessanemege from a subcognitie substratecomposedf a
large numberof ne-grained, nondeterministi@ctions,eachof which is far too small by itself to

supportsuchphenomena.



Few peoplewould claim thatthe individual neuronamakingup a humanbrainare“conscious”
in arything like the normal sensen which humansexperienceconsciousnessWe are forcedto
accepthefactthatself-avarenesarises somehav, outof nothingbut billions of low-level chemical
reactionsaandneuronalrings. How canindividually meaninglesphysicaleventsin abrain—evena
hugenumberof them—ultimatelygive riseto meaningfulawarenesandunderstanding®ofstadter

hasamguedthattwo ideasareof paramountmportance:

What seemgo makebrainsconsciouss the specialway they are organized—in par
ticular, the higherlevel structuresand mechanismghat comeinto being. | seetwo
dimensionsasbeingcritical: (1) thefact thatbrainspossesgsonceptsallowing com-
plex representationastructuresto be built that automaticallycome with associatie
links to all sortsof prior experiencesand(2) the fact that brainscanself-monitor al-
lowing acomple internalself-modelo arise allowing the systemanenormousiegree
of self-controlandopen-endednesé-ofstadter& FARG, 1995)

The developmentof Copycatwasintendedto explore the rst idea, by creatinga computer
modelof analogy-makingn which the representatiof conceptsis deeplyintertwinedwith the
programs mechanismsor high-level perceptuaprocessingConceptsn Copycatarenot modeled
asstaticrepresentationatructuresrather they aredynamicentitiesthatrespondo perceptuapro-
cessingn ahighly contet-sensitveway, bendingandadaptingto the situationat handin a e xible
manner Furthermorethey actively in uence perceptuaprocessingtself. This tight coupling of
conceptsand perceptionin the modelgivesrise to an ability to perceve similarities betweendif-
ferentsituationsby describinghemin termsof a commonsetof underlyingconceptsapplicableto
both situations. The ability of Copycatto makeanalogieds a direct consequencef the natureof
the programs representationf concepts.

The Metacatmodel exploresthe secondidea, by endaving Copycatwith a capacityfor self-
watding, de ned hereastheability of a systemto perceve—andto createexplicit representations
of—its own perceptuabrocessesOur objective hasbeento develop mechanismshat allow the
programto monitor its own activity andto explicitly characterizehe conceptuahssociationshat
implicitly ariseasit solvesanalogyproblems(Marshall& Hofstadtey1997;Marshall,1999). This
canbe thoughtof asaddinga higher“cognitive” layer on top of Copycats “subcognitive” layer,

enablingthe programto watchandremembemhat happenstits subcognitve level asperceptual



structuresarebuilt, recon gured,anddestroyed.This type of self-re ective avarenesss common
in humanswho arequite capableof payingattentionto, andexplicitly articulating,patternsn their
own thinking (Chi, Bassok Lewis, Reimann& Glaser 1989;Chi, de Leeuw Chiu, & LaVancher,
1994).

Copycatand Metacatare concernedvith high-level perception by which we meanthat level
of perceptuabrocessingn which conceptsplay a critical role (Chalmers,French,& Hofstadteyr
1992). In contrastlow-level perceptiorrefersto the processingf raw, modality-speci csensory
dataobtaineddirectly from the ervironment,suchasthe detectionof edgesin retinalimages,or
the processingf audio frequenciedrom the inner ear without regardto the meaningof this in-
formation. Low-level perceptualbrocessings the rst stepalongthe pathleadingto high-level
perceptionwith mary intermediatgprocessingstagedying in-betweeninvolving ever greaterde-
greesof abstractionTheendresultof this procesds the consciougecognitionor understandingf
theinput stimulusasaninstanceof a particularmentalconceptor setof concepts.

Considerfor example,the everydayexperienceof recognizingyour mother A patternof light
falls on the hundredmillion or so photoreceptocellsin your retina, and a fraction of a second
later, the idea of your mothercomesto mind. A particularmental concepthasbecomehighly
activated,while mostothersremaindormant. This processof recognition,for the mostpart, takes
placebelow thelevel of consciouswarenessOnedoesnot have to do muchdeliberatehinking in
orderto recognizeone's mother(at leastin theabsencef degradedervironmentalconditionssuch
aspoor lighting). High-level perceptiondependdargely on subcognitiveprocessingnechanisms
(Hofstadter 1985b).

Theactivationof the concepbof motherelicitedby afacialimageis arelatively simpleexample
of high-level perceptiorin action. This samephenomenortiowever, oftenoccursin moreabstract
contets, suchaswhenapersorhearsanunfamiliarpieceof musicfor the rst timeandrecognizedt
ascomingfrom aparticularmusicalperiodor composeror whena paintingis recognizedo be,say
anlmpressionistvork, orasbelongingto Picassas“Blue period”. Moving to anevenhigherlevel of
abstractiona complicatedsocialsituationinvolving tangledwebsof people,objects relationships,

andcon icting choicegnaycollectively be percevedasa“Catch-22"situation.Eventheconcepbf



motheris, in reality, a subtlematter Dependingon context, awide variety of thingscanbe viewed
asabstracinstance®f this concept.The Earth,for example,is sometimeslescribedasthe mother
of all living things,anideacommonlyexpressedy the phrase'Mother Earth”. Strictly speaking,
of course consideringa planetto be a mothermakesno senseut giventheright context we can
effortlesslyseehow theideaapplies thanksto the natural e xibility of humanconcepts.

In generalconceptdn the mind arenot sharply-de nedentitieswith clearcut boundariesal-
waysapplyingto certainthingsbut neverto others.Rathertheboundarie®f conceptareinherently
ill-de ned andblurry, andarestronglyin uenced by the context in which perceptionoccurs. We
referto this type of inherent e xibility asconceptualuidity , in orderto stresghe ideaof concepts
asnonrigid, adaptableandhighly contet-sensitve. Much work hasbeendonein cognitive psy-
chologyinvestigatinghenatureof thedistancedbetweerconceptandcatejories(see for example,
Tversky, 1977; Smith & Medin, 1981; Goldstone,Medin, & Gentney 1991). In particular the
strengthof associationbetweerconceptcanchangedynamically accordingio context. Underthe
right pressures;onceptghatarenormallyfar apartmay be broughtclosetogetheysothatthey are
bothseerasapplyingto a particularsituation(suchaswhenthe Earthis regardedsimultaneoushas
aninstanceof planetandmothel). This phenomenonywhich we referto asconceptuaklippage is
whatenablesapparentiydissimilarsituationsto be perceved asbeing“the same”atadeepermore
abstractevel.

Copycatand Metacatdiffer in importantwaysfrom mary othermodelsof analogyproposed
by researcherm Al andcognitive science.SeeFrench(2002)for a recentovervien. Probablythe
mostimportantdifferenceis the emphasiur modelsplaceon the representationf conceptsand
the role playedby conceptsn makinganalogies.Otherwell-known modelshave focusedon the
mechanismsindpsychologicakonstraintsnvolvedin mappinga sourcesituationto a targetsitua-
tion (Gentney 1983; FalkenhainerForbus, & Gentner1990; Forbus, Felguson,& Gentner1994);
on the satisfactionof multiple competingconstraintsvhenconstructingthis mapping(Holyoak &
Thagard,1989); on the mechanismghat allow storedanalogsto be retrieved from memory(For-
bus, Gentner & Law, 1995; Thagard,Holyoak, Nelson,& Goch eld, 1990; Kolodner 1993); on

theintegrationand mutualinteractionof processesesponsibldor retrieval, mapping,andtransfer



(Kokinov & Petray, 2001;Eskridge 1994);andon distributedrepresentationsf structure(Hummel
& Holyoak,1996,1997;Holyoak& Hummel,2001;Halford, Wilson, Guo,Gayler Wiles, & Stev-
art, 1994;Wilson, Halford, Gray, & Phillips, 2001). All of theseissuesareimportant,andary full
andsatisfyingtheoryof analogyshouldcertainlyincludeanaccountof them. In ourview, however,
a completetheorymustalsointegrateconceptsperceptionandmeaningnto the picture.
Whenhumangnakeanalogiesye notonly construcmentalmappingsaccordingo constraints,
we alsounderstandhe meaningof the conceptsonnectedy thesemapping-structured-or exam-
ple, a personmaking an analogybetweena situationinvolving waterand anotherinvolving heat
presumablynapsmentalstructuresepresentingvaterto structuresepresentindneat,at somelevel
of abstraction.But peoplealsounderstandvhat the underlyingconceptof waterandheatmean
from long experiencewith theseconceptsn the world. Of course the act of makingthe analogy
deepenghis understandindpy facilitating a transferof knowledgefrom onessituationto the other
But theimportantpointis thattheconstituentonceptsinderlyingtheanalogyarethemselesmean-
ingful to the person.Likewise,a computemmodelof analogyshouldoffer someaccountof how the
underlyingsymbolsand structuresthat representonceptsn an analogyacquiremeaningthem-
seles,in additionto anaccounf the structure-mappingrocessemvolved. Thatis, thestructures
that the programusesto representinalogiesshouldbe meaningfulto the programitself. This is
essentiallythe familiar symbol-groundingroblem(Harnad,1990),recastin analogicalguise.
Someconnectionistnodelsof analogyhave attemptedo addresshis problemby moving avay
from the useof symbolic representationsf sourceand target situations. Much recentwork has
focusedontheuseof distributedencodingechniquesuchasPlates holographiaeducedepresen-
tations(Plate,1994,1998),Kanena’s binary spattercode(Kanena, 1996,1998),or Smolensk's
tensorproducts(Smolensly, 1990). Examplesof suchmodelsinclude Drama(Eliasmith& Tha-
gard,2001)andthe STAR modelsof Halford et al. (1994) andWilson et al. (2001). All of these
approacheencodexplicitly-structuredrepresentationsf sourceandtargetsituationsasdistributed
activation patterns which are suitablefor processingy connectionisnetworks. Theserepresen-
tationscanbe manipulatedn a holistic fashion,without having to be decomposedhto their con-

stituentcomponentgChalmers1990; Chrisman,1991;Blank, Meeden& Marshall,1992). How-



ever, currentlythe representationssedby thesemodelsdo not acquiretheir meaninginternally
throughthe systems own perception®r throughlearning. Instead meaningis imposedfrom out-

sidethesystenthroughanessentiallyarbitraryassignmentf semanticso the patternof activation
that sene asthe constituentouilding blocksof representationsThe hopeis that eventuallythese
systemawill beableto uselearnedpatternsbaseddirectly on sensorystimuli—insteacbf arbitrary
patterns—asepresentationabuilding blocks,which will makethe representationmeaningfulto

the systemitself.

Blank's (1997)Analogatormodelattemptgo integratelearningandanalogy-makingnto a sin-
gle connectionisframevork usingdistributedrepresentationgasen tensorproducts.Analogator
learnsto makeanalogiesdbetweervery simplevisual scenecomposeaf geometricshapespnthe
basisof spatialrelationshipsuchasaboveor below Unlike themodelsmentionedoreviously, how-
ever, Analogatordoesnot startwith explicitly-structuredrepresentationdnstead the systemitself
learnsthemeaningof spatialrelationshipdy creatingits own internalrepresentationsf analogies,
throughdirectexperiencewith visual sceneslin otherwords,the meaningof the underlyingcom-
ponentsof Analogators analogiess acquiredthroughthe systems own perceptions.SeeGasser
(1993)for a more generaldiscussiorof perceptuabroundingwithin the context of simplevisual
scenes.

In bothAnalogatormndMetacat perceptiornis tightly interwovenwith analogy-makingAnaloga-
tor, however, focusesmoreon the learningof analogicabehaviorthanon the explicit modelingof
concepts In contrastMetacatemphasizesonceptsaandthe waysin which they interactwith per
ception but doesnotattemptto modellearning.Anotherdifferencds thatMetacats representations
have amoresymbolic a vor thanthepurelydistributedrepresentationsreatedy Analogator Nev-
erthelesstherepresentationsreatedoy bothmodelsaremuchmorecloselytied to perceptiorthan

thetraditionalpredicate-calculus-baseepresentationgsedby mary of the modelscited earlier

2 Analogy-Making in an Idealized World

How cansomethingaselusive asthe meaningof conceptbemodeledn acomputemprogram?The

approachtakenby Copycatand Metacatis to startsmall, by esch&ing real-world compleity in



favor of a microworld—atiny, idealizedworld designedo strip away asmary distracting,surface-
level detailsaspossiblefrom analogy-makingvhile still preservinghefundamentakssencef the

phenomenoifHofstadter 1984). This philosophydiffersfrom thatof mostothercurrentcomputer
modelsof analogywhichtypically operateonrepresentationsf “real-world” situationghatarenot

groundedn the programs own perceptionsWe believe, however, thatthisis a deepandimportant
issuethatshouldbetackledhead-onratherthanbeingsidesteppedr ignored.In our approachye

restrictthe numberof conceptsavailablein the world, which makesit possiblefor our modelsto

representonceptsn averyrich anddynamicwaythattiesthemintimatelyto perception A limited

setof conceptshowever, neednotimply alimited setof interestinganalogyproblems.Despitethe
microworld'sapparensimplicity, it harborsanexceedinglyrich variety of subtleanalogyproblems,
in which mary surprisinglycreative andnon-olviousanswersarepossible.

Theraw materialof this world consistsof 26 abstracibbjects representedslowercasdetters
for corvenience,amongwhich only three relationsare meaningful: samenesspredecessorship,
andsuccessorshipAll lettersexcepta have an immediatepredecessoiandall exceptz have an
immediatesuccessorAll otherinformationpertainingto lettershasbeenfactoredout, suchastheir
shapesr semanticconnotations.Analogiesare statedin termsof shortletterstrings(calledthe
initial string, the modi ed string, andthe target string, respectiely), which canbe thoughtof as
idealizedsituations.For example:“If abcchangego abd, how doesmrrjjj changdan ananalogous

way?” Or, moresuccinctly:

abc) abd
mrrjjj ) ?

Most people,on seeingthis problemfor the rst time, answermrrkkk or mrrjjk (Mitchell,
1993). The rightmostcomponentof abc (the letter ¢) is perceved as changingto its successor
sodoing the “samething” to mrrjjj amountsto changingthe rightmostcomponenbf mrrjjj to its
successer-eitherjjj viewed asa chunk,or just the rightmostletterj. Thereare, however, mary

otherpossibleanswerdo this problem,which peopletendto give lessoften,including:

mrrjjd (changeherightmostletterliterally to d)

mrrddd (changeherightmostchunkto d's)



mrrjjj (changgustthec's, of whichtherearenone)

mrrjkk (view mrrjjj asmr—j—j andchangeherightmostpairto its successor)
mrrjdd (view asmr—rj—jj, but changeherightmostpairto d's)

mrsjjj (changehethird letterto its successor)

mrdjjj (changeahethird letterto d)

mrsjjk (view asmrr—jjj andchangehethird letterof eachchunkto its successor)
mrskkk (changeall lettersafterthe rst two to their successors)

mssjjj (changeevery occurrencef thethird letterto its successor)

mrrijjjj (view mrrjjj abstractlyas 1-2—3andincreaseaherightmostlengthby one)
mrrkkkk (view as 1-2—3but changeboththe lengthandlettersof therightmostchunk)
abd(changehewhole stringliterally to abd)

abbddd(changehelettersto a's, b's,andd' s but retainthe 1-2-3structure)

mrk (changg'sto k's but makeeverythingsingleletters)

mrd (changg'sto d's but makeeverythingsingleletters)

Clearly, someof theseanswersare more ohvious or plausiblethanothers,but eachoneis de-
fensible,and makesmore sensethana completelyrandomresponsesuchas pxznntg Thereis,
however, no single,indisputably“correct” answer In fact, a wide rangeof answerds possiblefor
almostevery concevableproblemin this world. The subtletyandrichnessof analogy-makindhas
notbeensacri cedattheexpenseof simplicity; onthecontraryit hasbeenbroughtinto focusmore
clearly preciselybecausef theworld's austerity

It is alsoimportantto stressthe intendeduniversalityof the microworld. “Letters” hereare
really nothing more thaninstancesf abstract,atomic catgories,amongwhich only a small set
of relationsare meaningful(i.e., successorshigyredecessorshimnd sameness).lt is therefore
misleadingto regard Copycats or Metacats analogiesasbeingaboutalphabeticabtringsof letters
per se Rather stringsshould be viewed as representingdealizedsituationsinvolving abstract
catgoriesandrelations. The architectureof Copycatis “con gured” so thatthesecatayoriesand
relationsmirror our intuitive notionsaboutsuccessorshipredecessorshignd samenesamong

lettersof the alphabet but this neednot be the case. A differentcon guration could in principle



be used,re ecting a differentsetof abstractelationshipswithout signi cantly alteringthe basic
model. In fact, a programsimilar to Copycat,called Tabletop,modelsspatialaspect®f high-level
perceptionwithin a differentdomain: that of ordinary objectson a table, suchas cups, glasses,
and silverware(French,1995; Hofstadter& FARG, 1995). Importantdifferencesexist between
CopycatandTabletop,but thetwo programscanbe regardedessentiallyasdifferentinstantiatiors
of a singleunderlyingarchitecturegachof which operatesn anabstractworld of cateyoriesand
relations.Copycatis con gured sothatthesecatejoriesandrelationsre ect propertiesof lettersof
thealphabetwhile Tabletopis con gured sothatthey re ect propertieof objectson atable.
Copycats microworld is sometimegriticized as beingunableto representinalogieshetween
differentdomainsof knowledge. So-called“cross-domain“analogies—forexample,betweenthe
solarsystemandthe Rutherford-Bohmodelof theatom,or betweerwater o wing througha pipe
and heat o wing througha metal bar (Gentner 1983; Holyoak & Thagard,1989; Falkenhainer
etal., 1990)—typicallyinvolve sourceandtargetsituationscharacterizedy very differentkinds of
“real-world” conceptsAccordingto this view, thetrue power of analogycomesfrom beingableto
map quite differentdomainsonto oneanother allowing a transferof knowledgeto occurbetween
them. In contrast,it is agued,sinceCopycats sourceandtarget situationsarerestrictedto letter
stringconceptnly, themodelis “domain-speci ¢”, andhencefails to capturethe mostimportant

aspectof analogicabrocessingAccordingto Forbus, Gentner Markman,andFeiguson(1998):

Themostdramaticandvisiblerole of analogyis asamechanisnfor conceptuathange,

whereit allows peopleto import a set of ideasworked out in one domaininto an-

other Obviously, domain-speci cmodelsof analogycannotcapturethis signature

phenomenon... If wearecorrectthattheanalogymechanisnis adomain-independent

cognitive mechanismthenit is importantto carry out researchin multiple domainsto

ensurehattheresultsarenot hostageo the peculiaritiesof a particularmicro-world.

However, sucha hastyconclusionoverlooksthe principle of universalityat the core of Copy-

cat's microworld. We fully agreethat analogyis a very general,domain-independentognitive
mechanismlndeed thisis the fundamentateasonvhy we have choseranabstractmicroworld as
ourframework for modelinganalogy Sincethe “letters"—asfar asthe programis concerned—are

really just atomic categorieslinked by abstractrelationshipsthereis in principle no reasonwhy

idealizedversionsof “cross-domain’analogiesannotbe constructedvithin this world aswell.

9



For example, the answermrrjjjj to the earlier problemcould be interpretedas just suchan
analogy Onthesurfacedifferentsetsof conceptsapplyto thesituationsrepresentetly the strings
abcandmrrjjj . In anabstracsensethesestringscanbe viewed assituationstakenfrom two very
differentdomains,eachof which encompassea distinct subsetof the conceptsavailable in the
larger“universe”of theletterstringmicroworld. Theconcepof successqgifor instancejs relevant
to abcbut not (at rst glance)to mrrjjj, while the conceptof group playsa centralrole in mrrjjj .
If thetwo situationsarelookedatin theright way, however, by seeingthe stringmrrjjj in termsof
group-lengthgatherthanlettercatayories, the ideaof successorshipanbe transferredover from
the rst situationto the secondyesultingin a kind of mini paradigmshift that revealsthe parallel
1-2—-3successorshigtructureof mrrjjj , which consequentheadsto theanswemrrjjjj . Of course,
both of these"domains”involve conceptfrom Copycats letterstringworld, but the crucial point
is thatthey involve different subsetof conceptsjust asthe domainsof “cross-domain”analogies
from therealworld involvedifferentsubset®f conceptdakenfrom thelargeruniverseof real-world
conceptandrelationships.

In fact, on closerexamination thedistinctionbetweendifferentdomainsgs oftenfar from clear
For instance Holyoak and Thagard(1995) discussa complex analogybetweenWorld War Il and
the 1991 PersianGulf War. Shouldthis analogybe regardedasa “cross-domain”analogy or as
an analogybetweentwo situationswithin the commondomainof military con icts? Whatabout
the analogybetweenthe solarsystemandthe Rutherford-Bohratom? Doesthis analogyinvolve
two distinctdomains(i.e., thedomainof atomicphysicsandthe domainof astronomy)or the sin-
gle domainof scienti ¢ theories?In our view, the purporteddistinctionbetween‘cross-domain”
and“intra-domain” analogiesaswell asthe distinctionbetween‘domain-general’and“domain-
speci ¢” modelsof analogy is arti cial, anddependson the particularde nition of the domains
involved, which in turn dependn how we asresearchershooseto care the world up into cat-
egories. The power of a microworld derives preciselyfrom its ability in principle to modelary

numberof differentsubdomain®f therealworld within acommonabstracframevork.

10



xyz family

abc) abd || abc) abd || abc) abd
xyz) xyd || xyz) wyz || xyz) dyz
rst) rsu rst) rsu rst) rsu
Xyz) Xyu || Xyz) wyz || xyz) uyz
mrrijjj family
abc) abd abc) abd
mrrjjj ) mrrkkk mrrjjj ) mrrijjjj
xqc) xqd xqc) xqd
mrrjjj ) mrrkkk mrrjjj ) mrrijjjj
egefamily
eqe) geq eqe) geq
abbba) baaab || abbba) aaabaaa
eqge) deq eqe) geq
abbbc) geeeq || abbbc) aaabccc

Figurel: Threefamiliesof letterstringanalogies

3 ThreeFamilies of Analogy Problems

Fig. 1 shaws threefamilies of analogyproblems,which will be usedasexamplesthroughoutthe
remainderof the paperto illustrate the principal mechanismsnd capabilitiesof Metacat. These
problemsgive a senseof thetypesof parallelsanddistinctionsthat canbe madebetweeranalogies
in theletterstringworld. Eachfamily consistsof two distinct (but similar) analogyproblemswith
horizontalrows shawing a setof possibleanswerdor eachproblem.

The rst family consistsof the problemabc) abd xyz) ? andits variantrst) rsu; xyz) ?
(top of Fig. 1). Viewing c aschangingto its successoin abc) abd xyz) ? suggestEhanging
Z to its successorHowever, this is not possiblein the letterstring world, so oneis forcedto try
somethingelse. One way out is to adopta literal-mindedapproachand changez to d, yielding
xyd. On the otherhand,if the alphabeticsymmetrybetweena andz is noticed, thenthe more

abstracanswemyzmaycometo mind, basedn seeingabcandxyzasmirror imagesof eachother

wedgedagainsbppositeendsof thealphabetln this symmetridnterpretatiorof theproblem,doing

11



the “samething” to xyz meanschangingthe leftmostletter to its predecessoinsteadof changing
the rightmostletter to its successor Mary peopleconsiderthis answerto be more elegantand
compellingthanxyd.

Now considerthe variantproblemrst) rsu; xyz) ?. Theliteral-mindedanswerxyu andthe
symmetricanswemwyzarebothpossibleandarisefor thesamereasonssin thepreviousproblem—
with oneimportantdifference.In this problemthereis far lessjusti cation for seeingrst andxyz
asmirror imagesof eachother unlike in the caseof abc andxyz with their stronga-z symmetry
whichmakesheanswemyza weakeranalogyherethanin the previousproblem.While it couldbe
amguedthatwyzis still a betteranalogythanxyu in this problem.,it is clearlynot as superiorto xyu
aswyzwasto xyd in the previous problem. Thetwo wyzanalogiestherefore arequite differentin
charactereventhoughthey involveidenticalanswersindeedthepresencer absencef alphabetic
symmetryis thefundamentatifferencebetweerthem. Theliteral-mindedanswersyd andxyu, on
theotherhand,represenessentiallyidenticalanalogiesdespitetheir surface-lgel differences.

Two otheranswersare also worth mentioning. The answerdyz althoughperhapsa bit far-
fetched,is certainlypossiblefor abc) abd xyz) ?. Thisanswerepend®n noticingthe abstract
symmetrybetweerabc andxyz (andthuschangingthe x in xyz insteadof the z) but takinga very
literal-mindedview of abc) abd (thuschangingx to d insteadof to its predecessor)The answer
uyzto theproblemrst) rsu; xyz) ? arisesin asimilarfashion,exceptthatonceagain thereis no
goodreasonto seerst andxyz asmirror imagesin the rst place. This blendof abstractnesand
literal-mindednesmakeshothof theseanswerseemincoherentlt couldevenbearguedthatsince
abcandxyz arecompletelysymmetricin every way, while rst andxyz arenot, changingx to d in
abc) abd xyz) ?is evenmore incoheentthanchangingx to u in rst) rsu; xyz) ?, making
dyzamoreincoherentinalogythanuyz Justlike thetwo wyzanalogiesthekey distinctionbetween
dyzanduyzis the presencer absencef alphabeticsymmetry In otherwords,the way in which
thetwo wyzanalogiesaredifferentis analogougo theway in which the dyzanduyzanalogiesare
different.Herewe have a simpleexampleof a “meta-analogy’in theletterstringmicroworld.

Thesecondamily of analogiesonsistof the answeranrrkkk andmrrijjj to the pair of prob-

lemsabc) abd mrrjjj ) ? andxgc) xqd; mrrjjj ) ? (middle of Fig. 1). Eachof theseanalo-

12



gies relies on seeingthe target string mrrjjj in termsof its three componentam, rr, and jjj—
correspondingo the threelettersof the initial string—andon viewing the rightmostletter of the
initial stringaschangingo its successofTherightmostcomponenbf mrrjjj (thejjj group)accord-
ingly changedo its successgqlyielding mrrkkk if mrrijjj is viewedin termsof lettercateyories(as
m—r—j), or mrrjjjj if it is viewedin termsof group-lengthgas1-2-3.

In the problemabc) abd mrrjjj ) ?, the answermrrjjjj represents strongeranalogythan
mrrkkk, becauseviewing mrrjjj as1-2-3revealsanabstracsimilarity betweenthe targetstring's
structureandtheparallela—b—cstructureof theinitial string. Ontheotherhand theanswemrrkkk
makesfor the strongeranalogyin the problemxqgc) xqd; mrrjjj ) ?. Unlike abg, the stringxqc
possesseno internalsuccessorshiptructure,so viewing mrrjjj in an unstructuredvay as m—rj
more closely parallelsxqgc, while viewing it as 1-2—3 amountsto being unnecessarilyclever”.
In short,the two mrrkkk answersare actually quite differentin characterasare the two mrrijjjj
answers.

The third family of analogiesconsistsof the problemeqe) geqg abbba) ? andits variant
ege) geg abbbc) ? (bottomof Fig. 1). In theseproblems,egecanbe viewedas“turning itself
inside-out” by swappingthe lettercatejories of its constituentlettersto yield geq If abbbais
viewedasa—bbb-a, correspondindo thethreelettersof eqe thena naturalway of doingthe same
thing to abbbais simply to swapthe letter-catgoriesof the componentsyielding baaab This
approachhowever, leadsto a“snag”in thecaseof abbbg becausswappinghreelettercatayories
makesno senseOneway aroundthis dif culty is to view thelettersof egeaschangingndividually
to g, e, andq, insteadof gettingcollectively swappedChangingabbbcin ananalogousvay would
thenamountto changingts threecomponentso g, eeg andq, yielding theanswergeeeq

A moreelegantway of avoidingthesnags to perceve abbbcabstractlyas1-3—1andthenswap
thelengthsof the componenténsteadof thelettercateories,yieldingaaabccc Thisis reminiscent
of theanswemrrjjjj to theproblemabc) abd mrrjjj ) 2.

On the other hand,we cando this in the problemege) qgeq abbba ? aswell, swapping
lengthsinsteadof lettercatayoriesto yield aaabaaa However, asin theearlieranalogyxqc) xqd;

mrrjjj ) mrrjjjj , viewing abbbaas1-3—1is unnecessaril{clever”, sinceswappindettercatayories
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works just ne. Thus the differencebetweenthe answersbaaab and aaabaaain the problem
xqc) xqgd; mrrjjj ) ?, becausén bothproblemsviewing thetargetstringabstractlyactuallymakes
for aweakeranalogy

In contrast,viewing the tamget string abstractlyin the problemseqe) geq abbbc) ? and
abc) abd mrrjjj ) ? makesfor a strongeranalogyin eachcase—althougimot for preciselythe
samereasons.In the caseof eqe) geq abbbc) ?, viewing abbbcas 1-3—1 hasthe addedben-
et of enablinga snagto be avoided, whereaso snagarisesin abc) abd mrrjjj ) ?. In other
strongfor aestheticeason®nly. Likewise,eqge) geq abbba) aaabaaas aweakeranalogythan
ege) geg abbbc) aaabccgeventhoughbothinvolve seeingthetamgetstringas 1-3—1, because
payingattentionto lengthsis justi ed in the latter analogyon accountof the snag,but notin the

former

4 The Copycat Model

This sectionsummarizeghe architectureand processingnechanism®f Copycat,which sene as
thefoundationfor Metacatsarchitecture Seseralimportantlimitationsof theoriginalmodel,which
have beenaddresseth Metacatarealsopointedout.
TheCopycatarchitecturdhasbeendiscussedtlengthelsavhere(Mitchell, 1993;Hofstadter&

FARG, 1995),sodetailswill be omittedhere.Brie y, the programconsistsof along-termmemory
for conceptscalledthe Slipnet togethemwith a short-termmemoryfor perceptuastructurescalled
the Workspace The Slipnetis a semantimmetworkof nodesrepresentingonceptsabouttheletter
stringworld (seeFig. 2), with weightedlinks betweemodesencodingthe strengthof associations
betweerconceptsSomelinks arelabeledby particularnodes andmay stretchor shrinkaccording
to the activation of the label node, allowing the Slipnetto dynamically adaptto the perceptual
contet at hand. Someconceptnodes,shavn capitalizedin Fig. 2, representataejoriesof other
concepts.For example, left andright are both instancesf the moreabstractDirection catayory;,

andthe conceptdetterandgrouparebothinstance®f ObjectCatgory.
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predecessor-group .u successor-group

sameness-group

Figure2: TheSlipnet

The Workspacseis the site of subcognitve processingactivity. In the Workspace small non-
deterministiccomputationabgentscalled codeletsexaminethe lettersof an analogyproblemand
attemptto build a coherentsetof structuresaroundthe letters,representinga particularinterpre-
tation of the problem. Codeletdook for samenesssuccessoror predecessarelationshipsamong
letters,possiblychunkingthemtogethelinto groupsbasedon a commonrelationship(for example,
creatinga “samenesgroup” from the threej's in mrrjjj , or chunkingthe individual lettersof abc
into asingle“successogroup”). Theprograms high-level behaior emegesin abottom-upfashion
from the collective actionsof mary codeletswvorkingin parallel,analogougo theway in which an
antcolory's high-level behaior emepgesfrom theindividual behaiors of the underlyingants,with

no centralizedocusof control.
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In general,the letterstrings of an analogyproblemcan be viewed in mary different ways,
giving riseto avastspaceof potentialcon gurationsof Workspacestructuresin orderto discovera
goodcon gurationin areasonablamountof time, mary potentialpathwaydhrough“interpretation
space'mustbeexploredsimultaneouslywith proportionallymoreattentionbeingpaidto promising
pathwayghanto thosethatdon't seemto beleadingarywhereinteresting.This type of differential
parallelism calledtheparallel terracedscan is oneof the centralideasof the Copycatarchitecture.

To achieve this differentialeffect, structuresarebuilt in stagesdy chainsof codelets At rst, a
codeletsimply proposes new structureasa possibility. The proposedstructureis thenevaluated
by othercodeletsat later stagesn the chain. If the structureseemgromisingenough,t getshbuilt,
andacquiresa strengthvalueindicatinghow well it ts into its surroundingcontext. By distribut-
ing structurecreationover several interleared stagesmary differentpathwayscanbe exploredin
parallel. In addition, every codelethasan urgencyvaluethatre ects the estimatedoromiseof the
pathwayit is exploring. Codeletsareselectedo run, probabilistically on the basisof their urgen-
cies. Thereforepromisingregions of the searchspacetendto be explored more quickly andto a
greaterdepth,on average thanlesspromisingregions.

Fig. 3 shows a set of perceptualstructuresat the end of a run on the problemabc) abd
mrrjjj ) ?. Severalgroupscanbeseenjncludingonebuilt from othergroupsandoneconsistingof
thesingleletterm. Oneproposedyroup(shovn asa dashedstructure) whichwasbeingtentatively
exploredbut hadnot yet beenbuilt by codeletscanalsobe seen.In this run, the programhasper
ceivedtheabstractl—2—3successorshipf mrrjjj andmappedhis ontothe a—b—csuccessorshipf
abc. Horizontalandverticalstructuresalledbridgesshow thecorrespondencdsetweeranalogous
component®f eachsituation. For example,the cjj bridgeindicatesthat, in this interpretationof
theproblem,c andjjj play analogousolesin theirrespectie strings.Concept-mappingassociated
with eachverticalbridgecanalsobe seenthey arenotshowvn for horizontalbridges).For example,
rightmost) rightmostand letter) group are associatedvith the cHjj bridge,sincec andjjj are
bothrightmostobjects but oneis aletterandthe otheris a group. Non-identityconcept-mappings
suchasletter) group are calledslippages and sene asthe basisfor generatingan answer For

instancethe LetterCatgory) Lengthslippageunderlyingthe high-level bridgebetweerabcand
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Figure3: An interpretatiorof the problemabc) abd mrrjjj ) ?

mrrijjj re ectsthefactthatthe“successorshifabric” of abcis basedn lettercatayories,while that
of mrrjjj isbasedngroup-lengthsThis slippagetogethewith theletter) groupslippagesleads
the programto producethe answemrrijjj by changingthelengthof the rightmostgroupin mrrjjj
to its successginsteadof changingthe lettercateyory of therightmostletteraswasdonein abc.

Conceptsn theSlipnetin uence thesearctor amutually-consisterdetof perceptuastructures
by acquiringactivationin responsé¢o codeletactivity in theWorkspaceThisactivation,which may
spreado neighboringconceptsstrongly affectsthe nondeterministidecisionanadeby codelets,
resultingin top-dovn pressurethat guidesthe programin its searchfor a good interpretationof
a problem. Eachconcepthasa x ed conceptualdepthvalue associatedvith it, which represents
its intrinsic degreeof abstractneser generality The activationof a conceptgraduallydecaysat a
ratethatdepend®n its conceptuatiepth,with highly abstractonceptsuchasoppositetendingto
decaymoreslowly thanshallaw, surface-lgel conceptsuchasd.

To be sure, Slipnet conceptscomenowherecloseto capturingthe full power and uidity of
humanconcepts.Neverthelessthereis a sensdan which they are genuinelymeaningfulentities—

not simply passve, statictokensmanipulatedby the program. For example,a Slipnetnodesuch
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as successoresponddgo situationsin a continuous context-dependentvay, with its level of acti-
vationchangingto re ect the currentdegreeof perceved relevanceof the ideaof successorshim

the problemat hand. A wide rangeof super cially dissimilarsituations represente@bstractlyas
letterstrings,canin principle activateit—stringssuchasabg, ijk, pqgrst, iijjkk , mrrjjj , xxsssbbb,

axypgr, andaababcabcd Undertheright circumstancesall of thesestringscanbe interpretedby

the programasexamplesof successogroups.Thesemantic®f the successonodearisesprecisely
from theway in which this noderesponddo differentsituationspercevedin the “environment” of

the letterstring microworld. In otherwords, its meaningis determinedoby its behaior within the

systemot by a particularinterpretationimposedon it from outsidethe system.Given Copycats

ability to e xibly recognizea wide rangeof instances—somfairly abstract—othe sameconcept,
it seemgeasonabl¢o saythatthe programs concepthave atleastsomesmall degreeof meaning-
fulness,or genuinesemanticswithin the con nes of its tiny, idealizedworld. SeeHofstadterand
FARG (1995,Chapter6) for anin-depthdiscussiorof this point.

Slipnetconceptsalsosene asthe basichuilding blocksfor otherstructurescalledrules, which
describenow stringschange: For example,in Fig. 3, two rulescanbe seen.Thetop rule, Change
letter-catagory of rightmostletter to successardescribesow the programviews abc aschanging
to abd The bottomrule, Increaselength of rightmostgroup by one describeanrrijjj ) mrrijjjj .
Internally, rulesarestructuredcollectionsof Slipnetnodes.Outwardly they aredisplayedasshort
English phrasedor readability but this is really just a surface-lgel “veneer’maskingthe under
lying conceptualepresentationFor instancethe top rule in Fig. 3 is composef the concepts
LetterCatgory, StringPosition rightmost letter, and successarThe bottomrule is composef
Length, StringPosition rightmost group, andsuccessar

Copycatplacessevererestrictionson the typesof changeghatareallowedin theinitial string.
At most,oneletteris allowedto changesuchasin abc) abd For instanceall of the analogies
in the eqefamily shavn in Fig. 1 arebeyond Copycats ability to handle. This is becausehe de-
velopmentof Copycatconcentratean designingmechanismgor perceving similarities between

the initial string andthe target string via bridgesand slippagesratherthanon characterizingdif-

This usageof theterm*“rule” differssigni cantly from thetraditionalAl meaningof theterm. Rulesin Copycatand
Metacatarecompletelyunrelatedo the“if-then” rulesusedin expertsystemsr otherrule-basegroductionsystems.
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ferenceshetweerstringsvia rules. Developingrobustmechanism$or mappingtheinitial stringto
the modi ed string, andfor creatingrulesbasedon this mapping,was postponedo a later phase
of the project. Thesemechanismdiave now beenextendedandgeneralizedn Metacatto handle
arbitrarymappingsetweerstrings,enablinga muchwider classof string changedo bedescribed
by rules,includingeqge) geq SeeMarshall (1999, Chapter3) for a full discussiorof Metacats
new rule-tuilding mechanisms.

Theoveralldegreeof Workspacerganizatioris measuredyy anumberfrom 0 to 100calledthe
tempeature. This numberis afunctionof thetotal quality of structuregpresenin the Workspace—
wherethequality of astructurds determinedy its strength. Temperaturalsoregulategsheamount
of randomnessisedby codeletsin making decisions. In otherwords, temperatureplays both a
passve andan active role. At high temperaturesyhenfew Workspacestructuresexist, decisions
aremadein a highly randommanney sincenot muchis yet known aboutthe problem. However,
asrelationshipsamongthe lettersare noticedand new structuresare built, the temperaturdalls,
and Copycatbeginsto gain“con dence” in the emeging interpretationof the problem. At lower
temperaturesjecisionsaaremaddessrandomly beingmorestronglybiasedoy theestimatedjuality
of newly emeqging structures,all of which competefor the attentionof codelets. At very low
temperatures;odeletspay attentionto only the mostpromisingstructuresanddecisionsbecome
largely deterministic. Thusthe type of stratayy usedby the programto explore its searchspace
graduallyshiftsfrom beingvery diffuseandstochasticat high temperatureto beingvery focused
anddeterministicatlow temperatures.

To reiterate,processingn Copycatis driven by a large numberof ne-grained probabilistic
decisionghatdependon the currenttemperature Thesedecisionsmay causenew structurego be
built or existing structurego be destroyedwhichin turnchangeshetemperatur@andconsequently
affectsprocessingforming afeedbackoop. Temperatur¢hussenesasavery simpleform of self-
watchingin Copycatsinceit enablesheprogramto regulateits own behaior to alimited extent. In
otherwords,tying the stochasti@ctivity of codeletdo thetemperaturenakesheprogramsensitive
to its own actions.

Thistypeof self-watchinghowever, is very primitiveandunfocusedTemperaturallows Copy-
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catto respondto its immediatesituationin a reactve way, but the programremainsoblivious to
longerterm patternsthat arisein its processingover time. This canresultin very unhumanlike
behaior. For instancewhenpresentedvith the problemabc) abd xyz) ?, Copycatusuallyat-
temptsto changezto its successgmwhichis impossiblein theprograms microworld. It hitsasnag,
andis forcedto try somethingelse. However, it typically endsup just trying the samething over
andover again,oftenasmary astenor twentytimesin arow beforestumblingby chanceon anal-
ternative answer(suchasxyd). Unlike people the programis unableto recognizenvhenit hasfallen
into a repetitive andfutile patternof behaior. Becausét hasno memoryof its pastexperiences,
it cannotrecognizethatit hasalreadyencounteredomesituationbefore,or tried the sameset of

actionsin response.

5 From Copycatto Metacat

SinceCopycatis incapableof rememberingts pastactionsor experiencesit hasno knowledgeof
how it arrivesatits answersandis thereforeunableto explain the rationalebehindthe analogiest
makes,or why oneanalogyis betteror worsethananother In contrastMetacats architecturan-
cludesseveralnew componentandmechanismshatallow theprogramto monitoritself, enablingit
to recognizerememberandrecallpatternghatoccurin its “train of thought”asit makesanalogies.
To dothis, Metacatcreatesanexplicit temporalrecordof the mostimportantprocessingventsthat
occurduringarun. Thisrecordis continuallyexaminedby codeletsor patternsjn muchthe same
way that codeletsaxamineletterstringsfor patterns.It alsoprovidesthe basisfor constructingan
abstractdescriptionof an answerin termsof the key conceptsaandeventsthatled to its discovery.
ConsequentlyMetacatis ableto constructmuchricherrepresentationsf analogiesgnablingit to
compareand contrastthemin aninsightful way. Furthermorepy monitoringits own processing,
Metacatcanrecognizewhenit hasbecomestuckin a rut, enablingthe programto breakout of
the rut by explicitly focusingon ideasotherthanthe onesthat seemto be leadingnowhere. This
capabilityaffordsthe programa powerful degreeof self-control.

The remainderof the paperdescribeghe architectureof Metacat,focusingon the ways in

which it extendsthe capabilitiesof Copycat,and analyzesseveral samplerunsthatillustrate dif-

20



ferentaspectf the model. Since Metacatis an extensionof Copycat,its architectureincludes
the Workspacethe Slipnet,andthe mechanisms$or codeletprocessinglt alsoincludesthreenewn

componentsthe EpisodicMemory, the Themespagendthe Tempoal Trace

5.1 The Episodic Memory

Metacatstoresdescriptionf analogiesn its long-termEpisodicMemory Whena nev answelis
found, an answerdescriptionis createdrom the informationavailablein the temporalrecordand
theWorkspace This descriptionincludesthefour letterstringsof the analogy aswell astherules,
bridges,slippagesandotherstructureghatgive riseto the answer Otherstructurescalledthemes
arealsoincluded,which describethe key underlyingconceptf theanalogy

Themesprovide a basisfor comparingandcontrastinganswersaswell asa metricfor judging
the degreeof similarity betweerthem. For instancewhenMetacatmakesa new analogyit maybe
remindedof a similar analogyit hasseenin the pastif thethemesassociateavith the newly-created
answerdescriptionactingasamemoryretrieval cue,matchthoseof somepreviously storedanswer
descriptionsufciently well. In effect, the patternof themesin ananswerdescriptionsenesasan
index for storingandretrieving ananswerfrom memory

In additionto rememberinginswersMetacatalsoremembershe snagghatit encountersvhile
solving problems.On hitting a snagfor the rst time, the programcreatesa nenv snagdescription
that characterizeshe failure in termsof the themesand other structuresnvolved, which it then
storesin the EpisodicMemory Snagdescriptionscanbe comparedon the basisof their themes,
enablingMetacatto evaluatethe similarity of differentfailure situations.Furthermorecomparing
thethemewf snagdescriptionandanswerdescriptionsanprovide cluesasto how failurescanbe

avoidedin certainproblems.

5.2 Themesand the Themespace

Themesare short-termmemory structuresthat describethe characteristicof mappingsbetween
letterstringsin a high-level, abstractvay. They arecomposedf Slipnetconceptsandarecreated

in Metacats Themespace responseéo structure-bilding activity in the WorkspaceFor example,
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in the problemabc) abd xyz) 2, if a crosswisemappingis built betweenabc and xyz as a
result of noticing the alphabeticsymmetrybetweena and z, a themecomposedf the concepts
AlphabeticPositionand oppositewill be created. A StringPositionoppositethemewill also be
createdrepresentingheideathatobjectsin oppositepositionsin theirrespectie stringscorrespond
to oneanothey asexpressedy the bridgesa—z andc—x. On the otherhand,if the a-z symmetry
is not noticedanda parallelmappingconsistingof the bridgesa—x, b—y, andc—z is built instead,
no AlphabeticPositionthemewould becreatedn this case a StringPositionidentity themewould
describaheparallelmapping.Thusthemesapturehe essentiahspectof ananalogyby concisely
summarizincghow theletterstringsarepercevedin relationto oneanother

Like Slipnetconceptsthemegakeon varyinglevelsof activation,re ecting theextentto which
theideasthey represenplayarole in the programs currentperceptiorof the problem.In this sense
they behave aspassie representationatructures.However, in certainsituations,to be explained
below, themesanexert strongtop-donvn thematicpressue on perceptuaprocessingThispressure,
which canbe turnedon or off by the programitself, selectiely weakensor strengthensxisting
structuresin the Workspace and may causecodeletsto focus on building speci ¢ typesof new
structures.In fact, unlike Slipnetconceptsthemescanassumeboth positive and negative levels
of activation. With thematicpressurdurnedon, positively-actvatedthemesencouragehe creation
of structurescompatiblewith theideasrepresentetty thethemes Negatively-activatedthemespn
the other hand, discoumgethe creationof suchstructures;instead,they promotethe creationof
alternative structuresncompatiblewith themseles. Thusthemesactlike a setof “knobs” thatcan
be usedto focusthe attentionof the programon speci ¢ setsof ideas. By twisting the knobs—
thatis, by varyingthe patternof themeactivationsunderthematicpressure—Metacatperceptual
processinganbe steeredn particulardirections,guidedby theideasexplicitly representethy the

themes.

5.3 The Temporal Trace

The Tempoal Trace(or the Tracefor short)senesasthelocusfor self-watchingin Metacat.Like

the Workspaceand Themespacst is a short-termmemorythat storesinformationover the course
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of a singlerun. The Tracestoresan explicit temporalrecordof the mostimportantprocessing
eventsthatoccurduring problemsolving. Examplesof sucheventsincludethe strongactivation of
athemeor conceptmakingaconceptuaslippage creatinganew rule, hitting asnag,or discovering
anew answer Of coursealarge numberof eventsof all sizesoccurduringthe processingf almost
ary analogyproblem rangingfrom local“micro” eventssuchasindividualcodeletactionsto global
“macro” eventssuchasthediscovery of new answersHowever, only thoseeventsabore athreshold
level of importancegetrepresenteih the Trace. This allows Metacatto Iter out all but the most
signi cant events,giving the programa very selectve, high-level view of whatit is doing.

Oneway to appreciatghe abstractchunkednatureof the informationin the Traceis to con-
siderthe typical numberof stepsthat occurduring a run of Metacat. This dependon the level
of granularityusedto describesteps.At avery ne-grained level of descriptionwhereeachstep
correspondso anactionperformedoy asinglecodeletarun mayconsistof mary hundredsor even
thousand®f steps.At this level of descriptionno two runsareever exactly the same gvenif they
involve the sameletter-strings(unlessboth runsstartwith the samerandomnumberseed).On the
otherhand,at thelevel of descriptionof the Trace,a typical run consistof a few dozensteps.At
thislevel of granularity eachstepcorrespondso asingleeventrecordedn the Trace andrepresents
theactionsof mary codelets.

For example, Fig. 4 shows the contentsof the Traceafter a run on the problemabc) abd
xyz) ?, in which the program,after trying unsuccessfullya couple of timesto changez to its
successgransweredkyd. The eventsthat occurredduring the run appearin chronologicalorder
from left to right. This run involved a total of 1,558 codelets,but the high-level picture shovn
in the Trace consistsof just twelve events, which representhe “major milestones’encountered
alongtheway in the programs searchor ananswer For instancethe Slipnetconceptidentity got
activatedearly on, dueto the programperceving the a's andb's in abcandabd ascorresponding
to oneanother This wasfollowed by the chunkingof abc andxyz into predecessogroupsgoing
in the samedirection(bothto theleft). Next, the rule Changeletter-catagory of rightmostletter to
successowascreatedor describingabc) abd, whichledinevitably to a snag.In the aftermathof

the snag,anotherrule wascreated Changeletter-category of rightmostletter to "d'), andabcand
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Figure4: Thetemporalrecordof arunontheproblemabc) abd xyz) ?

xXyzwererepercered assuccessogroups(againgoingin the samedirection—onlythistimeto the
right). However, the programthenattemptedo usethe rst rule again,resultingin anothersnag.
Finally, aftercreatingathird rule andagainperceving xyz asa successogroup,the programfound
theanswerxyd.

Onceprocessingventshave beenexplicitly representeth the TemporalTrace,they arethem-
selessubjectto examinationby codelets.This allows Metacatto perceve patternsin its own be-
havior in muchthe sameway that Copycatpercevespatternsn letterstrings:via codeletdooking
for relationshipsamongperceptuastructuresin Metacats casetheseperceptuastructuresnclude
the“rei ed” processingventsin the Trace.Whena new answelis found,ananswerdescriptionis
createdy examiningthetemporakecordto seewhich eventscontributedto theanswersdiscovery.

This approachis similar in avor to work on derivational analogy in which the trace of a
problem-solvingsessioris storedin memoryfor future referencetogethemwith a seriesof annota-
tions describingthe conditionsunderwhich eachstepin the solutionwastaken(Carbonell,1986;
Veloso& Carbonell,1993;Velos0,1994).In Metacats case however, theinformationin the Trace
is usedasthe basisfor constructingan abstractdescriptionof the answerfound, ratherthanbeing

permanenthstoreditself.

6 Pattern-Clamping and Self-Control

The Traceallows Metacatto monitor the processingactivity in the Workspaceat a very abstract
and highly chunkedlevel of description,enablingthe programto “see” whatit is doingduring a
run. Equally important,however, is the programs ability to respondto whatit seesby clamping
particularthemesandconceptsat high activation,resultingin strongtop-dowvn pressuren process-

ing. Varioustypesof patterns consistingof setsof themesgconceptspr codeleturgenciescanbe
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clampedby the programin responseo eventsin the Trace.Clampinga patternaltersthe probabili-
tiesthatcertaintypesof codeletswill run,or thatcertaintypesof Workspacestructureswvill bebuilt,
which may leadthe programto reviseits interpretationof a problemby reoiganizingstructuresn
the Workspacen accordancevith the ideasrepresentedby the pattern. Thus patternssene asa
“medium” throughwhich the programis ableto wield controlover its own behaior.

When an eventis recordedin the Trace,the themesmostactive at the time of the event are
storedalong with it. Thesethemessene asthe event's thematiccharacterization In the case
of a snagevent, the thematiccharacterizatiomepresents failed way of interpretingthe problem.
For example,in solvingabc) abd xyz) <, Metacatusually rst percevesabcandxyzasgoing
in the samedirection, which leadsto a snagwhosethematiccharacterizationncludesthe theme
StringPositionidentity. If Metacatcontinuesto hit the samesnagover andover, a seriesof snag
eventswill accumulatén the Trace all with very similarthematiccharacterizationsThis similarity
may be noticedby codeletgthe probability becominghigheras more snagsaccumulate)causing
themto take action by clampingthe “offending” themes,including StringPositionidentity, with
strongnegative activation. This encouragethe programto explore alternative waysof interpreting
the problem,which may subsequentlyeadit to discover otheranswerssuchaswyz In this way,
Metacatcanrecognizdts own repeatedailuresandrespondaccordingly

Codeletscalled Progress-wathers are responsibldor decidingwhetheror not to unclampa
clampedpattern. In general,the purposeof clampinga patternis to catalyzea seriesof events
thatreoganizethe perceptuaton guration of the Workspacdn someway. It is thereforebetterto
wait until the structure-lilding activity occurringin the wakeof a clamphassettleddown before
concludingthatthe clamphas“run its course”. If a Progress-wather codeletrunswhile a pattern
is clampedjt examinesthe mostrecenteventin the Traceto determinehow muchtime haselapsed
sincethe event occurred. If the amountof elapsediime is lessthana minimum settling period,
thenthe codeletsimply zzles, leaving the clampedpatternstill in effect. On the other hand, if
enoughtime haspassedvithout ary hew importanteventshaving transpiredthe codeletunclamps
the patternand then evaluatesthe amountof progressthat was madesincethe clamp occurred.

Dependingpntheamountof progresschiezed,thecodeletmaydecideto spavn afollow-upcodelet

25



to seewhetheranew answercanbe madebasedon the newly-createdstructures.

Thecriteriafor evaluatingthe succes®f aclampcanvary. Sometimesthepurposeof clamping
a patternis to promotethe creationof speci ¢ typesof Workspacestructures. Othertimes, the
purposds to encouragehe creationof structuresof ary type, solong asthey arecompatiblewith
the clampedpattern.The progressachiered by a clampcanbe measuredby observingthe number
of structureghatgetbuilt in theimmediateaftermathof the clamp,andthe extentto which they are
compatiblewith the pattern.

If no patternsareclampedwhena Progress-wather codeletruns,theninsteadof checkingon
the progressiorof eventsin the Trace,the codeletcheckson the currentrate of structure-hilding
activity in the Workspace.This actvity is measuredy a numberfrom 0 to 100, which senesasa
quick estimateof the“freshness’of the currentstructuresn theWorkspaceMore preciselyit is an
inversefunction of the averageageof the mostrecentlycreatedstructures.Thusthe actiity level
tendsto remainhigh aslong asnew structuresarebeinghbuilt, but eventuallydropsto zeroin the
absencef new structures.

If theactvity level is zero,indicatingthat nothingmuchis happeningn the Workspacethen
Metacatmayhave arrivedatanimpasseén its searctfor answergo thecurrentproblem.Thisis not
guiteasbadashitting a snag,but it still oughtto prodthe programinto trying somethingdifferent.
However, in the caseof animpassethereis usuallyno clearsetof “offending” structuresor themes
to pin theblameon, unlike in the caseof a snag.Indeed theimpassanaywell arisefrom alack of
appropriatestructuresratherthanfrom the existenceof the “wrong” structures.Therefore,in the
absencef Workspaceactivity, Progress-wather codeletscheckto seewhetherparticulartypesof
new structuresnay be neededIf so,they may clampa patternof codeleturgenciesn responsein
anattemptto catalyzestructurecreation.

For example,a Progress-wather might examinethe quality of the rulesthat have beenbuilt
sofar. If no goodrulesyet exist, the codeletmight try to encouragehe creationof betterrules
by clampinga patternof codeleturgencieghat stronglyincreaseshe probability thatrule-seeking
codeletswill run,while inhibiting othertypesof codelets Eventually otherProgress-watherswill

turn off theclamponceenoughime haspassedvith nomoreeventshaving beenaddedo theTrace.
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Sincethis particularclampis only concernedvith the creationof new rules,theamountof progress
achievedis judgedsolelyonthebasisof thequality of therulesthatgetcreatedn theclamp'swake

(if ary).

6.1 Answer Justi cation

Metacats pattern-clampingnechanismgjive it anothelimportantcapability which Copycatlacks.
Unlike Copycat,Metacatis ableto evaluateanalogiessuggestedo it by the user in additionto
making analogieson its own. When provided with a speci ¢ answerto a problem,the program
“works backwards”from the answertoward an understandingf why it makessense.Oncethe
answethasbeenunderstoodit canbecomparedaindcontrastedvith otheranswerghatthe program
haseitherbeenshown or hasdiscoseredonits own.

This type of “hindsight understanding’presentdittle dif culty for humans. Peoplewho are
askedo solvetheproblemabc) abd mrrjjj ) ?, for example maynotthink of theanswemrrjjjj ,
evenwhengivenanunlimitedamountf time. However, assoonasthis answeliis suggestetb them,
they have no troubleseeingwhy it makessensegventhoughthey didn't think of it themseles. In
a similar vein, suggestinghe somavhattongue-in-cheelanswerabd usually elicits a few laughs,
along with noddingagreementhat it makessensein a silly way, althoughfew peoplegive this
answeron their own (Mitchell, 1993). This is notto saythatevery suggestednswercanbe readily
understoodn retrospectfor example,apersormightnever gure outthejusti cation for ananswer
suchasmssijjj), butfor mary non-olviousanswersno additionalexplanationbeyondjusttheanswer
itself is needed.

WhenMetacatrunsin justify mode it attemptsto discover a way of interpretingthe problem
suchthat the given answemakessense.To do so, it bagins by building up perceptuaktructures
amongthe letterstrings, as usual. This bottom-upapproachhowever, may lead it to build an
inconsisteninterpretatiorof the problemthat doesnot supportthe answerin question.Neverthe-
less,examining partsof this interpretatiormay suggeshew ideasto focuson. More precisely an
Answerjusti er codeletmay comparethe rule structuresnvolved and,basedon their differences,

clamp a patternof themesdesignedo reoganizethe mappingbetweenthe initial string andthe
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tamgetstringin away consistentvith therulesandtheanswer

For example, when Metacatis askedto justify the answerwyz to the problemabc) abd
xyz) ?,it usuallystartsoutby building same-directiomappingsetweerall of the strings.(Snags
do not arisein justify mode,sincethe answeralreadyexists.) In addition, the “top” rule Change
letter-catagory of rightmostletterto successodescribingabc) abd, andthe“bottom” rule Change
letter-catagory of leftmostietter to predecessodescribingxyz) wyzmaybe created.This stateof
affairs is showvn in Fig. 5. Althoughthe threestring mappingsarelocally consistentvhenconsid-
eredin isolation,togetherthey do not makesenseata globallevel. Thelettersc andx arenotseen
ascorrespondindo eachother yet they arebothidenti ed by the rulesasbeingthe objectsthat
changein theirrespectie strings(thec to its successoandthe x to its predecessor).

Comparingthetwo rulesto eachother however, suggestsheideaof rightmostleftmostsym-
metry, aswell assuccessepredecessaymmetry Thisideacanbe capturedby apatternof themes
including StringPositionopposite Direction:opposite and Group Type:opposite? Metacatcanex-
plore the rami cations of this ideaby positively clampingthesethemesin the ThemespaceThe
stateof the TemporalTraceat the time of the clampis shovn above the Workspacdn Fig. 5. As
canbe seenclampingthe patterncauseghe conceptof oppositein the Slipnetto becomehighly
activated.Theensuingop-dovn thematicpressurestronglypromoteshecreationof new structures
thatsupportmappingabcandxyz onto eachotherin a crosswisdashion,andsigni cantly weakens
existing incompatiblestructuressuchasthe a—x and c—z bridges. As a result, the original map-
ping betweenabc andxyz shawvn in Fig. 5 is swiftly reolganizedby codeletsinto a nev mapping
consistentvith the clampedthemes.

Fig. 6 shavs the nal, globally consistentinterpretation,in which ¢ andx are seenas corre-
sponding.Furthermorein thewakeof the clamp,thepreviously unrecognize@lphabeticcymmetry
betweera andz hasbeennoticedon accountof theincreasedattentionfocusedon theselettershy
top-davn pressureresultingin a rst ) last slippagebeingmade. Several otherconceptuaklip-
pagesnducedby the active oppositeconceptarealsovisible in the Trace. Consequentlythe nal

answerdescriptionfor wyzincludesthe themesAlphabeticPositin: opposite Direction:opposite

2GroupType and Objectype aresynorymsfor the conceptsGroupCatgory and ObjectCatgory.
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Figure6: The nal, consistentnterpretatiornof wyz
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Grouplype:oppositeand StringPositionopposite

6.2 Jootsing

Anothertype of codeletthatwatcheghe actionfrom the high-level vantagepoint of the Temporal
Traceis called a Jootser (a term coined by Hofstadtey short for “jumping out of the system™).
Thesecodeletsare responsiblefor noticing repetitve behavior that the programhasfallen into.
An exampleof suchbehaior arising from repeatedlyhitting a snagin abc) abd xyz) ? was
mentionedearlier However, Jootsercodeletsaaresensitve to otherkinds of situationsaswell. For
example,it is possiblefor Metacatto becomé’ xated” onsomeidea,suchthatit endsup clamping
the samepatternover and over again,without makingary signi cant progress.In this case,too,
Jootsercodeletanay noticea seriesof recurringeventsin the Traceandtakeaction.

For instancejf ananalogyproblemhappendgo involve a stringthat changesn somecompli-
catedway, it may be too dif cult for the programto build a rule that describeghis change.The
programmayendup repeatedlclampingpatterngn afutile effort to spurthe creationof new rules.
Repetitive clampingbehaior can even arisefrom unsuccessfuattemptsto breakout of a cycle
of snags.Thatis, clampinga patternin responseo a recurringsnagmay prove to be ineffective,
leadingonly to further snagsandmore pattern-clampingratherthanto a new interpretationof the
problem.

Facedwith sereralsimilar clampeventsin the Trace,a Jootsercodeletdecidesprobabilistically
whetherto “joots” basedon the numberof clampsandthe averageamountof progressachiezed by
each.Themoreclampeventsthereare,the morelikely jootsingis to occut especiallyif theamount
of progressis low, unlessrecentclampsappearto be making more headwaythan earlier ones.
Jootsingfrom repeated:lamps,however, doesnot involve clampingary new patternsin response,
in contrasto jootsingfrom repeatednagsinstead Metacatsimply “givesup” in agracefulmanner
andstops.

Thefollowing two examplesillustratethe ideaof jootsing. In the rst, Metacattriesto justify
the answeraaabcccto the problemeqge) geq abbbc) ?. It eventuallygivesup aftertrying un-

successfullysereraltimesto connectheconcepbof LetterCatgory in egeto theconcepiof Length
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Event 12: Built rule
(Codelats i 2437)
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all| b b ||c = a a a c ¢ c
1 nnost=>rmost 2 Imost=>Imost 3 midelle=">middle
letter=>group lewer=>=group letter=">>group

Figure7: An emeging but still incompleteinterpretatiorof aaabccc

in aaabccc

By time step2437,the programhasperceved both abbbcand aaabcccas successogroups
basedon the lettercatayories a—b—¢ andhascreateda variety of top andbottomrules describing
ege) gegandabbbc) aaabcco(seeFig. 7). Overthenext 2000time stepsthe programclamps
several patternsof themesasaresultof comparingvarioustop andbottomrulesto oneanother For
example,at time step4363,the programcomparesa top rule that describeghe objectsof eqeas
swappingtheir letter-categorieswith a similar bottomrule that describeghe objectsof abbbcas
swappingheirlengths Theserulesdiffer by only oneconceptput to makethemintertranslatable,
alLetterCatgory) Lengthslippagemustsomeha bemadebetweereqeandabbbc Theprogram
thereforeclampspatternsof themesdesignedo inducethe creationof a mappinginvolving this
slippage(seeFig. 8). Unfortunately however, building sucha mappingrequiresegeto beseenasa
single,chunkedgroup,whichis impossiblein the currentversionof Metacat,sinceonly successer
ship, predecessorshipr samenesgelationsarerecognizecamongletters. Thusthe programfalls
into an unsuccessfutycle of pattern-clamping.Eventually at time step6196, a Jootser codelet
noticesthe seriesof repeatedlampsin the Traceanddecidego terminatethe run, without having

achieveda completeunderstandingf aaabccq(seeFig. 9).
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Figure9: The nal, unjusti ed interpretatiorof aaabccc
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As this exampleshows, onceMetacatrecognizeghat its attemptsto justify an answerarenot
succeedingit may decideto settlefor anunjusti ed answer dependingon how closeit cancome
to a completejusti cation. In general,if valid rulesexist for describingboth the top andbottom
string changesandif theserules are almostthe sameundertranslation,differing by at mosta
few conceptsthenthe programwill throw in the towel, reportingits failure to understandhow the
unjusti ed slippagesarise. It will alsoincludeunjusti ed themeshasedon theseslippagesn the
answerdescriptiornthatis createdattheendof therun.

The moreunjusti ed slippageghereare, however, the lesslikely jootsingis to occur Never
thelessthereis alwaysthe possibility thatthe programwill give up too easily reportingananswer
asunjusti ed whenin factit could be completelyjusti ed with further effort, althoughin practice
this doesnot happervery often. On the otherhand,of coursejt is impossiblefor Metacatto know
which answersarebeyondits ability to justify in principle, sincethis would requirea type of self-
knowledgefar beyond the capability of the presentprogram(for example,Metacatwould have to
know thatit is notcapableof seeingegeasasinglegroup).In ary casetheprogramatleastknows
thatit hassettledfor anunjusti ed answerandnotesthis fact, alongwith the associatedinjusti ed
themesin its EpisodicMemory.

The secondexample of jootsing involvesthe sameproblem,ege) geqg abbbc) ?, but this
time Metacatmustsolveit onits own, insteadof beinggivenanansweto startwith. In thisrun,the
programbegins by structuringabbbcasa successogroupcomposedf thelettera, thegroupbbh,

andtheletterc, asin the previousexample.Thetwo rulesshown below arealsocreatedo describe
eqe) dgeq

Swapletter-cateyoriesof all objectsin string

Changdetter-cataegory of leftmostletterto °q'
Changdetter-category of middleletterto e’
Changdetter-catagory of rightmostletterto °q'

Aroundtime step1100,the programattemptgo applythe rst ruleto abbbg which resultsin a
shagsinceathree-wayswapbetweenrg, b, andc is impossible(seeFig. 10). If thesecondule had
beenchoseninsteadof the rst, the programwould have foundthe answergeeegbut becausehis

ruleis lessabstracthanthe rst, it is lesslikely to bechoseron average.
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Figure10: Attemptingto swapthe component®f abbbc

Overthenext 3000time steps Metacattriesagainandagainto swapthe component®f abbbg
often breakingvariousstructuresin the processbut alwaysrekuilding themin the sameway as
before.Eventually attime step4280,a Jootsercodeletnoticesthe patternof recurringsnagevents
in the Trace, all of which involve the themesStringPositionidentity, Objectype:identity, and
ObjectType:different Thesethemesarise from the programs interpretationof the letterse, q,
andein egeascorrespondingrespectiely, to thelettera, the groupbbh, andtheletterc in abbbc
The ObjectType:identity themeis basednthee-a ande—c bridgeswhile the ObjectType:different
themeresultsfrom the bridgebetweerg andbbh sinceoneis a letterandthe otheris agroup.

In aneffort to avoid therecurringsnag thecodeletprobabilistically decidedo negatively clamp
the ObjectType:identity theme.The ensuinghematicpressuraesultsin abbbcbeingreinterpreted
asa predecessogroupgoingto the left, anda new rule beingcreatedo describeeqe) qgeq but
thesenew structuresdo not really changethe basicsituation. Soonafterwards,anotherJootser
codelettries again, this time clampingboth Objectype themes,which effectively paralyzeshe
programfor the durationof the clampperiod, sinceno structurescanbe built that are compatible

with both of thesethemessimultaneously Fig. 11 shaws the stateof the Workspaceand Traceat

thetime of thelatterclamp.
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1 rmost=>rmost 2 Imost=>Imost 3 middle=>middle
letter=">letter letter="letter letter="»group

Figurell: Thesituationlatein therun, afterseveralsnagsandclampshave occurred

A few hundredcodeletdater, theprogramhits thesnagagain.Thisis followedshortlythereafter
by anotherclamp. This clamp, like the one beforeit, achievesno new progress.After hitting the
shagyet again,theprogram nally decidego give up. More precisely at time step5933,a Jootser
codeletnoticesthethreeclampeventsin the Trace,all of which have overlappingsetsof associated
themesMoreover, neitherof thetwo mostrecentclampshave resultedn ary discernibleprogress,
which furtherincreaseshe probability of jootsing. Consequentlythe programprintsatermination

messagandendstherun,insteadof just continuingto cycle.

6.3 Levelsof Controlin Self-Watching Systems

Settlingfor anunjusti ed answerafterrepeatediftrying to makesenseof it, asin the rst example,
or attemptingto circumwentarecurringsnagby clampingthemesasin the secondexample,canbe
thoughtof as" rst-order” jootsing. In contrastrecognizingwhenrepeatedattemptso circumwent
asnagareleadingnowhere asin thesecondexample,canbethoughtof as“higher-order”or “meta-
level” jootsing—thats, jootsingfrom repeatedcttemptsat jootsing.

This importantdistinctioncanbe framedmoreclearly in termsof eventtypesin the Temporal
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Trace.Let usdesignateasTypel aneventthatoccursdirectlyin responsédo processingNorkspace
structuresFor example,snageventsareof Typel, becaus¢hey arisefrom afailed attemptto apply

arule to astring (asshavn earlierin Fig. 10). A clampeventthatoccursasa resultof comparing
two ruleswhentrying to justify ananswerasshovnin Fig. 8) is alsoof Typel. Likewise,clamping
a patternof codeleturgenciesin an effort to spurthe creationof new structuressuchasrulesis

a Type | eventaswell, sincethis happensn responseo poorquality (or noneistent) structures
in the Workspace.In otherwords, Type | eventsin the Tracearisefrom rst-order, subcognitive
processingctivity in the Workspace.

On the otherhand, a Typell eventis one that occursdirectly in responsdo Type | events
in the Trace. For example,clampinga patternof themesin responseo a recurringsnag(asin
the secondexample of section6.2) is a Type Il event, sinceit is triggeredby noticing a series
of snageventsin the Trace. In otherwords, Type |l eventsarisefrom patternsof actiity at the
cognitiveprocessindevel, or, saidanothemay, from viewing subcognitveprocessin@ctivity atan
appropriatelyabstractlevel of description Thus rst-order jootsingcorrespond$o noticingaseries
of Type | eventsin the Tracethat all sharesimilar thematiccharacterizationsandrespondingn
someappropriatavay, while meta-level jootsingcorrespond$o noticingandrespondingo Typell
events.

Theimportantpointis thatthe samemechanismareresponsibldor both rst-order andmeta-
level jootsingin Metacat—namelyJootsercodeletsandthe explicit representatiomf processing
eventsin the TemporalTrace. This re ects our belief that a self-watchingsystemshouldnot be
organizedasa rigid hierarchyof distinctlevels, with eachlevel responsibleonly for detectingand
respondingo patternsoccurringatthelevel immediatelybelow it, implying theneedfor anin nite
stackof separatéwatcher” mechanisms.nstead,a single setof mechanismshouldbe capable
of detecting rst-order patterns,higherorder patternswithin thesepatterns,patternsof patterns
of patterns,and so on, with all levels fusedtogetherand no limit in principle on the potential

compl«ity of the patterngnvolved (Hofstadter 1985a).
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7 Program-Geneated Commentary

As Metacatworksonananalogyproblemit displaysarunningcommentaryn Englishsummarizing
the “ideas” thatoccurto it asit triesto discover an answer(or to makesenseof one provided to
it). This narrative, which appeardn Metacats Commentarywindow, correspondgloselyto the
chain of eventsin the TemporalTrace, althoughit is not an event-by-event transcriptionof the
informationrecordedhere.Rather it consistof explanatorymessagegeneratedrom timeto time
by codeletsaasthey goabouttheir businessFor example whenMetacatencountersisnagijt reports
this factandbrie y explainswhy the snaghasoccurred.Upondiscoveringa new answer it states
its “opinion” of theanswers quality, andmentionsary otheranswerst hasseenin the pastthatthe
newvly-found answerremindsit of. The programalsomentionswhenit is getting“frustrated”by a
lack of progresssuchasin the caseof failing to creategoodrulesfor describingstring changes.
Furthermoreafterattemptingto focuson somenew ideaby clampinga patternof themesijt gives
a brief assessmentin retrospectof the progressachiesed by the clamp. The programcan also
commentnthesimilaritiesanddifferencedetweervariousanswersif promptedoy theuser

Fig. 12illustratesthetypeof commentarytypically generatedby the programduringarun. The
exampleontheleft shavs arunontheproblemabc) abd xyz) ?in whichthe programhitsthe
Z shaga coupleof timesandthenanswerxyd (the TemporalTracefrom this runwasshaowvn earlier
in Fig. 4). As it happensthe answerxyd remindsthe programof a similar answerto a different
problemthatit hasalreadysolved. Continuingon, the programthen nds the “do-nothing” answer
Xyz, basedon the rule Changeletter-catagory of letter ¢’ to "d'. This rule is even more literal-
mindedthanthe rule Changeletter-category of rightmostletterto “d'. At this point, promptedby
theuser the programcompareshe answelixyzto theanswerxyd, expressinga preferencdor xyd.

Next, Metacatis giventhe answerdyzto the sameproblemand askedto justify it (Fig. 12,
right). In thisrun, the programhasdif culty at rst discoveringarule to describehe changefrom
xyztodyz Its commentabout‘trying harder’arisesfrom clampinga patternof codeleturgenciesn
responseo thislack of rules. As it turnsout, threenew rulesgetcreatedn thewakeof this clamp.
The programthereforejudgesthe amountof progressmadeby the clampas satisfactory In fact,

analyzingthe newly-createdrulesleadsthe programto subsequentlglampa patternof themesin
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Iz

Okay, if "abe” changes te "abd”, what
does " change to? Hmm...

tih-oh, { seem to have run into a little
problem. Changing the letter-category
of the letter z to i#s successor is not
possible in xyz.

Uih-oh, | seem to have run into a little
problem again. Changing the
fetter-category of the letter z to its
suecessor is not possibie in xe.

Fhe answer "xyd” oceurs to me. 1
think this answer is pretty mediocre.

Fhis answer strongly reminds me of
the answer xyu to the problem "rst ->
rsu, oz - 7

The answer "xye " alse occurs fo me,
but that's prefty bad.

Let's see...

The onfv essential difference between
the answer xyz and the answer xyd o
the problem “abe -> abd, xyz -> 7" is
that the change from abe to abd is
viewed in a more fiteral way for the
answer xyz than it is in the case of
xyd. Both answers refy on seeing two
sirings (@be and xyz in both cases) as
groups of the same type going in the
same direction. Al in alf, I'd say xyd is
the belter answer, since it invoives
seeing the change from abe lo abd in
a more abstract way.

J

Iz

let's see... "abe” changes to "abd”, and "we”
changes to "dvz". Hmm...

I'm getting frustraled. ! stilf don't see a good
way {o describe hiow "xyz " changes fe "dyvz".

TH just have to try a fiitle harder...

Weff, my latest effort to think up new rules
resulted in some progress. Guess it was an
okay effort, in retrospect.

Ahal | have another idea...

Looks fike that last briffiant idea | had resuffed
in a fot of progress. Guess it was a pretty
good idea, in refrospect.

Ahal | see why this answer makes sense. |
think it's a prefly mediocre answer.

let's see...

The answer dvz o the probfem "abe -> abd,
xe -> P is based on seeing abe and xyz as
symmetric predecessor and successor groups
going in opposite directions, and on seeing
alphabetic-position symmetry between the
strings, while the answer xyd is based on
seeing abe and xye as groups of the same
type going in the same direction. Inxyd's
case, the idea of seeing alphabetic-position
symmelry between abe and xyz does not arise.
The answer dvz, however, seems incoherent to
me, since it involves seeing absitract
similarities between abe and xyz (seeing abe
and xyz as symmetric predecessor and
SHCCESSOr Groups going in opposite directions,
and seeing alphabetic-position symmetry
between the sérings), while at the same time
viewing the change from abe fo abd in a more
fiteraf way. Alf in alf, I'd say xyd is the better
answer, since it is more coherent.

J

Figurel12: Metacats commentanfrom arunontheproblemabc) abd xyz) ?inwhichit found

the answersxyd and xyz (left), and from a justi cation run on the sameproblemin which the

programwasgiventheanswerdyz(right).

an effort to createa mappingbetweenabc andxyz thatis compatiblewith the rules. This second
clampis indicatedby the comment,*Aha! | have anothelidea..” This clampspursthe creationof

mary new structures)eadingto the interpretationof abc andxyz as mirror imagesof eachothet

whichin turn leadsto a successfujusti cation of dyz The programthereforejudgesthe progress
achieved by the secondclampto be very high, even thoughit considersdyzitself to be a “pretty

mediocre”answer Finally, againpromptedby the user the programcompareghis answerto the

answexyd foundearlietr whichit judgesin theendto beof higherquality thandyz

From theseexamples,it may appearthat Metacatpossessea sophisticatedinguistic ability.
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However, it mustbe stressedhatthis is not the case.The programs commentaryis generatedby a
setof prefabricatephrase-templatesyhich get lled in andcombinedin e xible waysaccording
to context. SeeMarshall (1999, Chapter4) for a detaileddiscussiorof thesemechanismsin the
run shown in Fig. 12, for example, the explanationof the snagis generatecn the basisof the
WorkspacestructuresandSlipnetconceptsnvolvedin the snag—namelytheletterz, thestringxyz,
andtheconceptof LetterCatgory andsuccessarAs anaddedouch,thesecondime the program
hits the snag,it insertsthe word “again”, on accountof the fact that a previous snagevent exists
in the TemporalTrace. In addition,the programusesstock phrasego describecertainnumerical
values,suchasthe overall measuref answerquality (e.g., “pretty mediocre”,“pretty bad”), or the
progressachieredby aclamp(e.g., “some”, “a lot of”), or the strengthof remindingof oneanswer
by another(e.g., “strongly”). Otherphrasesarecompletelycannedsuchas”l seemto have run
into alittle problem”,which the programprintsoutwheneverit hitsa snag,or “Let' ssee.’, which
is printedwhenever the programcomparesanswers Furthermoreno type of linguistic interaction
with the programis possible.

Thepurposeof Metacats commentarys to shav the progressiorof activity thatoccursduring
arunin avery userfriendly and someavhat whimsical fashion,asif the programwere “thinking
out loud” while it solvesproblems,andalsoto summarizejn an easilyunderstandablevay, the
parallelsanddistinctionsbetweeranswerdhat are perceved by the program.lt is notintendedas
a seriousmodelof languageprocessingAs will be discussedbelow, answersarecomparedn the
basisof theirunderlyingconceptualepresentationswhich consistof thethemesandrulesstoredin
answerdescriptions.Metacats ability to recognizesimilaritiesanddifferencesetweenanalogies
at this representationalevel is what counts,not its ability to summarizethesecomparisonsn a
human-readablform.

Thatsaid,it is importantto addthatnot all of the wordsusedby the programare completely
devoid of semanticcontent.To be sure,mostof themare: “okay”, “think”, “mediocre”,“l”, “me”,

andsoon. However, someof them, suchas"letter”, “letter-catgory”, “group”, “successor’and
“direction”, denoteconceptghatthe programdoesgenuinelyunderstand—ira limited but quite

defensiblesense—withirthe con nes of its letterstringworld. Thesewordscorrespondo Slipnet
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let’s see... "abe" changes le "abd’, and
" changes fo "dw . Hmm...

Fm getting frusirated. 1 stilf don’t see a good
way lo describe hew "z" changes fe "dvz .

Fii just have te try a fittle harder...

Wefl, mv latest effort to think up new rufes
resiifted in some progress. Guess it was an

Beginning fustify run: "abe” changes io
“abd", and " changes to "dy"...

Neo satistfactory rules vet exist for describing
how " changes to "dvz".

Clamping rile—codelet patiern...

tinclamping patterns. Progress achieved by
rie—-codelet clamp = 75.

okay effort, in retrospect.
Clamping theme patlerns...
Ahal I have another idea...
Unclamping pafterns. Progress achieved by
Looks like that last brifliant idea | had Justify clamp = 92.
restited in a lot of progress. Guess it was a
pretty good idea, in refrospect. Successifully justified answer. Answer
quality = 73.

Ahal ! see why this answer makes sense. |
think it's a prefly mediocre answer.

Figurel3: Commentanfrom ajusti cation runwith “Eliza mode”on (left) andoff (right), shoving
theone-to-onecorrespondencketweerthecommentgeneratedn eachcase.
conceptswhosesemanticemege from the complex waysin which they interactwith perceptual
processingasdiscussedarlierin section4.

Althoughthe colloquial tone of Metacats commentaryis meantto be humorous,t raisesthe
potentialdangerof the so-called“Eliza effect”, which refersto the widespreadendeng of people
to readfar moremeaninghanis warrantednto text generatedby a computemprogram.Clearly, the
outputgeneratedy Metacatmight lead (or mislead)a casualobsener into falling for this effect.
Thereforejn theinterestof transpareng the programcanberun in two differentlinguistic output
modes.Whenrunningin “Eliza mode”,Metacatgeneratethetypeof commentangshavnin Fig. 12.
With this modeturnedoff, the programusesmoreneutrallanguagdo describethe eventsthatoccur
duringarun (the explanationggeneratedvhencomparinganswershowever, arenot affected). For
example,Fig. 13 shons the outputfrom the secondun of Fig. 12, alongsidgheisomorphicoutput
producedwith Eliza modeturnedoff. Exactly the samenumberof paragraphsre generatedn

eithercase.

7.1 Comparing Analogies

When Metacatcompareswo analogies,it retrieves their answerdescriptionsfrom its Episodic

Memory and analyzesthe themesand rules containedtherein. In general,two answerdescrip-
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| Problem/Answer | Themes Typeof Rule |

abc) abd xyz) wyz| AlphabeticPositionopposite  Abstract
StringPositionopposite

rst) rsu; xyz) wyz | StringPositionopposite Abstract
abc) abd xyz) xyd | StringPositionidentity Literal
rst) rsu; Xyz) Xxyu | StringPositionidentity Literal

abc) abd xyz) dyz | AlphabeticPositionopposite Literal
StringPositionopposite
rst) rsu; Xxyz) uyz | StringPositionopposite Literal

Tablel: Answerdescriptiondor the xyzfamily of analogies

tions may shareidenticalthemeg(calledcommorthemes)they mayhave themesof the sametype
which differ by relation (called differing themes),or one or both answersmay have themesthat
are not presentin the other answerat all (called unique themes). For example, consideragain
the xyz family of analogiesdiscussedn section3 (Fig. 1). Table 1 shovs someof the informa-
tion storedin the answerdescriptionscreatedby Metacatfor theseanalogies,including themes
characterizinghe mappingbetweerthe initial stringandtarget string. (For clarity, not all of the
storedinformationis showvn.) The answersxyd andxyu sharea commonStringPositionidentity
theme.Ontheotherhand,xyu anduyz arebasedn the differing themesof StringPositionidentity
and StringPositionopposite In the caseof the two wyz answersthe rst one containsa unigque
AlphabeticPositionoppositetheme.

Analyzingthethemesandrulesshawvn in Table 1 bringsout clearly the similaritiesanddiffer-
encesdhetweertheseanalogiesFor example,a crucialdistinctionbetweerthe rst wyzanswerand
dyzis the abstractnessf the rule usedto describeabc) abd The descriptionsof xyd and xyu
areidentical,re ecting the strongunderlyingsimilarity of thesetwo literal-mindedanalogies.The
differencebetweenthe two wyzanalogiedies in the presencer absencef theideaof alphabetic
symmetry Moreover, the way in which theseanalogiediffer is preciselythe sameasthe way in
which dyzdiffersfrom uyz

Thecoherencef ananswetcanbejudgedby comparingheabstractnessf theanswersthemes
with theabstractnessf theconceptsnakingup theanswersrule. For example dyzis characterized

by themesnvolving theabstractoncepbf opposite but dependon aliteral-mindedinterpretation
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of abc) abd This “dissonance”is the reasonthat Metacatconsidersdyzto be an incoherent
analogy asit explainedin Fig. 12.

The following is a samplingof Metacats explanationsof the similarities and differenceshe-
tweensomeof theanalogiesn Tablel. To generatéheseexplanationsthe programwas rst run
(in justify mode)on eachof the answersandwasthenaskedto comparehem. The gures show
the outputgeneratedby the program.

In Fig. 14, the programcompareghe answersvyzandxyd to the problemabc) abd xyz) ?,
andexplainswhy it considersvyzto bethebetteranalogy The phrase‘a richersetof ideas refers
to thefactthatwyZs answerdescriptioncontainamorethemeghanxyd s description.

Thenext examplesllustrateanswercomparisoracrosdifferentproblemsnamely abc) abd
Xyz) ?andrst) rsu; xyz) ?. Thisamountso comparinganswers'vertically” in Fig. 1. In
Fig. 15, the programexplainswhy it considerghe answersxyd andxyu to be fundamentallythe
sameanalogy As the programnotes,therulesgiving rise to theseanswersarevery similar, since
they both involve changingthe rightmostletter in a literal-mindedway. The programassignsa
ratingof “pretty mediocre”to eachansweyrbasedn thelow degreeof abstractnessf theanswers'
underlyingthemesandrules.

In Fig. 16, thetwo wyzanswersarecomparedln this case theprogramrecognizesheessential
differencebetweentheseanalogies—nameythe presencef alphabeticsymmetryin onebut not
the other—despitethe super cial identity of thetwo answers.

In Fig. 17, the programcompareshe answerslyzanduyz eachof which involvesa someavhat
incoherenblendof abstracandliteral-mindedperspecties.As in thepreviouswyzvs.wyzcasethe
programidenti es the presenceor absencef alphabeticsymmetryasthe fundamentaHifference
betweerthesetwo analogies.It alsonotestheir peculiarincoherenceexpressinga preferenceor

uyz

7.2 Reminding

Closelyrelatedto answercomparisoris the phenomenomf reminding,in which oneanswemay

triggertheretrieval from memoryof otheranswerghatarein someway similar. This mayhappen
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Fhe answer wiz to the problem "abc —= abd, xyz —> 7" is based on
seeing abe and xyz as symmelric predecessor and SUCCessor Groups
going in opposite directions, and on seeing afphabetic—position
summelry between the strings, while the answer xvd is based on seeing
abe and xyz as groups of the same fype going in the same direction. In
xvd's case, the idea of seeing alphabelic—position symmetrny belween
abe and xvz dees not arise. Another key difference between the
answers s that the change from abe to abd is viewed in a more
abstract way for the answer wivz than it is in the case of xyd. All in aff,
Fd say wiz is the befter answer, since it is based on a richer set af
ideas.

Figurel4:abc) abd xyz) xydversusabc) abd xyz) wyz

Fhe answer xvd io the problem "abc —> abd, xvz —= P" is essentiallv the
same as the answer xyu fo the problem "rst —= rsu, vz —= 7", Both
answers refy on seeing two strings (abe and xve in one case and rst
ahd xyz in the other) as groups of the same Hpe going in the same
direction. Furthermore, the change from abe lo abd is viewed in
essentiafiy the same way as the change from rst to rsu. All in aff, d say
thev're both prefiy mediocre answers.

Figurel5: abc) abd xyz) xydversusrst) rsu; xyz) Xxyu

Fhe answer wiz to the problem “abe —» abd, wwz —= 7" is hased in part
on seeing alphabetic—position symmeltry between abe and xyz. In
contrast, in the case of the answer w\z fo the problem "rst —= rsu, Xz
-= 7", the idea of seeing alphabetic—position symmelry beltween rst
and xvz does not arise. All in aff, I'd sav the first wz is the betler
answer, since it is based on a richer set of ideas.

Figurel6:abc) abd xyz) wyzversusst) rsu; xyz) wyz

Fhe answer dyz fo the problem "abe —= abd, xyz —= 7" is based in part
on seeing alphabetic—pesition symmelry beltween abe and ez, In
contrast, in the case of the answer iz 1o the problem "rst —= rsu, )z
—-= 77, the idea of seeing afphabetic—position symmelry between rst
and xyz does not arise.  The answer dyz, however, seems incoherent fo
me, since it involves seeing abstract similarities between abe and xe
(seeing abe and xyz as symmelric predecessor atd SUcCessor Groups
going in opposite directions, and seeing alphabetic—-position svmmelry
hetween the strings), while at the same fime viewing the change from
abe lo abd in a more fileral way, The answer e afse seems incoherent,
since it involves seeing abstract similarities between rst and xe
(seeing rst and xyz as symmetric predecessor and successor groups
qgoing in oppoesite directions), while at the same Hime viewing the
change from rst fo rsu in a more fiferal way. Overafl, though, I'd say ez
is the beller answer, because it doesn’t seem quite as inceherent as

dyz.

Figurel7:abc) abd xyz) dyzversusrst) rsu; Xyz) uyz
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15t == FSU, XY == WY

Figure18: Six answerdescriptionsandonesnagdescriptionin memory

wheneer anew answelis discoveredor justi ed by the program.Whenanew answeiis found,the
answedescriptiorcreatedrom theinformationin the TemporalTraceactsasanindex into memory
causingotherstoredanswerdescriptiongo becomeactivatedin proportionto their similarity to the
new answer Similarity betweeranswerdescriptionds determinedoy a numericalmeasurdrom O
to 100calledthedistancewhichmeasuretheamounif overlapof theanswerdescriptionsthemes
andconceptslf theactivationlevel of ananswedescriptiorexceedsa x edthresholdMetacaiwill
beremindedof theansweywith the activationlevel correspondingo the strengthof recall.

Fig. 18 shavs an exampleof the stateof Metacats memoryupondiscorering the answernwyz
totheproblemrst) rsu; xyz) ?, afterhaving seenafew otheranswergo this problemandto the
problemabc) abd xyz) ?. Thereis alsoa snagdescriptionfor abc) abd xyz) ?, indicating
that the programran into a snagwhen solving this problemon its own. The activation levels of
answersreindicatedby shade®f grey, rangingfrom white for fully-activatedanswergo darkgrey
for dormantones(sothatthelessstronglyactivatedananswetis, themoreit appearso fadeinto the
backgroundf Metacats memory).In this example,wyzis the mostactive answey sinceit wasjust
found. It haspartially activatedthe otherwyzanswerand,to alessemextent,uyz Theotheranswers,
however, aretoo distantfrom wyzto be recalled. As a result, Metacatreportsin its Commentary

window thatthenewly-foundanswer‘someavhat” remindsit of theotherwyzanswerand‘vaguely”
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remindsit of uyz (The programusestheterms“vaguely”,“someavhat”, and“strongly” to describe
the activationlevels of answerdescriptionscorrespondingespectiely to the numericalrangesl—
30,31-70,and71-100.)

SnagdescriptionenableMetacatto “appreciate’certainanswersn waysthat otherwisewould
not be possible. For example, consideragainthe answeraaabcccto the problemege) geq
abbbc) ?. As we saw in the sampleruns of section6.2, the programis unableto get this an-
sweron its own, becauset is incapableof perceving e—-g—eand 1-3-1asuni ed chunks,dueto
the absencef predecessosuccessgror samenesselationsamongthe parts. Consequentlyit is
unableto connectheideaof letterto theideaof numberatanabstractevel, andthereforeneversees
thesddeasasplayinganalogousolesin egeandabbbc Insteadjt endsup repeatedhattemptingto
swapthea's,b's,andc's. Ontheotherhand,if thisansweiis providedby theuserthe programcan
makesensef it, althoughin anincompleteway. It still considergsheconnectiorbetweeretterand
numberto be an“unjusti ed idea”. More precisely it includesan unjusti ed themein the answer
descriptionfor aaabccdasenits failure to makethe slippagelLetterCatgory) Length.

Thesamds truefor theanswermaabaaato therelatedproblemeqge) geq abbba) ?. Metacat
canalmostmakesenseof it, but cannotgetit on its own. However, thereis a crucial difference
betweeraaabaaaandaaabccg aswaspointedout earlierin section3. In eqe) geq abbba) 2,
swappingettercatayoriesis perfectlyfeasible,sothereis no needto view abbbaas1-3-1 That
is, no snagarisesin this problem. In a sensethen,the answeraaabccds the betteranalogy since
seeingabbbcas 1-3-1 provides an elegantway arounda snag,while seeingabbbaas 1-3-1is
unnecessaryMetacatcanmakethis obsenation, but it canonly do soif it knows thatthe problem
ege) geg abbbc) ? leadsto a snag. If it hastried this problemon its own, it will know this,
becausea correspondingsnagdescriptionwill exist in memory Corversely if it is shovn the
answeraaabccowithout having rst tried to solve the problemitself, it will remainunavareof the
possibilityof asnagarising,andwill notperceve this subtledistinctionbetweerthetwo analogies.

The following experimentillustratesthis behaior. First, Metacats memorywas clearedin
order to resetthe programto a “tabula rasa” state. It wasthen shown the analogyeqge) geq

abbba) aaabaaaandaskedto justify it. At the endof the run, the programcreatedan answer
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Figure19: aaabaaaversusaaabccdeforeencounteringhe snag

Figure20: aaabaaaversusaaabccaafterencounteringhesnag

descriptiorfor aaabaaawhichit thenstoredin memory Next, the programwasshown theanalogy
ege) geg abbbc) aaabccc At the endof the secondrun, the programreportedthat aaabccc
stronglyremindedit of the rst answeraaabaaa(remindingstrength:80). At this point, the pro-
gramhadnotyet attemptedo solve eqe) geq abbbc ? onits own, andthereforedid not know
thatasnagcanarise.Whenaskedtio comparghesetwo analogiesthe programreportecthatit saw
essentiallyno differencedetweerthem.Fig. 19 shovsthe programs commentary

The programwasthenresetto a talula rasastateandaskedto justify aaabaaa just asbefore.
However, it washext giventheproblemege) qgeqg abbbc ?to work onits own, with no answer
provided. In this run, the programattemptedinsuccessfullfo swapthe lettersof abbbca couple
of times,andthenhappenedo discoverthe moreliteral-mindedanswemeeeq Thefailure to swap
the letters,however, causedh snagdescriptionto be createdor this problemin memory Next, the
programwasshown the answeraaabcccto ege) geq abbbc) ?, asbefore,andaskedto justify
it. This time, the programreportedthat aaabcccremindedit only vaguelyof aaabaaa(remind-

ing strength:20), indicatingthat it percevedthe analogiesasbeingquite different—althougtstill
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recognizablyrelated.The programs commentaryis shavnin Fig. 20.

8 Discussion

A numberof researcherbBave developedcognitive modelsthatincorporatearchitecturabrinciples
similar to thoseof Metacat,including emegent processingarising from mary nondeterministic
agentsactingconcurrently andthe spreadingpf activationamongnodesof a semanticnetworkin
responsdo contet-sensitive pressuresKokinov's DUAL cognitive architecturewhich formsthe
basisof the AMBR1 andAMBR2 modelsof analogicakeasoningandmemoryretrieval developed
by Kokinov andPetrw, is a casein point (Kokinov, 1994a,1994b;Kokinov & Petrar, 2001). The
developmentof thesemodelshasbeenguidedby the belief that subprocessasnderlyinganalogy-
makingshouldbe integratedinto a larger cognitive systemcomprisingperceptionmemory learn-
ing, andreasoning.As in Metacat,dynamiccontet-sensitve emegent processinglaysa central
rolein DUAL andAMBR, allowing for the closeinteractionof representation4lding, mapping,
transferandreminding.

Despitetheir architecturakimilarities,however, MetacatandAMBR differ in termsof therela-
tive emphasigachmodelplaceson differentaspect®f cognition. ThemorerecentAMBR2 model
(Kokinov & Petrar, 2001)is particularlystrongin its approacho modelingthe storageandretrieval
of memoryepisodesin AMBR2, episoderepresentationare highly emegent, decentralizedand
context-sensitive, andinteractwith the mappingprocessn a psychologicallyplausiblemanner In
contrastMetacatcurrently lackssophisticatednechanismgor episodicmemoryindexing andre-
trieval. In the currentversionof the program,whena new answelis discovered,the newly-created
answerdescriptionis individually comparedo all othersstoredin memory in orderto determine
the new activation levels of the storeddescriptions—andhencewhich answerswill berecalledas
aresultof nding the new answer This simplistic approachdoesnot scalewell if mary answers
exist in memory andis thusunsatisfactoryn principle. FurthermoreasKokinov andPetrov have
pointedout, thesememorystructuresare essentiallylocalizedandstatic (althoughtheir activation
levelsmay changeasmentionedabove). Unlike themesandSlipnetconceptsanswerdescriptions

do notinteractwith eachotherthroughspreadingactivation,anddo not actively in uence percep-
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tual processingasthey undoubtedlyshouldin orderto modelpriming effectsandotherin uences
of previousproblem-solvingexperiencesn perception Developingbettermechanisms$or episodic
memoryorganizatiorandretrieval in Metacatis thusa high priority for futureresearch.

On the other hand, Metacatis strongly committedto modelingconceptsas active, dynamic
entitiesthat acquiretheir meaningsrom within the systemitself, throughtheir interactionswith
perceptionasdiscusseatarlierin sectionl. AMBR alsomodelsconceptshut their meaningsare
nottied to the systems own perceptionsn the sameway asin Metacat.For example,AMBR may
solve analogyproblemsinvolving the conceptsof water andteapot but the structuresepresent-
ing theseconceptdin memorypresumablydo not becomeactivatedby the systems perceptionof
real wateror real teapots.In contrast,the conceptsehindMetacats analogiessuchasletter or
successegroup, acquiretheir meaningspreciselyas a consequencef how they respondto the
perceptiorof “real” lettersandgroupsin Metacats microworld.

Anotherimportantdifferences Metacats focuson modelingself-peception anaspecof cog-
nition thatis not addressetly mostothermodelsof analogy-makingAs we saw earliet theinfor-
mationgleanedrom self-watchingplaysacrucialrole in thehigh-level characterizatioof answers,
enablingtheprogramto perceve abstracsimilaritiesanddifferencedetweeranalogiesasa whole.
We believe that a psychologicallyrealistic and completemodel of analogy-makingshould offer
someaccountof higherperceptualevels, includingthosethatre ect aspectof the systems own
behaior. In our model, the mechanismsesponsiblefor internal self-perceptiorare not funda-
mentally differentfrom thoseresponsiblgor external perception. Both involve the building and
manipulationof structuresy codeletswhetherin the TemporalTrace(for internalperception)or
in the Workspace(for external perception). Furthermoretheseprocessesretightly interwoven,
andarehighly dependenbnthe context-sensitive activationsof concepts.

Metacatalsosharesimilaritieswith case-baseasonindCBR) approaches analogy(Kolod-
ner, 1993,1994;Leake,1996). For instance Metacats storedanswerdescriptionsanbelikenedto
casesdn CBR, sincethey form a corpusof experienceon which the programcandrav whenfaced
with new situations. The discovery of a new answermay trigger the retrieval of similar answers

thatthe programhasseenin the past,in a way reminiscenof theretrieval of storedcasesn CBR
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accordingto their degree of similarity to the tamet situation. In Metacat,retrieved answersare

comparedo the currentanswerby analyzingthe similaritiesanddifferencedetweertheanswers'
associatedhemes. This is roughly akin to comparingcasesn CBR in orderto determinewhich

aspectof a retrieved casecanbe applieddirectly to the target situationwithout modi cation, and

which aspectsnustbeadaptedo t it. Finally, Metacats snagdescriptionsanbeviewedascases
thatstorefailure informationaboutanalogies.

However, thereareimportantdifferencesdbetweenCBR andMetacat. First of all, eventhough
Metacatsolves analogy problems,it was not conceved as a model of problem-solvingper se
Rather its focusis on modelingthe way in which contet-sensitive conceptsallow analogiesto
bepercevedandunderstoodlt is moreconcernedvith analogicaperception(andself-perception),
thanwith analogicafreasoningemployedspeci cally asatool for solving problems.Moreover, the
goal of much CBR work hasbeento createsystemghatlearnfrom experienceto solve problems
in anincreasinglyeffective or ef cient manner whereasn Metacatthe notion of improving the
programs performanceon analogyproblemsis not relevant. However, somerecentCBR-based
approachet modelingcreatvity (Bento& Cardoso2001;Cardoso& Wiggins,2002)seemnto be

morein harmoty with Metacats goalsthanprevious CBR systemdave been.

9 Conclusion

A prime objective of this researchs to explore how adaptable¢ontet-sensitive conceptsangive
riseto understandingy enablinganalogiebetweerapparenthdissimilarsituationgo be perceved.
Thepresentvork extendsanddeepensheideasdevelopedn Copycatby incorporatingmechanisms
for self-watching,episodicmemory and remindinginto the model. Thesemechanismsnakeit
possiblefor Metacatto compareand contrastanalogiesin an insightful way. The ability of the
programto perceve subtleparallelsanddistinctionsbetweeranalogiesepresents signi cant step
beyondthe perceptuahbilitiesof Copycatalthoughmuchwork still remainsto bedone.
Theexamplespresentedn section? illustrateMetacats ability to obsene anddescribdts own
behaior, to recall previously-encounterednswersandto explain the similaritiesanddifferences

it percevesbetweenanalogies.This ability relieson storingabstractdescriptionsof answersand
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processingavents, characterizedy patternsof themes,jn memory It is importantto emphasize
thatanswermescriptionsarejust organizedcollectionsof Slipnetconceptssincethey arecomposed
of themesandrules,which arein turn composedf concepts.Theseconceptsasthe fundamental
building-blocksof answerescriptionsform thesubstraten which theprograms understandingf
analogiess basedandacquiretheir semanticshroughthewaysin which they respondo situations
in Metacats letter-stringworld. Consequentlythe English-languageommentarygeneratedby the
programaboutanalogiesalthoughjust a surface-lgel veneerin mary ways, ultimately restson a

deepeifoundationof conceptuaftepresentatiotied to perception.

Appendix: SourceCode

Thecompletesourcecodefor Metacats available,alongwith instructionsor downloadingandrun-
ning the program,at http://www .cogsci.indiana.edu/metacatDemosof the examplesdiscussed

in this paperandin Marshall(1999)areincludedwith the program.
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