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Abstract 

We investigate the use of self-predicting neural networks for 

autonomous robot learning within noisy or partially 
predictable environments.  A benchmark experiment is 

performed in which a network is trained on a task consisting 

of a mixture of predictable and random patterns.  In addition 
to learning the task patterns, the network is also trained to 

explicitly predict the internal representations developed for 

each pattern as well as the resulting output error.  Self-
prediction is found to speed up learning and may offer an 

effective framework for distinguishing predictable from 

unpredictable input data. 

Introduction   

Inspired by developmental psychology and neuroscience, 

the newly emerging field of developmental robotics studies 

how autonomous robots can learn to function completely 

on their own in rich, dynamic environments, without 

relying on innate task-specific knowledge being designed 

into the system in advance [1].  In such an environment, a 

robot is constantly flooded with multiple streams of raw, 

uninterpreted sensory information.  To use this information 

effectively, the robot must have the ability to make  

abstractions in order to focus its attention on the most 

relevant features of the world.  Based on these  

abstractions, it must be able to predict how the world will 

change over time, perhaps as a consequence of its own 

actions.  Most importantly, an autonomous system must be 

able to decide on its own which tasks to learn, rather than 

relying on people to tell it what to do.  The system should 

be driven by internally generated motivations that push it 

to learn progressively higher-level abstractions and more 

complex predictions [2]. 

 However, some aspects of the robot's environment 

may not be inherently predictable.  A self!motivated robot 

needs to be able to reliably distinguish learnable from 
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unlearnable features of the world, so as not to waste time 

and effort trying to learn impossible tasks.  How can a 

robot learn to recognize this difference on its own?  One 

promising idea involves the use of “self!predicting” neural 

networks to control a robot, in which a network is trained 

to predict its own output error as well as its own internal 

hidden representations as it learns to solve a task.  In 

Bayesian terms, this can be viewed as the system giving an 

estimate of the uncertainty of its output.  Under certain 

conditions, a network can learn a deterministic (and hence 

predictable) task embedded within a larger unpredictable 

environment more effectively by using self!prediction [3].  

This has the potential of enabling the robot to overcome 

noise in its input and to avoid being distracted by 

unlearnable features of the environment, on the basis of 

analyzing the internal representations created by the 

system from the robot’s sensory data. 

Self-Predicting Neural Networks 

We study the effects of several different network 

configurations and parameter settings on self!prediction, 

using a variant of the XOR problem as a benchmark.  Our 

training dataset is intended to model a partially predictable 

environment, in which some of the input patterns map to 

well-defined output patterns, while others map to random 

patterns that change on every training cycle.  The portion 

of patterns with random targets can be varied in order to 

model different amounts of background noise in the 

environment.  For example, a dataset with 75% noise 

might contain a total of 64 six-bit binary input patterns, 16 

of which map to fixed target patterns (whose bits are a 

function of applying XOR to the input bits), and 48 of 

which map to random and dynamically changing target 

patterns.  The network uses a standard backpropagation 

architecture with input, hidden, and output layers, 

augmented with additional layers for predicting the amount 

of error on the output layer as well as the representations 

developed internally on the hidden layer.  During training, 
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the hidden layer activation pattern is used as a (moving) 

target pattern for the prediction layer.  Self-prediction can 

be effectively turned off by using constant target values of 

0.5 for the prediction layers. 

 With a dataset containing 0% noise—i.e. all input 

patterns are predictable and thus learnable—there is 

essentially no difference in behavior when training with 

self-prediction on or off.  Figure 1 (top) shows the sum 

squared error of the network as a function of training 

epochs for 10 runs with self-prediction on (grey lines) and 

10 runs with it off (black lines). However, as the 

proportion of unpredictable patterns in the dataset is 

increased, the effect of self-prediction becomes more 

noticeable.  Figure 1 (bottom) shows the same experiment 

with a dataset of 75% unpredictable patterns.  The network 

is able to learn the other 16 predictable patterns faster and 

more effectively with self-prediction on (grey), even when 

faced with randomly changing targets for the other 

patterns.  Furthermore, analyzing the internal hidden 

representations created by the network during training with 

self-prediction on reveals that they are clustered according 

to whether the patterns represent predictable or 

unpredictable inputs. 

Applying Self-Prediction to Robot Control 

We also investigate the effects of several types of 

self!predicting neural networks within the context of a 

simple robot prediction task, in which a simulated 

“watcher” robot, equipped with a camera, learns to 

anticipate the movements of a “decoy” robot exhibiting 

various levels of behavioral complexity and predictability.  

The decoy’s behavior can range from trivially predictable 

(e.g. do nothing) to simple periodic motion (e.g. pacing 

back and forth, moving in a circle) to more complicated 

types of behavior (e.g. avoiding obstacles, random 

wandering).  The watcher robot is controlled by a Simple 

Recurrent Network [4], which is trained to predict the 

movements of the decoy robot as well as the discrepancy 

between the observed movements and the network’s own 

prediction of those movements. 

 We compare the internal hidden representations 

created by the watcher network as a result of observing 

predictable versus unpredictable behavior in the decoy 

robot, and examine the degree to which such behaviors can 

be distinguished on the basis of these representations.  

Several different sensory input representation schemes for 

the watcher robot are considered, including a discrete 

linear spatial representation and a continuous 2!D 

coordinate representation. 
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Figure 1.  Ten training runs with self-prediction on (grey) and ten runs with 

self-prediction off (black).  X-axis shows training epochs; y-axis shows sum 

squared error (for predictable patterns only).  Top: dataset contains 64 

predictable, 0 random patterns (0% noise).  Bottom: dataset contains 16 
predictable, 48 random patterns (75% noise). 
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