
Beyond Copycat:
Incorporating Self-Watching into a Computer Model of

High-Level Perception and Analogy-Making 
James B. Marshall and Douglas R. Hofstadter

Center for Research on Concepts and Cognition 
& Department of Computer Science 

Indiana University 
Bloomington, IN 47408 

marshall@cs.indiana.edu
dughof@cogsci.indiana.edu

Abstract

This paper summarizes recent work on extending the architecture of the Copycat analogy-
making program to include the ability to monitor certain aspects of its own processing as
it solves analogy problems. It discusses several important weaknesses of the Copycat
model and outlines current efforts aimed at overcoming these limitations. 

Introduction

This paper discusses recent continuing work on the Copycat project, a stochastic
computer model of fluid concepts, high-level perception, and analogy-making (Hofstadter
& Mitchell, 1994). Copycat perceives analogies between short strings of letters, which
can be thought of as representing abstract situations in an idealized microworld. An
example of such an analogy might be "If abc changes to abd, how does iijjkk change in
an analogous way?" An interesting feature of such problems is that there is no single
"right" answer; rather, a range of answers is always possible for each problem. For the
previous example, some possible answers might be iijjll, iijjdd, iijjkl, iijjkd, iijjkk, or
even abd or aabbdd. Of course, for most analogy problems, some answers are
consistently judged by people to be better than others. But a surprisingly large number of
defensible answers can usually be found for each problem. Furthermore, for some
problems, the answers judged to be the "best" are not at all the most "obvious" ones.
Despite its apparent simplicity, Copycat's microworld actually exhibits a remarkable
degree of richness and subtlety, and constitutes an ideal "laboratory" in which to study
analogy-making and high-level perception. 

A detailed exposition of the Copycat model can be found in (Mitchell, 1993). Here we
shall give just a brief overview, drawing attention to several important limitations. Recent
work has successfully addressed some of these limitations, but more remains to be done.
The following sections summarize the progress that has been made so far, and outline the
central ideas behind present efforts to extend the Copycat model in a way that will allow
it to understand the analogies it makes in a much more sophisticated capacity than
currently possible. 



The Copycat Model

The central theme underlying the Copycat architecture is the idea of nondeterministic,
stochastic processing distributed among a large number of small computational agents
called codelets that work on different aspects of an analogy problem simultaneously,
although at different speeds, thereby achieving a kind of "differential parallelism". All
processing in the model occurs through the collective actions of many codelets working
together over time, without any higher-level "executive" process supervising or
controlling the overall course of events. The model's high-level "macroscopic" behavior
emerges as a consequence of many fine-grained "microscopic" events. Thus, Copycat lies
firmly within the paradigm of "emergent computation". At the same time, however, it
incorporates many ideas from the more traditional paradigm of "symbolic AI", inhabiting
a kind of middle ground between these two opposites. Blank et al. (1992) give some
further perspectives on the emergent--symbolic spectrum and Copycat's relationship to it. 

In order to discover an answer to an analogy problem such as abc -> abd; iijjkk -> ?,
codelets work together to build up a strong, coherent mapping between the initial string
abc and the target string iijjkk, and also between the initial string abc and the modified
string abd. Codelets also build hierarchical groups within strings, which serve to
organize the raw perceptual data (i.e., the letters) into a coherent, chunked whole. For
example, in the string iijjkk, codelets might build three "sameness-groups" ii, jj, and kk,
and then a higher-level "successorship" group comprised of these three groups
encompassing the entire string. The distributed nature of codelet processing interleaves
the chunking process with the mapping process, and as a result each process influences
and drives the other. 

A mapping consists of a set of bridges between corresponding letters or groups that play
respectively similar roles in different strings. Each bridge is supported by a set of
concept-mappings that together provide justification for perceiving the objects connected
by the bridge as corresponding to one another. For example, a bridge might be built
between a in abc and the group ii in iijjkk, supported by the concept-mappings leftmost
=> leftmost and letter => group, which represents the idea that both objects are leftmost
in their strings, and that one is a letter and the other a group. Non-identity concept-
mappings such as letter => group are called slippages, and form the basis of Copycat's
ability to flexibly perceive superficially-dissimilar situations as being in fact "the same" at
some appropriate level of description. 

In addition to bridges and groups, another type of structure is necessary to produce an
answer to an analogy problem. Once a mapping has been built between the initial string
and the modified string (i.e., between abc and abd), a rule based on this mapping must be
created that succinctly captures the way in which the initial string changes. Of course,
there are many possible ways of describing this change, some more abstract than others.
For example, two possible rules for abc -> abd are Change letter-category of rightmost
letter to successor and Change letter-category of rightmost letter to d. Different ways of
looking at the initial-modified change, combined with different ways of building the
initial-target mapping, give rise to different answers. A bridge from the letter c in abc to
the group kk in iijjkk, based on a letter => group slippage, may yield the answer iijjll or
iijjdd, depending on the rule used to describe abc -> abd. On the other hand, a bridge
from c to the rightmost letter k in iijjkk may instead yield iijjkl or iijjkd as an answer,
again depending on the rule. To produce an answer, the slippages underlying the mapping



between abc and iijjkk are used by codelets to "translate" the rule describing abc -> abd
into a new rule that applies to iijjkk, such as Change letter-category of rightmost group
to successor. 

Weaknesses

All of this structure-building activity by codelets occurs in Copycat's Workspace, where
the strings themselves reside. The model incorporates a simple numerical measure of
overall Workspace "coherence", called temperature, which reflects, at any given moment,
the amount and quality of structures built so far. The final temperature of the Workspace
when an answer is found can therefore be interpreted as an indication of the answer's
overall quality. Furthermore, this measure of answer quality agrees well with the relative
judgments of answer quality given by people for a wide range of Copycat problems. For
example, Copycat's rating of the answer iijjll in the above problem will tend to be much
higher than for "weirder" answers such as iijjkd. 

Unfortunately, such a stark, numerical measure is extremely crude, and reflects a
fundamental weakness of the current model: its almost complete lack of any in-depth
understanding of the answers it finds. Copycat is unable to explain why it considers
particular answers to be good or bad. The reason is that Copycat's processing mechanisms
focus almost exclusively on perceiving patterns and relationships in the perceptual data
(the letter strings), while ignoring patterns that occur in its own processing when solving
an analogy problem. Thus, although it may discover an insightful answer for some
problem, it lacks any internal representation or knowledge of the underlying process that
led it to discover that answer--knowledge that could provide a basis for explaining the
answer's relative strengths or weaknesses, thereby permitting a much richer assessment of
its quality. Copycat's lack of any such "self-watching" ability stands in marked contrast to
people, who are typically able to give an account of why they consider one answer to be
better or worse than another for a particular analogy problem. An interesting related
phenomenon, dubbed the self-explanation effect, has been studied recently in the context
of students learning to solve physics problems from worked-out examples (Chi et al.,
1989; VanLehn et al., 1992). 

Another weakness of the model is the fact that answers are not retained after they are
found. When Copycat discovers an answer to a problem, it simply reports its answer,
along with the answer's final temperature, and then stops. On subsequent runs of the same
problem, no recollection of previous answers is possible, so there is no way for the
program to bring its past experience to bear on its current situation. This makes
comparison of different answers impossible, either for the same problem or among
different problems. Furthermore, any type of learning that might occur over multiple runs
is impossible--although learning itself was never intended to be a central focus of the
project, since the notion of learning to make "better" Copycat analogies is not entirely
clear. 

Yet another limitation of the model concerns the creation of rules. Initial work on
Copycat focused on the mapping process between the initial and target strings, and paid
relatively little attention to the creation of rules describing the change from the initial
string to the modified string. That is, the first phase of development concentrated on
perceiving similarity between strings via bridges and slippages, rather than on perceiving
and characterizing differences between strings via rules. Accordingly, severe restrictions
were placed on what types of changes were allowed to the initial string. In fact, at most a



single letter-category change to a single letter was allowed. Thus, abc -> abd was
allowed, but more general changes--even as simple as abc -> cba or abc -> abcc, in
which more than one letter changes or the length of the string changes--were not. Under
such rigid restrictions, creating an initial-modified mapping and abstracting a rule based
on it is essentially trivial, since such a mapping is always one-to-one, and always involves
just one possible type of change. Developing more robust mechanisms for perceiving and
characterizing differences between arbitrary strings was postponed to a later phase of the
project. 

From Copycat to Metacat

Recent work on Copycat, now in its second stage of development, has focused on these
weaknesses. The central objective of the current phase of the project, dubbed "Metacat",
is to increase the model's understanding of its answers to the point where it can give at
least a limited explanation of an answer's strengths and weaknesses relative to other
answers it has previously found. This requires not only remembering answers, but also
the ability to compare and contrast different answers to a single problem, or even answers
to different problems. 

Step One: Generalizing the Rule Representations

To this end, the mechanisms for building a mapping between the initial string and the
modified string, and then abstracting a rule based on it, have been generalized and
extended to handle arbitrary strings. This is an important step toward increasing both the
model's generality and its ability to understand the answers it finds, since understanding
the strengths and weaknesses of an answer depends quite heavily on the ability to
perceive differences between the initial and modified strings in very flexible ways. 

To build a rule, codelets examine the concept-mappings underlying the bridges that have
been built between the initial and modified strings. They attempt to abstract out common
patterns from these concept-mappings, particularly from among the slippages, and then
build a high-level description of the mapping based on the patterns they have noticed.
Changes to objects in the initial string can be described either "intrinsically" or
"extrinsically". An intrinsic change involves just a single object changing in some way,
such as c changing to its successor in abc -> abd. An extrinsic change, however, involves
two or more objects that change relative to each other. An example would be describing
two objects as exchanging or swapping some particular characteristic, such as letter-
category or position, as in abcd -> dbca. A sampling of some rules that Metacat is
currently able to build is shown below: 

● abc -> cba
Reverse direction of string. 

● abc -> cba
Swap positions of leftmost letter and rightmost letter. 

● abc -> abcd
Increase length of string by one. 

● abc -> abdd
Change letter-category of rightmost letter to successor;
Increase length of rightmost letter by one. 



● abc -> dba
Reverse direction of string;
Change letter-category of rightmost letter to successor.

● abc -> aabbcc
Increase lengths of all objects in string by one. 

● abc -> aaa
Change letter-categories of all objects in string to a. 

● aabccc -> aaabcc
Swap lengths of leftmost group and rightmost group. 

● eeqee -> qeeq 
Swap letter-categories and lengths of all objects in string. 

● abc -> bbbcccddd
Change lengths of all objects in string to three;
Change letter-categories of all objects in string to successor. 

Step Two: Incorporating a Memory

In addition to its generalized rule capability, Metacat is now able to find and remember
many different answers during a single run on a given problem. Whenever it finds a new
answer, rather than simply stopping, it pauses to display the answer, along with the
groups, bridges, concept-mappings, and rule that gave rise to it. Furthermore, all of this
answer-specific information, including the strings themselves, is then packaged together
and stored in memory, after which the program continues searching for alternative
answers to the problem. Gradually, over time, a repertoire of answers builds up in
memory, each one containing much more information than just the answer string itself.
Each stored answer represents a different way of perceiving or making sense of a
particular analogy problem. 

As an example, consider the problem abc -> cba; ijkl -> ?. Metacat might first find the
answer lkji, which is supported by the rule Reverse direction of string, based on a bridge
from the right-directed string abc to the left-directed string cba. All of this information is
stored along with the answer lkji in memory. Later during the same run, the program
might find the answer ljki, which is supported by the rule Swap positions of leftmost
letter and rightmost letter, based on a bridge from a in abc to a in cba, and a bridge from
c in abc to c in cba. This new answer is likewise stored in memory, along with its
associated structures. Later, the program might find the same answer ljki again, but this
time for a different reason. The supporting structures this time would include the rule
Swap letter-categories of leftmost letter and rightmost letter, based on a bridge from a in
abc to c in cba, and a bridge from c in abc to a in cba. 

These ideas are illustrated more clearly in the following three images, which are
screendumps of Metacat's Workspace taken from a single run of the program on the
slightly different problem abc -> cba; ppqqrrss -> ?. Each image shows an answer that
the program found for this problem, each based on one of the three ways described above
of interpreting abc -> cba. The information displayed in each image can be thought of as
an "explanation" of the answer just found, and forms the basis of a representation for that
answer in memory. 



● Answer 1: ssrrqqpp (by seeing the string abc as reversing direction)

● Answer 2: ssqqrrpp (by seeing the letters a and c as swapping positions)

 



● Answer 3: ssqqrrpp (by seeing the letters a and c as swapping letter-categories)

 

In each case, the actual answer is the string in the lower-right corner. The rule describing
the interpretation of abc -> cba is shown in red, along with the structures that support this
interpretation. The translated rule, describing the analogous way in which ppqqrrss
changes, is shown in dark blue, along with the structures that change according to the
translated rule. Bridges between the initial and target strings link letters or groups that are
perceived as playing analogous roles in their respective strings. Bridges between letters or
groups that change in an analogous fashion are highlighted in light blue. Finally, the
concept-mappings associated with the bridges in the initial-target mapping are listed for
each bridge. Of these, the conceptual slippages involved in translating the rule are
highlighted in magenta. 

Step Three: Self-Watching

The most important type of explanatory information that will be stored with answers,
however, won't be the rules, bridges, or other supporting structures as just described.
Rather, new types of structures, representing important events that occur during
processing, will be created from time to time in Metacat's Workspace as the program
works on an analogy problem. These structures, called themes, might represent, for
instance, the occurrence of important slippages, or the recognition of abstract concepts
involved in making an analogy. They will explicitly represent patterns and relationships
perceived, not among Metacat's perceptual input (i.e., the letter strings), but rather within
Metacat's own processing of that input, and will form the basis of the program's "self-
watching" ability. Thus, whenever Metacat discovers a new answer to a problem, it will
have ready access to an explicit temporal trace of the important themes that led up to the
discovery of the answer, which can then be stored along with the answer's other



supporting structures in memory. In some ways, this idea is similar in flavor to work on
derivational analogy, in which a system stores temporal traces of a problem-solving
session in memory for use in analogous situations that may arise later, so as to improve
the system's level of performance (Carbonell, 1986). As mentioned earlier, however, the
focus in Metacat is not on learning to make better analogies, but rather on being able to
explain why one analogy is judged to be more compelling than another. 

A Simple Example

As a quick sketch of how themes will allow the similarities and differences between
analogy problems to be perceived and contrasted, consider the problem abc -> abd; xyz
-> ?. This problem has been discussed at length elsewhere (Mitchell, 1993), so we
summarize briefly here. In the letter-string microworld, a has no predecessor and z has no
successor, so a straightforward answer based on taking the successor of z in xyz is
impossible. One way out is simply the literal-minded answer xyd. On the other hand, if
the symmetry between the "opposite" letters a and z is noticed, then the answer wyz
suggests itself, based on seeing abc and xyz as starting at opposite ends of the alphabet,
with abc going in the "successor" direction and xyz going in the opposite "predecessor"
direction. This answer is very elegant, and most people see it as being strongly analogous
to abd, even though it is not at all obvious at first. 

A related problem is rst -> rsu; xyz -> ?. Essentially the same arguments as before can be
applied to this problem, yielding the answers xyu and wyz. Seeing xyu as the answer is
based on seeing rst and xyz as both going in the same direction, while the answer wyz is
based on seeing them as going in opposite directions. However, there is really no
compelling justification for seeing rst and xyz as going in opposite directions, unlike in
the previous case of abc and xyz, with their strong a-z symmetry. Thus, wyz seems
weaker as an answer to the problem rst -> rsu; xyz -> ? than it does as an answer to abc
-> abd; xyz -> ?. On the other hand, xyd and xyu seem like equally valid (if mediocre)
answers for their respective problems. How might Metacat be able to explain these
differences? 

As it works on these problems, Metacat will notice interesting events that happen along
the way--the activation of the concept of Opposite, for instance, or the recognition of the
symmetric relationship between a and z. When it finds an answer, it will store a
representation of the answer in memory, incorporating into this representation the
important events or themes involved in the discovery of the answer. A schematic diagram
shows the contents of Metacat's memory after having found the four answers to the two
problems discussed above. 



Each of the four structures represents an analogy problem that the program has solved.
The stored information includes the problem itself, the particular answer found, and the
themes that gave rise to the answer. The first two structures represent the "literal" answers
xyd and xyu, each one based on the theme of mapping the initial and target strings onto
each other in the same direction (i.e., right). The third structure represents the answer wyz
to the problem abc -> abd; xyz -> ?. The themes underlying this answer include the
theme of alphabetical symmetry (i.e., the symmetry between the alphabetical-first letter a
and the alphabetical-last letter z), and the theme of directional symmetry (i.e., the
symmetry between the right-directed string abc and the left-directed string xyz). The
fourth structure, representing the answer wyz to the problem rst -> rsu; xyz -> ?, is
similar, except here only themes representing directional symmetry are present, since in
this problem no alphabetical-opposite slippage between r and z can occur. 

Given these four answer-representations in memory, the stage is set for comparing and
contrasting them based on the thematic information they contain. Clearly, the important
difference between the two wyz answers is the absence of alphabetical-symmetry themes
in the rst case. Herein lies the difference in quality of wyz as an answer to these two
problems. Furthermore, the thematic characterizations of the "literal" answers xyd and
xyu are identical, reflecting the absence of qualitative differences between them. In fact,
it is even possible to see a kind of "meta-level" analogy between the weak answers xyd
and xyu that is qualitatively much stronger than the corresponding analogy between the
two wyz answers, even though in the latter case the answers are identical, and are of
higher quality individually than the answers in the former case. 

Conclusion

Enriching Metacat's understanding of its answers by incorporating higher-order thematic
information gleaned from self-watching should enable it to perceive abstract similarities
and differences among the analogies it makes. It should be able to apply the same
processing mechanisms that it now uses to perceive relationships in its perceptual input to
the more abstract task of perceiving relationships among the answers that it finds,
comparing and contrasting them in a much more interesting way than currently possible.
In short, it should eventually be able to make analogies between analogies. Endowing
Copycat with a sophisticated self-watching capability forms the central theme of present
efforts to extend and refine the model, and is a logical next step along the road to
understanding and capturing the full richness of high-level perception and analogy-
making in a computational framework. 

References

Blank, D., Meeden, L., and Marshall, J. (1992). Exploring the symbolic/subsymbolic
continuum: A case study of RAAM. In Dinsmore, J. (Ed.), The Symbolic and
Connectionist Paradigms: Closing the Gap (pp. 113-148). Lawrence Erlbaum. 

Carbonell, J. (1986). Derivational analogy: A theory of reconstructive problem solving
and expertise acquisition. In Michalski, R., Carbonell, J., and Mitchell, T. (Eds.),
Machine Learning: An Artificial Intelligence Approach, Volume II (pp. 371-392). Morgan
Kaufmann. 



Chi, M., Bassok, M., Lewis, M., Reimann, P., and Glaser, R. (1989). Self-explanations:
How students study and use examples in learning to solve problems. Cognitive Science,
13, 145-182. 

Hofstadter, D., and Mitchell, M. (1994). The Copycat project: A model of mental fluidity
and analogy-making. In Holyoak, K. and Barnden, J. (Eds.), Advances in Connectionist
and Neural Computation Theory, Volume 2: Analogical Connections (pp. 31-112).
Ablex. 

Mitchell, M. (1993). Analogy-Making as Perception. Cambridge: MIT Press/Bradford
Books. 

VanLehn, K., Jones, R., and Chi, M. (1992). A model of the self-explanation effect. The
Journal of the Learning Sciences, 2, 1-59. 


