
The Introspective Robot:

Using Self-Prediction to Improve Robot Learning

James B. Marshall, Neil K. Makhija, Zachary D. Rothman

Department of Computer Science

Sarah Lawrence College

One Mead Way

Bronxville, NY 10708

{jmarshall, nmakhija, zrothman}@slc.edu

Abstract

We investigate the use of self-predicting neural networks for

autonomous robot learning within noisy or partially
predictable environments. A benchmark experiment is

performed in which a network is trained on a task consisting

of a mixture of predictable and random patterns. In addition
to learning the task patterns, the network is also trained to

explicitly predict the internal representations developed for

each pattern as well as the resulting output error. Self-
prediction is found to speed up learning and may offer an

effective framework for distinguishing predictable from

unpredictable input data.

Introduction

Inspired by developmental psychology and neuroscience,

the newly emerging field of developmental robotics studies

how autonomous robots can learn to function completely

on their own in rich, dynamic environments, without

relying on innate task-specific knowledge being designed

into the system in advance [1]. In such an environment, a

robot is constantly flooded with multiple streams of raw,

uninterpreted sensory information. To use this information

effectively, the robot must have the ability to make

abstractions in order to focus its attention on the most

relevant features of the world. Based on these

abstractions, it must be able to predict how the world will

change over time, perhaps as a consequence of its own

actions. Most importantly, an autonomous system must be

able to decide on its own which tasks to learn, rather than

relying on people to tell it what to do. The system should

be driven by internally generated motivations that push it

to learn progressively higher-level abstractions and more

complex predictions [2].

 However, some aspects of the robot's environment

may not be inherently predictable. A self!motivated robot

needs to be able to reliably distinguish learnable from

Copyright © 2008, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

unlearnable features of the world, so as not to waste time

and effort trying to learn impossible tasks. How can a

robot learn to recognize this difference on its own? One

promising idea involves the use of “self!predicting” neural

networks to control a robot, in which a network is trained

to predict its own output error as well as its own internal

hidden representations as it learns to solve a task. In

Bayesian terms, this can be viewed as the system giving an

estimate of the uncertainty of its output. Under certain

conditions, a network can learn a deterministic (and hence

predictable) task embedded within a larger unpredictable

environment more effectively by using self!prediction [3].

This has the potential of enabling the robot to overcome

noise in its input and to avoid being distracted by

unlearnable features of the environment, on the basis of

analyzing the internal representations created by the

system from the robot’s sensory data.

Self-Predicting Neural Networks

We study the effects of several different network

configurations and parameter settings on self!prediction,

using a variant of the XOR problem as a benchmark. Our

training dataset is intended to model a partially predictable

environment, in which some of the input patterns map to

well-defined output patterns, while others map to random

patterns that change on every training cycle. The portion

of patterns with random targets can be varied in order to

model different amounts of background noise in the

environment. For example, a dataset with 75% noise

might contain a total of 64 six-bit binary input patterns, 16

of which map to fixed target patterns (whose bits are a

function of applying XOR to the input bits), and 48 of

which map to random and dynamically changing target

patterns. The network uses a standard backpropagation

architecture with input, hidden, and output layers,

augmented with additional layers for predicting the amount

of error on the output layer as well as the representations

developed internally on the hidden layer. During training,

117

Proceedings of the Twenty-First International FLAIRS Conference (2008)

the hidden layer activation pattern is used as a (moving)

target pattern for the prediction layer. Self-prediction can

be effectively turned off by using constant target values of

0.5 for the prediction layers.

 With a dataset containing 0% noise—i.e. all input

patterns are predictable and thus learnable—there is

essentially no difference in behavior when training with

self-prediction on or off. Figure 1 (top) shows the sum

squared error of the network as a function of training

epochs for 10 runs with self-prediction on (grey lines) and

10 runs with it off (black lines). However, as the

proportion of unpredictable patterns in the dataset is

increased, the effect of self-prediction becomes more

noticeable. Figure 1 (bottom) shows the same experiment

with a dataset of 75% unpredictable patterns. The network

is able to learn the other 16 predictable patterns faster and

more effectively with self-prediction on (grey), even when

faced with randomly changing targets for the other

patterns. Furthermore, analyzing the internal hidden

representations created by the network during training with

self-prediction on reveals that they are clustered according

to whether the patterns represent predictable or

unpredictable inputs.

Applying Self-Prediction to Robot Control

We also investigate the effects of several types of

self!predicting neural networks within the context of a

simple robot prediction task, in which a simulated

“watcher” robot, equipped with a camera, learns to

anticipate the movements of a “decoy” robot exhibiting

various levels of behavioral complexity and predictability.

The decoy’s behavior can range from trivially predictable

(e.g. do nothing) to simple periodic motion (e.g. pacing

back and forth, moving in a circle) to more complicated

types of behavior (e.g. avoiding obstacles, random

wandering). The watcher robot is controlled by a Simple

Recurrent Network [4], which is trained to predict the

movements of the decoy robot as well as the discrepancy

between the observed movements and the network’s own

prediction of those movements.

 We compare the internal hidden representations

created by the watcher network as a result of observing

predictable versus unpredictable behavior in the decoy

robot, and examine the degree to which such behaviors can

be distinguished on the basis of these representations.

Several different sensory input representation schemes for

the watcher robot are considered, including a discrete

linear spatial representation and a continuous 2!D

coordinate representation.

References

[1] J. Weng, J. McClelland, A. Pentland, O. Sporns,

I. Stockman, M. Sur, and E. Thelen, 2001. Autonomous

mental development by robots and animals. Science, 291,

599-600.

[2] D. Blank, D. Kumar, L. Meeden, and J. Marshall, 2005.

Bringing up robot: fundamental mechanisms for creating a

self!motivated, self!organizing architecture. Cybernetics

and Systems, 36(2), 125!150.

[3] D. Blank, J. Lewis, and J. Marshall, 2005. The

multiple roles of anticipation in developmental robotics.

AAAI 2005 Fall Symposium: From Reactive to

Anticipatory Cognitive Embodied Systems, pp. 8!14.

Menlo Park, CA: AAAI Press.

[4] J. Elman, 1990. Finding structure in time. Cognitive

Science, 14, 179-211.

Figure 1. Ten training runs with self-prediction on (grey) and ten runs with

self-prediction off (black). X-axis shows training epochs; y-axis shows sum

squared error (for predictable patterns only). Top: dataset contains 64

predictable, 0 random patterns (0% noise). Bottom: dataset contains 16
predictable, 48 random patterns (75% noise).

118

