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Abstract

This paper describes Metacat, an extension of the Copycat model of analogy-making. The de-
velopment of Copycat focused on modeling context-sensitive concepts and the ways in which
they interact with perception within an abstract microworld of analogy problems. This approach
differs from most other models of analogy in its insistence that concepts acquire their semantics
from within the system itself, through perception, rather than being imposed from the outside.
The present work extends these ideas by incorporating self-perception, episodic memory, and
reminding into the model. These mechanisms enable Metacat to explain the similarities and
differences that it perceives between analogies, and to monitor and respond to patterns that oc-
cur in its own behavior as it works on analogy problems. This introspective capacity overcomes
several limitations inherent in the earlier model, and affords the program a powerful degree of
self-control. Metacat’s architecture includes aspects of both symbolic and connectionist sys-
tems. The paper outlines the principal components of the architecture, analyzes several sample
runs and examples of program-generated commentary about analogies, and discusses Metacat’s
relation to some other well-known models of analogy.

1 Introduction

This paper describes a computational model of analogy-making and perception called Metacat,

which is based on the earlier Copycat model developed by Hofstadter and Mitchell (Hofstadter,

1984; Mitchell, 1993). Like Copycat, Metacat models the complex interplay of bottom-up and top-

down processes involved in perception, using an emergent architecture that incorporates aspects

of both symbolic and connectionist systems. Metacat, however, builds on the earlier model by

focusing on self -perception and its relation to other cognitive processes. The long-term goal of this

line of research is to understand how high-level cognitive phenomena such as concepts, analogical

thinking, creativity, and self-awareness can emerge from a subcognitive substrate composed of a

large number of fine-grained, nondeterministic actions, each of which is far too small by itself to

support such phenomena.
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Few people would claim that the individual neurons making up a human brain are “conscious”

in anything like the normal sense in which humans experience consciousness. We are forced to

accept the fact that self-awareness arises, somehow, out of nothing but billions of low-level chemical

reactions and neuronal firings. How can individually meaningless physical events in a brain—even a

huge number of them—ultimately give rise to meaningful awareness and understanding? Hofstadter

has argued that two ideas are of paramount importance:

What seems to make brains conscious is the special way they are organized—in par-
ticular, the higher-level structures and mechanisms that come into being. I see two
dimensions as being critical: (1) the fact that brains possess concepts, allowing com-
plex representational structures to be built that automatically come with associative
links to all sorts of prior experiences, and (2) the fact that brains can self-monitor, al-
lowing a complex internal self-model to arise, allowing the system an enormous degree
of self-control and open-endedness. (Hofstadter & FARG, 1995)

The development of Copycat was intended to explore the first idea, by creating a computer

model of analogy-making in which the representation of concepts is deeply intertwined with the

program’s mechanisms for high-level perceptual processing. Concepts in Copycat are not modeled

as static representational structures; rather, they are dynamic entities that respond to perceptual pro-

cessing in a highly context-sensitive way, bending and adapting to the situation at hand in a flexible

manner. Furthermore, they actively influence perceptual processing itself. This tight coupling of

concepts and perception in the model gives rise to an ability to perceive similarities between dif-

ferent situations by describing them in terms of a common set of underlying concepts applicable to

both situations. The ability of Copycat to make analogies is a direct consequence of the nature of

the program’s representation of concepts.

The Metacat model explores the second idea, by endowing Copycat with a capacity for self-

watching, defined here as the ability of a system to perceive—and to create explicit representations

of—its own perceptual processes. Our objective has been to develop mechanisms that allow the

program to monitor its own activity and to explicitly characterize the conceptual associations that

implicitly arise as it solves analogy problems (Marshall & Hofstadter, 1997; Marshall, 1999). This

can be thought of as adding a higher “cognitive” layer on top of Copycat’s “subcognitive” layer,

enabling the program to watch and remember what happens at its subcognitive level as perceptual
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structures are built, reconfigured, and destroyed. This type of self-reflective awareness is common

in humans, who are quite capable of paying attention to, and explicitly articulating, patterns in their

own thinking (Chi, Bassok, Lewis, Reimann, & Glaser, 1989; Chi, de Leeuw, Chiu, & LaVancher,

1994).

Copycat and Metacat are concerned with high-level perception, by which we mean that level

of perceptual processing in which concepts play a critical role (Chalmers, French, & Hofstadter,

1992). In contrast, low-level perception refers to the processing of raw, modality-specific sensory

data obtained directly from the environment, such as the detection of edges in retinal images, or

the processing of audio frequencies from the inner ear, without regard to the meaning of this in-

formation. Low-level perceptual processing is the first step along the path leading to high-level

perception, with many intermediate processing stages lying in-between involving ever greater de-

grees of abstraction. The end result of this process is the conscious recognition or understanding of

the input stimulus as an instance of a particular mental concept or set of concepts.

Consider, for example, the everyday experience of recognizing your mother. A pattern of light

falls on the hundred million or so photoreceptor cells in your retina, and a fraction of a second

later, the idea of your mother comes to mind. A particular mental concept has become highly

activated, while most others remain dormant. This process of recognition, for the most part, takes

place below the level of conscious awareness. One does not have to do much deliberate thinking in

order to recognize one’s mother (at least in the absence of degraded environmental conditions such

as poor lighting). High-level perception depends largely on subcognitive processing mechanisms

(Hofstadter, 1985b).

The activation of the concept of mother elicited by a facial image is a relatively simple example

of high-level perception in action. This same phenomenon, however, often occurs in more abstract

contexts, such as when a person hears an unfamiliar piece of music for the first time and recognizes it

as coming from a particular musical period or composer, or when a painting is recognized to be, say,

an Impressionist work, or as belonging to Picasso’s “Blue period”. Moving to an even higher level of

abstraction, a complicated social situation involving tangled webs of people, objects, relationships,

and conflicting choices may collectively be perceived as a “Catch-22” situation. Even the concept of
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mother is, in reality, a subtle matter. Depending on context, a wide variety of things can be viewed

as abstract instances of this concept. The Earth, for example, is sometimes described as the mother

of all living things, an idea commonly expressed by the phrase “Mother Earth”. Strictly speaking,

of course, considering a planet to be a mother makes no sense, but given the right context we can

effortlessly see how the idea applies, thanks to the natural flexibility of human concepts.

In general, concepts in the mind are not sharply-defined entities with clear-cut boundaries, al-

ways applying to certain things but never to others. Rather, the boundaries of concepts are inherently

ill-defined and blurry, and are strongly influenced by the context in which perception occurs. We

refer to this type of inherent flexibility as conceptual fluidity, in order to stress the idea of concepts

as nonrigid, adaptable, and highly context-sensitive. Much work has been done in cognitive psy-

chology investigating the nature of the distances between concepts and categories (see, for example,

Tversky, 1977; Smith & Medin, 1981; Goldstone, Medin, & Gentner, 1991). In particular, the

strength of associations between concepts can change dynamically, according to context. Under the

right pressures, concepts that are normally far apart may be brought close together, so that they are

both seen as applying to a particular situation (such as when the Earth is regarded simultaneously as

an instance of planet and mother). This phenomenon, which we refer to as conceptual slippage, is

what enables apparently dissimilar situations to be perceived as being “the same” at a deeper, more

abstract level.

Copycat and Metacat differ in important ways from many other models of analogy proposed

by researchers in AI and cognitive science. See French (2002) for a recent overview. Probably the

most important difference is the emphasis our models place on the representation of concepts, and

the role played by concepts in making analogies. Other well-known models have focused on the

mechanisms and psychological constraints involved in mapping a source situation to a target situa-

tion (Gentner, 1983; Falkenhainer, Forbus, & Gentner, 1990; Forbus, Ferguson, & Gentner, 1994);

on the satisfaction of multiple competing constraints when constructing this mapping (Holyoak &

Thagard, 1989); on the mechanisms that allow stored analogs to be retrieved from memory (For-

bus, Gentner, & Law, 1995; Thagard, Holyoak, Nelson, & Gochfield, 1990; Kolodner, 1993); on

the integration and mutual interaction of processes responsible for retrieval, mapping, and transfer
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(Kokinov & Petrov, 2001; Eskridge, 1994); and on distributed representations of structure (Hummel

& Holyoak, 1996, 1997; Holyoak & Hummel, 2001; Halford, Wilson, Guo, Gayler, Wiles, & Stew-

art, 1994; Wilson, Halford, Gray, & Phillips, 2001). All of these issues are important, and any full

and satisfying theory of analogy should certainly include an account of them. In our view, however,

a complete theory must also integrate concepts, perception, and meaning into the picture.

When humans make analogies, we not only construct mental mappings according to constraints,

we also understand the meaning of the concepts connected by these mapping-structures. For exam-

ple, a person making an analogy between a situation involving water and another involving heat

presumably maps mental structures representing water to structures representing heat, at some level

of abstraction. But people also understand what the underlying concepts of water and heat mean,

from long experience with these concepts in the world. Of course, the act of making the analogy

deepens this understanding by facilitating a transfer of knowledge from one situation to the other.

But the important point is that the constituent concepts underlying the analogy are themselves mean-

ingful to the person. Likewise, a computer model of analogy should offer some account of how the

underlying symbols and structures that represent concepts in an analogy acquire meaning them-

selves, in addition to an account of the structure-mapping processes involved. That is, the structures

that the program uses to represent analogies should be meaningful to the program itself. This is

essentially the familiar symbol-grounding problem (Harnad, 1990), recast in analogical guise.

Some connectionist models of analogy have attempted to address this problem by moving away

from the use of symbolic representations of source and target situations. Much recent work has

focused on the use of distributed encoding techniques such as Plate’s holographic reduced represen-

tations (Plate, 1994, 1998), Kanerva’s binary spatter code (Kanerva, 1996, 1998), or Smolensky’s

tensor products (Smolensky, 1990). Examples of such models include Drama (Eliasmith & Tha-

gard, 2001) and the STAR models of Halford et al. (1994) and Wilson et al. (2001). All of these

approaches encode explicitly-structured representations of source and target situations as distributed

activation patterns, which are suitable for processing by connectionist networks. These represen-

tations can be manipulated in a holistic fashion, without having to be decomposed into their con-

stituent components (Chalmers, 1990; Chrisman, 1991; Blank, Meeden, & Marshall, 1992). How-
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ever, currently the representations used by these models do not acquire their meaning internally

through the system’s own perceptions or through learning. Instead, meaning is imposed from out-

side the system through an essentially arbitrary assignment of semantics to the patterns of activation

that serve as the constituent building blocks of representations. The hope is that eventually these

systems will be able to use learned patterns based directly on sensory stimuli—instead of arbitrary

patterns—as representational building blocks, which will make the representations meaningful to

the system itself.

Blank’s (1997) Analogator model attempts to integrate learning and analogy-making into a sin-

gle connectionist framework using distributed representations based on tensor products. Analogator

learns to make analogies between very simple visual scenes composed of geometric shapes, on the

basis of spatial relationships such as above or below. Unlike the models mentioned previously, how-

ever, Analogator does not start with explicitly-structured representations. Instead, the system itself

learns the meaning of spatial relationships by creating its own internal representations of analogies,

through direct experience with visual scenes. In other words, the meaning of the underlying com-

ponents of Analogator’s analogies is acquired through the system’s own perceptions. See Gasser

(1993) for a more general discussion of perceptual grounding within the context of simple visual

scenes.

In both Analogator and Metacat, perception is tightly interwoven with analogy-making. Analoga-

tor, however, focuses more on the learning of analogical behavior than on the explicit modeling of

concepts. In contrast, Metacat emphasizes concepts and the ways in which they interact with per-

ception, but does not attempt to model learning. Another difference is that Metacat’s representations

have a more symbolic flavor than the purely distributed representations created by Analogator. Nev-

ertheless, the representations created by both models are much more closely tied to perception than

the traditional predicate-calculus-based representations used by many of the models cited earlier.

2 Analogy-Making in an Idealized World

How can something as elusive as the meaning of concepts be modeled in a computer program? The

approach taken by Copycat and Metacat is to start small, by eschewing real-world complexity in
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favor of a microworld—a tiny, idealized world designed to strip away as many distracting, surface-

level details as possible from analogy-making while still preserving the fundamental essence of the

phenomenon (Hofstadter, 1984). This philosophy differs from that of most other current computer

models of analogy, which typically operate on representations of “real-world” situations that are not

grounded in the program’s own perceptions. We believe, however, that this is a deep and important

issue that should be tackled head-on, rather than being sidestepped or ignored. In our approach, we

restrict the number of concepts available in the world, which makes it possible for our models to

represent concepts in a very rich and dynamic way that ties them intimately to perception. A limited

set of concepts, however, need not imply a limited set of interesting analogy problems. Despite the

microworld’s apparent simplicity, it harbors an exceedingly rich variety of subtle analogy problems,

in which many surprisingly creative and non-obvious answers are possible.

The raw material of this world consists of 26 abstract objects, represented as lowercase letters

for convenience, among which only three relations are meaningful: sameness, predecessorship,

and successorship. All letters except a have an immediate predecessor, and all except z have an

immediate successor. All other information pertaining to letters has been factored out, such as their

shapes or semantic connotations. Analogies are stated in terms of short letter-strings (called the

initial string, the modified string, and the target string, respectively), which can be thought of as

idealized situations. For example: “If abc changes to abd, how does mrrjjj change in an analogous

way?” Or, more succinctly:

abc ⇒ abd
mrrjjj ⇒ ?

Most people, on seeing this problem for the first time, answer mrrkkk or mrrjjk (Mitchell,

1993). The rightmost component of abc (the letter c) is perceived as changing to its successor,

so doing the “same thing” to mrrjjj amounts to changing the rightmost component of mrrjjj to its

successor—either jjj viewed as a chunk, or just the rightmost letter j. There are, however, many

other possible answers to this problem, which people tend to give less often, including:

• mrrjjd (change the rightmost letter literally to d)

• mrrddd (change the rightmost chunk to d’s)
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• mrrjjj (change just the c’s, of which there are none)

• mrrjkk (view mrrjjj as mr–rj–jj and change the rightmost pair to its successor)

• mrrjdd (view as mr–rj–jj, but change the rightmost pair to d’s)

• mrsjjj (change the third letter to its successor)

• mrdjjj (change the third letter to d)

• mrsjjk (view as mrr–jjj and change the third letter of each chunk to its successor)

• mrskkk (change all letters after the first two to their successors)

• mssjjj (change every occurrence of the third letter to its successor)

• mrrjjjj (view mrrjjj abstractly as 1–2–3 and increase the rightmost length by one)

• mrrkkkk (view as 1–2–3 but change both the length and letters of the rightmost chunk)

• abd (change the whole string literally to abd)

• abbddd (change the letters to a’s, b’s, and d’s but retain the 1–2–3 structure)

• mrk (change j’s to k’s but make everything single letters)

• mrd (change j’s to d’s but make everything single letters)

Clearly, some of these answers are more obvious or plausible than others, but each one is de-

fensible, and makes more sense than a completely random response such as pxznntg. There is,

however, no single, indisputably “correct” answer. In fact, a wide range of answers is possible for

almost every conceivable problem in this world. The subtlety and richness of analogy-making has

not been sacrificed at the expense of simplicity; on the contrary, it has been brought into focus more

clearly precisely because of the world’s austerity.

It is also important to stress the intended universality of the microworld. “Letters” here are

really nothing more than instances of abstract, atomic categories, among which only a small set

of relations are meaningful (i.e., successorship, predecessorship, and sameness). It is therefore

misleading to regard Copycat’s or Metacat’s analogies as being about alphabetical strings of letters

per se. Rather, strings should be viewed as representing idealized situations involving abstract

categories and relations. The architecture of Copycat is “configured” so that these categories and

relations mirror our intuitive notions about successorship, predecessorship, and sameness among

letters of the alphabet, but this need not be the case. A different configuration could in principle
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be used, reflecting a different set of abstract relationships, without significantly altering the basic

model. In fact, a program similar to Copycat, called Tabletop, models spatial aspects of high-level

perception within a different domain: that of ordinary objects on a table, such as cups, glasses,

and silverware (French, 1995; Hofstadter & FARG, 1995). Important differences exist between

Copycat and Tabletop, but the two programs can be regarded essentially as different instantiations

of a single underlying architecture, each of which operates in an abstract world of categories and

relations. Copycat is configured so that these categories and relations reflect properties of letters of

the alphabet, while Tabletop is configured so that they reflect properties of objects on a table.

Copycat’s microworld is sometimes criticized as being unable to represent analogies between

different domains of knowledge. So-called “cross-domain” analogies—for example, between the

solar system and the Rutherford-Bohr model of the atom, or between water flowing through a pipe

and heat flowing through a metal bar (Gentner, 1983; Holyoak & Thagard, 1989; Falkenhainer

et al., 1990)—typically involve source and target situations characterized by very different kinds of

“real-world” concepts. According to this view, the true power of analogy comes from being able to

map quite different domains onto one another, allowing a transfer of knowledge to occur between

them. In contrast, it is argued, since Copycat’s source and target situations are restricted to letter-

string concepts only, the model is “domain-specific”, and hence fails to capture the most important

aspects of analogical processing. According to Forbus, Gentner, Markman, and Ferguson (1998):

The most dramatic and visible role of analogy is as a mechanism for conceptual change,
where it allows people to import a set of ideas worked out in one domain into an-
other. Obviously, domain-specific models of analogy cannot capture this signature
phenomenon. . . . If we are correct that the analogy mechanism is a domain-independent
cognitive mechanism, then it is important to carry out research in multiple domains to
ensure that the results are not hostage to the peculiarities of a particular micro-world.

However, such a hasty conclusion overlooks the principle of universality at the core of Copy-

cat’s microworld. We fully agree that analogy is a very general, domain-independent cognitive

mechanism. Indeed, this is the fundamental reason why we have chosen an abstract microworld as

our framework for modeling analogy. Since the “letters”—as far as the program is concerned—are

really just atomic categories linked by abstract relationships, there is in principle no reason why

idealized versions of “cross-domain” analogies cannot be constructed within this world as well.
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For example, the answer mrrjjjj to the earlier problem could be interpreted as just such an

analogy. On the surface, different sets of concepts apply to the situations represented by the strings

abc and mrrjjj. In an abstract sense, these strings can be viewed as situations taken from two very

different domains, each of which encompasses a distinct subset of the concepts available in the

larger “universe” of the letter-string microworld. The concept of successor, for instance, is relevant

to abc but not (at first glance) to mrrjjj, while the concept of group plays a central role in mrrjjj.

If the two situations are looked at in the right way, however, by seeing the string mrrjjj in terms of

group-lengths rather than letter-categories, the idea of successorship can be transferred over from

the first situation to the second, resulting in a kind of mini paradigm shift that reveals the parallel

1–2–3 successorship structure of mrrjjj, which consequently leads to the answer mrrjjjj. Of course,

both of these “domains” involve concepts from Copycat’s letter-string world, but the crucial point

is that they involve different subsets of concepts, just as the domains of “cross-domain” analogies

from the real world involve different subsets of concepts taken from the larger universe of real-world

concepts and relationships.

In fact, on closer examination, the distinction between different domains is often far from clear.

For instance, Holyoak and Thagard (1995) discuss a complex analogy between World War II and

the 1991 Persian Gulf War. Should this analogy be regarded as a “cross-domain” analogy, or as

an analogy between two situations within the common domain of military conflicts? What about

the analogy between the solar system and the Rutherford-Bohr atom? Does this analogy involve

two distinct domains (i.e., the domain of atomic physics and the domain of astronomy), or the sin-

gle domain of scientific theories? In our view, the purported distinction between “cross-domain”

and “intra-domain” analogies, as well as the distinction between “domain-general” and “domain-

specific” models of analogy, is artificial, and depends on the particular definition of the domains

involved, which in turn depends on how we as researchers choose to carve the world up into cat-

egories. The power of a microworld derives precisely from its ability in principle to model any

number of different subdomains of the real world within a common abstract framework.
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xyz family

abc ⇒ abd
xyz ⇒ xyd

abc ⇒ abd
xyz ⇒ wyz

abc ⇒ abd
xyz ⇒ dyz

rst ⇒ rsu
xyz ⇒ xyu

rst ⇒ rsu
xyz ⇒ wyz

rst ⇒ rsu
xyz ⇒ uyz

mrrjjj family

abc ⇒ abd
mrrjjj ⇒ mrrkkk

abc ⇒ abd
mrrjjj ⇒ mrrjjjj

xqc ⇒ xqd
mrrjjj ⇒ mrrkkk

xqc ⇒ xqd
mrrjjj ⇒ mrrjjjj

eqe family

eqe ⇒ qeq
abbba ⇒ baaab

eqe ⇒ qeq
abbba ⇒ aaabaaa

eqe ⇒ qeq
abbbc ⇒ qeeeq

eqe ⇒ qeq
abbbc ⇒ aaabccc

Figure 1: Three families of letter-string analogies

3 Three Families of Analogy Problems

Fig. 1 shows three families of analogy problems, which will be used as examples throughout the

remainder of the paper to illustrate the principal mechanisms and capabilities of Metacat. These

problems give a sense of the types of parallels and distinctions that can be made between analogies

in the letter-string world. Each family consists of two distinct (but similar) analogy problems, with

horizontal rows showing a set of possible answers for each problem.

The first family consists of the problem abc⇒ abd; xyz⇒ ? and its variant rst⇒ rsu; xyz⇒ ?

(top of Fig. 1). Viewing c as changing to its successor in abc⇒ abd; xyz⇒ ? suggests changing

z to its successor. However, this is not possible in the letter-string world, so one is forced to try

something else. One way out is to adopt a literal-minded approach and change z to d, yielding

xyd. On the other hand, if the alphabetic symmetry between a and z is noticed, then the more

abstract answer wyz may come to mind, based on seeing abc and xyz as mirror images of each other

wedged against opposite ends of the alphabet. In this symmetric interpretation of the problem, doing
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the “same thing” to xyz means changing the leftmost letter to its predecessor instead of changing

the rightmost letter to its successor. Many people consider this answer to be more elegant and

compelling than xyd.

Now consider the variant problem rst⇒ rsu; xyz⇒ ?. The literal-minded answer xyu and the

symmetric answer wyz are both possible, and arise for the same reasons as in the previous problem—

with one important difference. In this problem there is far less justification for seeing rst and xyz

as mirror images of each other, unlike in the case of abc and xyz, with their strong a-z symmetry,

which makes the answer wyz a weaker analogy here than in the previous problem. While it could be

argued that wyz is still a better analogy than xyu in this problem, it is clearly not as superior to xyu

as wyz was to xyd in the previous problem. The two wyz analogies, therefore, are quite different in

character, even though they involve identical answers. Indeed, the presence or absence of alphabetic

symmetry is the fundamental difference between them. The literal-minded answers xyd and xyu, on

the other hand, represent essentially identical analogies, despite their surface-level differences.

Two other answers are also worth mentioning. The answer dyz, although perhaps a bit far-

fetched, is certainly possible for abc⇒ abd; xyz⇒ ?. This answer depends on noticing the abstract

symmetry between abc and xyz (and thus changing the x in xyz instead of the z) but taking a very

literal-minded view of abc⇒ abd (thus changing x to d instead of to its predecessor). The answer

uyz to the problem rst⇒ rsu; xyz⇒ ? arises in a similar fashion, except that once again, there is no

good reason to see rst and xyz as mirror images in the first place. This blend of abstractness and

literal-mindedness makes both of these answers seem incoherent. It could even be argued that since

abc and xyz are completely symmetric in every way, while rst and xyz are not, changing x to d in

abc⇒ abd; xyz⇒ ? is even more incoherent than changing x to u in rst⇒ rsu; xyz⇒ ?, making

dyz a more incoherent analogy than uyz. Just like the two wyz analogies, the key distinction between

dyz and uyz is the presence or absence of alphabetic symmetry. In other words, the way in which

the two wyz analogies are different is analogous to the way in which the dyz and uyz analogies are

different. Here we have a simple example of a “meta-analogy” in the letter-string microworld.

The second family of analogies consists of the answers mrrkkk and mrrjjjj to the pair of prob-

lems abc⇒ abd; mrrjjj⇒ ? and xqc⇒ xqd; mrrjjj⇒ ? (middle of Fig. 1). Each of these analo-
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gies relies on seeing the target string mrrjjj in terms of its three components m, rr, and jjj—

corresponding to the three letters of the initial string—and on viewing the rightmost letter of the

initial string as changing to its successor. The rightmost component of mrrjjj (the jjj group) accord-

ingly changes to its successor, yielding mrrkkk if mrrjjj is viewed in terms of letter-categories (as

m–r–j ), or mrrjjjj if it is viewed in terms of group-lengths (as 1–2–3).

In the problem abc⇒ abd; mrrjjj⇒ ?, the answer mrrjjjj represents a stronger analogy than

mrrkkk, because viewing mrrjjj as 1–2–3 reveals an abstract similarity between the target string’s

structure and the parallel a–b–c structure of the initial string. On the other hand, the answer mrrkkk

makes for the stronger analogy in the problem xqc⇒ xqd; mrrjjj⇒ ?. Unlike abc, the string xqc

possesses no internal successorship structure, so viewing mrrjjj in an unstructured way as m–r–j

more closely parallels xqc, while viewing it as 1–2–3 amounts to being unnecessarily “clever”.

In short, the two mrrkkk answers are actually quite different in character, as are the two mrrjjjj

answers.

The third family of analogies consists of the problem eqe⇒ qeq; abbba⇒ ? and its variant

eqe⇒ qeq; abbbc⇒ ? (bottom of Fig. 1). In these problems, eqe can be viewed as “turning itself

inside-out” by swapping the letter-categories of its constituent letters to yield qeq. If abbba is

viewed as a–bbb–a, corresponding to the three letters of eqe, then a natural way of doing the same

thing to abbba is simply to swap the letter-categories of the components, yielding baaab. This

approach, however, leads to a “snag” in the case of abbbc, because swapping three letter-categories

makes no sense. One way around this difficulty is to view the letters of eqe as changing individually

to q, e, and q, instead of getting collectively swapped. Changing abbbc in an analogous way would

then amount to changing its three components to q, eee, and q, yielding the answer qeeeq.

A more elegant way of avoiding the snag is to perceive abbbc abstractly as 1–3–1 and then swap

the lengths of the components instead of the letter-categories, yielding aaabccc. This is reminiscent

of the answer mrrjjjj to the problem abc⇒ abd; mrrjjj⇒ ?.

On the other hand, we can do this in the problem eqe⇒ qeq; abbba⇒ ? as well, swapping

lengths instead of letter-categories to yield aaabaaa. However, as in the earlier analogy xqc⇒ xqd;

mrrjjj⇒mrrjjjj, viewing abbba as 1–3–1 is unnecessarily “clever”, since swapping letter-categories
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works just fine. Thus the difference between the answers baaab and aaabaaa in the problem

eqe⇒ qeq; abbba⇒ ? is like the difference between the answers mrrkkk and mrrjjjj in the problem

xqc⇒ xqd; mrrjjj⇒ ?, because in both problems viewing the target string abstractly actually makes

for a weaker analogy.

In contrast, viewing the target string abstractly in the problems eqe⇒ qeq; abbbc⇒ ? and

abc⇒ abd; mrrjjj⇒ ? makes for a stronger analogy in each case—although not for precisely the

same reasons. In the case of eqe⇒ qeq; abbbc⇒ ?, viewing abbbc as 1–3–1 has the added ben-

efit of enabling a snag to be avoided, whereas no snag arises in abc⇒ abd; mrrjjj⇒ ?. In other

words, the answer aaabccc is strong for both pragmatic and aesthetic reasons, while mrrjjjj is

strong for aesthetic reasons only. Likewise, eqe⇒ qeq; abbba⇒ aaabaaa is a weaker analogy than

eqe⇒ qeq; abbbc⇒ aaabccc, even though both involve seeing the target string as 1–3–1, because

paying attention to lengths is justified in the latter analogy on account of the snag, but not in the

former.

4 The Copycat Model

This section summarizes the architecture and processing mechanisms of Copycat, which serve as

the foundation for Metacat’s architecture. Several important limitations of the original model, which

have been addressed in Metacat, are also pointed out.

The Copycat architecture has been discussed at length elsewhere (Mitchell, 1993; Hofstadter &

FARG, 1995), so details will be omitted here. Briefly, the program consists of a long-term memory

for concepts, called the Slipnet, together with a short-term memory for perceptual structures, called

the Workspace. The Slipnet is a semantic network of nodes representing concepts about the letter-

string world (see Fig. 2), with weighted links between nodes encoding the strength of associations

between concepts. Some links are labeled by particular nodes, and may stretch or shrink according

to the activation of the label node, allowing the Slipnet to dynamically adapt to the perceptual

context at hand. Some concept nodes, shown capitalized in Fig. 2, represent categories of other

concepts. For example, left and right are both instances of the more abstract Direction category,

and the concepts letter and group are both instances of ObjectCategory.
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Figure 2: The Slipnet

The Workspace is the site of subcognitive processing activity. In the Workspace, small non-

deterministic computational agents called codelets examine the letters of an analogy problem and

attempt to build a coherent set of structures around the letters, representing a particular interpre-

tation of the problem. Codelets look for sameness, successor, or predecessor relationships among

letters, possibly chunking them together into groups based on a common relationship (for example,

creating a “sameness group” from the three j’s in mrrjjj, or chunking the individual letters of abc

into a single “successor group”). The program’s high-level behavior emerges in a bottom-up fashion

from the collective actions of many codelets working in parallel, analogous to the way in which an

ant colony’s high-level behavior emerges from the individual behaviors of the underlying ants, with

no centralized locus of control.

15



In general, the letter-strings of an analogy problem can be viewed in many different ways,

giving rise to a vast space of potential configurations of Workspace structures. In order to discover a

good configuration in a reasonable amount of time, many potential pathways through “interpretation

space” must be explored simultaneously, with proportionally more attention being paid to promising

pathways than to those that don’t seem to be leading anywhere interesting. This type of differential

parallelism, called the parallel terraced scan, is one of the central ideas of the Copycat architecture.

To achieve this differential effect, structures are built in stages by chains of codelets. At first, a

codelet simply proposes a new structure as a possibility. The proposed structure is then evaluated

by other codelets at later stages in the chain. If the structure seems promising enough, it gets built,

and acquires a strength value indicating how well it fits into its surrounding context. By distribut-

ing structure creation over several interleaved stages, many different pathways can be explored in

parallel. In addition, every codelet has an urgency value that reflects the estimated promise of the

pathway it is exploring. Codelets are selected to run, probabilistically, on the basis of their urgen-

cies. Therefore promising regions of the search space tend to be explored more quickly and to a

greater depth, on average, than less promising regions.

Fig. 3 shows a set of perceptual structures at the end of a run on the problem abc⇒ abd;

mrrjjj⇒ ?. Several groups can be seen, including one built from other groups and one consisting of

the single letter m. One proposed group (shown as a dashed structure), which was being tentatively

explored but had not yet been built by codelets, can also be seen. In this run, the program has per-

ceived the abstract 1–2–3 successorship of mrrjjj and mapped this onto the a–b–c successorship of

abc. Horizontal and vertical structures called bridges show the correspondences between analogous

components of each situation. For example, the c–jjj bridge indicates that, in this interpretation of

the problem, c and jjj play analogous roles in their respective strings. Concept-mappings associated

with each vertical bridge can also be seen (they are not shown for horizontal bridges). For example,

rightmost ⇒ rightmost and letter ⇒ group are associated with the c–jjj bridge, since c and jjj are

both rightmost objects, but one is a letter and the other is a group. Non-identity concept-mappings

such as letter ⇒ group are called slippages, and serve as the basis for generating an answer. For

instance, the LetterCategory ⇒Length slippage underlying the high-level bridge between abc and
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Figure 3: An interpretation of the problem abc⇒ abd; mrrjjj⇒ ?

mrrjjj reflects the fact that the “successorship fabric” of abc is based on letter-categories, while that

of mrrjjj is based on group-lengths. This slippage, together with the letter ⇒ group slippages, leads

the program to produce the answer mrrjjjj by changing the length of the rightmost group in mrrjjj

to its successor, instead of changing the letter-category of the rightmost letter as was done in abc.

Concepts in the Slipnet influence the search for a mutually-consistent set of perceptual structures

by acquiring activation in response to codelet activity in the Workspace. This activation, which may

spread to neighboring concepts, strongly affects the nondeterministic decisions made by codelets,

resulting in top-down pressure that guides the program in its search for a good interpretation of

a problem. Each concept has a fixed conceptual depth value associated with it, which represents

its intrinsic degree of abstractness or generality. The activation of a concept gradually decays at a

rate that depends on its conceptual depth, with highly abstract concepts such as opposite tending to

decay more slowly than shallow, surface-level concepts such as d .

To be sure, Slipnet concepts come nowhere close to capturing the full power and fluidity of

human concepts. Nevertheless, there is a sense in which they are genuinely meaningful entities—

not simply passive, static tokens manipulated by the program. For example, a Slipnet node such
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as successor responds to situations in a continuous, context-dependent way, with its level of acti-

vation changing to reflect the current degree of perceived relevance of the idea of successorship in

the problem at hand. A wide range of superficially dissimilar situations, represented abstractly as

letter-strings, can in principle activate it—strings such as abc, ijk, pqrst, iijjkk, mrrjjj, xxsssbbbb,

axypqr, and aababcabcd. Under the right circumstances, all of these strings can be interpreted by

the program as examples of successor groups. The semantics of the successor node arises precisely

from the way in which this node responds to different situations perceived in the “environment” of

the letter-string microworld. In other words, its meaning is determined by its behavior within the

system, not by a particular interpretation imposed on it from outside the system. Given Copycat’s

ability to flexibly recognize a wide range of instances—some fairly abstract—of the same concept,

it seems reasonable to say that the program’s concepts have at least some small degree of meaning-

fulness, or genuine semantics, within the confines of its tiny, idealized world. See Hofstadter and

FARG (1995, Chapter 6) for an in-depth discussion of this point.

Slipnet concepts also serve as the basic building blocks for other structures called rules, which

describe how strings change.1 For example, in Fig. 3, two rules can be seen. The top rule, Change

letter-category of rightmost letter to successor, describes how the program views abc as changing

to abd. The bottom rule, Increase length of rightmost group by one, describes mrrjjj⇒mrrjjjj.

Internally, rules are structured collections of Slipnet nodes. Outwardly, they are displayed as short

English phrases for readability, but this is really just a surface-level “veneer” masking the under-

lying conceptual representation. For instance, the top rule in Fig. 3 is composed of the concepts

LetterCategory, StringPosition, rightmost, letter, and successor. The bottom rule is composed of

Length , StringPosition, rightmost, group, and successor.

Copycat places severe restrictions on the types of changes that are allowed in the initial string.

At most, one letter is allowed to change, such as in abc⇒ abd. For instance, all of the analogies

in the eqe family shown in Fig. 1 are beyond Copycat’s ability to handle. This is because the de-

velopment of Copycat concentrated on designing mechanisms for perceiving similarities between

the initial string and the target string via bridges and slippages, rather than on characterizing dif-

1This usage of the term “rule” differs significantly from the traditional AI meaning of the term. Rules in Copycat and
Metacat are completely unrelated to the “if-then” rules used in expert systems or other rule-based production systems.

18



ferences between strings via rules. Developing robust mechanisms for mapping the initial string to

the modified string, and for creating rules based on this mapping, was postponed to a later phase

of the project. These mechanisms have now been extended and generalized in Metacat to handle

arbitrary mappings between strings, enabling a much wider class of string changes to be described

by rules, including eqe⇒ qeq. See Marshall (1999, Chapter 3) for a full discussion of Metacat’s

new rule-building mechanisms.

The overall degree of Workspace organization is measured by a number from 0 to 100 called the

temperature. This number is a function of the total quality of structures present in the Workspace—

where the quality of a structure is determined by its strength. Temperature also regulates the amount

of randomness used by codelets in making decisions. In other words, temperature plays both a

passive and an active role. At high temperatures, when few Workspace structures exist, decisions

are made in a highly random manner, since not much is yet known about the problem. However,

as relationships among the letters are noticed and new structures are built, the temperature falls,

and Copycat begins to gain “confidence” in the emerging interpretation of the problem. At lower

temperatures, decisions are made less randomly, being more strongly biased by the estimated quality

of newly emerging structures, all of which compete for the attention of codelets. At very low

temperatures, codelets pay attention to only the most promising structures, and decisions become

largely deterministic. Thus the type of strategy used by the program to explore its search space

gradually shifts from being very diffuse and stochastic at high temperatures to being very focused

and deterministic at low temperatures.

To reiterate, processing in Copycat is driven by a large number of fine-grained probabilistic

decisions that depend on the current temperature. These decisions may cause new structures to be

built or existing structures to be destroyed, which in turn changes the temperature and consequently

affects processing, forming a feedback loop. Temperature thus serves as a very simple form of self-

watching in Copycat, since it enables the program to regulate its own behavior to a limited extent. In

other words, tying the stochastic activity of codelets to the temperature makes the program sensitive

to its own actions.

This type of self-watching, however, is very primitive and unfocused. Temperature allows Copy-
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cat to respond to its immediate situation in a reactive way, but the program remains oblivious to

longer-term patterns that arise in its processing over time. This can result in very unhumanlike

behavior. For instance, when presented with the problem abc⇒ abd; xyz⇒ ?, Copycat usually at-

tempts to change z to its successor, which is impossible in the program’s microworld. It hits a snag,

and is forced to try something else. However, it typically ends up just trying the same thing over

and over again, often as many as ten or twenty times in a row before stumbling by chance on an al-

ternative answer (such as xyd). Unlike people, the program is unable to recognize when it has fallen

into a repetitive and futile pattern of behavior. Because it has no memory of its past experiences,

it cannot recognize that it has already encountered some situation before, or tried the same set of

actions in response.

5 From Copycat to Metacat

Since Copycat is incapable of remembering its past actions or experiences, it has no knowledge of

how it arrives at its answers, and is therefore unable to explain the rationale behind the analogies it

makes, or why one analogy is better or worse than another. In contrast, Metacat’s architecture in-

cludes several new components and mechanisms that allow the program to monitor itself, enabling it

to recognize, remember, and recall patterns that occur in its “train of thought” as it makes analogies.

To do this, Metacat creates an explicit temporal record of the most important processing events that

occur during a run. This record is continually examined by codelets for patterns, in much the same

way that codelets examine letter-strings for patterns. It also provides the basis for constructing an

abstract description of an answer in terms of the key concepts and events that led to its discovery.

Consequently, Metacat is able to construct much richer representations of analogies, enabling it to

compare and contrast them in an insightful way. Furthermore, by monitoring its own processing,

Metacat can recognize when it has become stuck in a rut, enabling the program to break out of

the rut by explicitly focusing on ideas other than the ones that seem to be leading nowhere. This

capability affords the program a powerful degree of self-control.

The remainder of the paper describes the architecture of Metacat, focusing on the ways in

which it extends the capabilities of Copycat, and analyzes several sample runs that illustrate dif-
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ferent aspects of the model. Since Metacat is an extension of Copycat, its architecture includes

the Workspace, the Slipnet, and the mechanisms for codelet processing. It also includes three new

components: the Episodic Memory, the Themespace, and the Temporal Trace.

5.1 The Episodic Memory

Metacat stores descriptions of analogies in its long-term Episodic Memory. When a new answer is

found, an answer description is created from the information available in the temporal record and

the Workspace. This description includes the four letter-strings of the analogy, as well as the rules,

bridges, slippages, and other structures that give rise to the answer. Other structures called themes

are also included, which describe the key underlying concepts of the analogy.

Themes provide a basis for comparing and contrasting answers, as well as a metric for judging

the degree of similarity between them. For instance, when Metacat makes a new analogy, it may be

reminded of a similar analogy it has seen in the past if the themes associated with the newly-created

answer description, acting as a memory retrieval cue, match those of some previously stored answer

description sufficiently well. In effect, the pattern of themes in an answer description serves as an

index for storing and retrieving an answer from memory.

In addition to remembering answers, Metacat also remembers the snags that it encounters while

solving problems. On hitting a snag for the first time, the program creates a new snag description

that characterizes the failure in terms of the themes and other structures involved, which it then

stores in the Episodic Memory. Snag descriptions can be compared on the basis of their themes,

enabling Metacat to evaluate the similarity of different failure situations. Furthermore, comparing

the themes of snag descriptions and answer descriptions can provide clues as to how failures can be

avoided in certain problems.

5.2 Themes and the Themespace

Themes are short-term memory structures that describe the characteristics of mappings between

letter-strings in a high-level, abstract way. They are composed of Slipnet concepts, and are created

in Metacat’s Themespace in response to structure-building activity in the Workspace. For example,
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in the problem abc⇒ abd; xyz⇒ ?, if a crosswise mapping is built between abc and xyz as a

result of noticing the alphabetic symmetry between a and z, a theme composed of the concepts

AlphabeticPosition and opposite will be created. A StringPosition:opposite theme will also be

created, representing the idea that objects in opposite positions in their respective strings correspond

to one another, as expressed by the bridges a–z and c–x. On the other hand, if the a-z symmetry

is not noticed and a parallel mapping consisting of the bridges a–x, b–y, and c–z is built instead,

no AlphabeticPosition theme would be created. In this case, a StringPosition: identity theme would

describe the parallel mapping. Thus themes capture the essential aspects of an analogy by concisely

summarizing how the letter-strings are perceived in relation to one another.

Like Slipnet concepts, themes take on varying levels of activation, reflecting the extent to which

the ideas they represent play a role in the program’s current perception of the problem. In this sense

they behave as passive representational structures. However, in certain situations, to be explained

below, themes can exert strong top-down thematic pressure on perceptual processing. This pressure,

which can be turned on or off by the program itself, selectively weakens or strengthens existing

structures in the Workspace, and may cause codelets to focus on building specific types of new

structures. In fact, unlike Slipnet concepts, themes can assume both positive and negative levels

of activation. With thematic pressure turned on, positively-activated themes encourage the creation

of structures compatible with the ideas represented by the themes. Negatively-activated themes, on

the other hand, discourage the creation of such structures; instead, they promote the creation of

alternative structures incompatible with themselves. Thus themes act like a set of “knobs” that can

be used to focus the attention of the program on specific sets of ideas. By twisting the knobs—

that is, by varying the pattern of theme activations under thematic pressure—Metacat’s perceptual

processing can be steered in particular directions, guided by the ideas explicitly represented by the

themes.

5.3 The Temporal Trace

The Temporal Trace (or the Trace for short) serves as the locus for self-watching in Metacat. Like

the Workspace and Themespace, it is a short-term memory that stores information over the course
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of a single run. The Trace stores an explicit temporal record of the most important processing

events that occur during problem solving. Examples of such events include the strong activation of

a theme or concept, making a conceptual slippage, creating a new rule, hitting a snag, or discovering

a new answer. Of course, a large number of events of all sizes occur during the processing of almost

any analogy problem, ranging from local “micro” events such as individual codelet actions to global

“macro” events such as the discovery of new answers. However, only those events above a threshold

level of importance get represented in the Trace. This allows Metacat to filter out all but the most

significant events, giving the program a very selective, high-level view of what it is doing.

One way to appreciate the abstract, chunked nature of the information in the Trace is to con-

sider the typical number of steps that occur during a run of Metacat. This depends on the level

of granularity used to describe steps. At a very fine-grained level of description, where each step

corresponds to an action performed by a single codelet, a run may consist of many hundreds or even

thousands of steps. At this level of description, no two runs are ever exactly the same, even if they

involve the same letter-strings (unless both runs start with the same random number seed). On the

other hand, at the level of description of the Trace, a typical run consists of a few dozen steps. At

this level of granularity, each step corresponds to a single event recorded in the Trace, and represents

the actions of many codelets.

For example, Fig. 4 shows the contents of the Trace after a run on the problem abc⇒ abd;

xyz⇒ ?, in which the program, after trying unsuccessfully a couple of times to change z to its

successor, answered xyd. The events that occurred during the run appear in chronological order

from left to right. This run involved a total of 1,558 codelets, but the high-level picture shown

in the Trace consists of just twelve events, which represent the “major milestones” encountered

along the way in the program’s search for an answer. For instance, the Slipnet concept identity got

activated early on, due to the program perceiving the a’s and b’s in abc and abd as corresponding

to one another. This was followed by the chunking of abc and xyz into predecessor groups going

in the same direction (both to the left). Next, the rule Change letter-category of rightmost letter to

successor was created for describing abc⇒ abd, which led inevitably to a snag. In the aftermath of

the snag, another rule was created (Change letter-category of rightmost letter to ‘d’), and abc and
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Figure 4: The temporal record of a run on the problem abc⇒ abd; xyz⇒ ?

xyz were reperceived as successor groups (again going in the same direction—only this time to the

right). However, the program then attempted to use the first rule again, resulting in another snag.

Finally, after creating a third rule and again perceiving xyz as a successor group, the program found

the answer xyd.

Once processing events have been explicitly represented in the Temporal Trace, they are them-

selves subject to examination by codelets. This allows Metacat to perceive patterns in its own be-

havior in much the same way that Copycat perceives patterns in letter-strings: via codelets looking

for relationships among perceptual structures. In Metacat’s case, these perceptual structures include

the “reified” processing events in the Trace. When a new answer is found, an answer description is

created by examining the temporal record to see which events contributed to the answer’s discovery.

This approach is similar in flavor to work on derivational analogy, in which the trace of a

problem-solving session is stored in memory for future reference, together with a series of annota-

tions describing the conditions under which each step in the solution was taken (Carbonell, 1986;

Veloso & Carbonell, 1993; Veloso, 1994). In Metacat’s case, however, the information in the Trace

is used as the basis for constructing an abstract description of the answer found, rather than being

permanently stored itself.

6 Pattern-Clamping and Self-Control

The Trace allows Metacat to monitor the processing activity in the Workspace at a very abstract

and highly chunked level of description, enabling the program to “see” what it is doing during a

run. Equally important, however, is the program’s ability to respond to what it sees by clamping

particular themes and concepts at high activation, resulting in strong top-down pressure on process-

ing. Various types of patterns, consisting of sets of themes, concepts, or codelet urgencies, can be
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clamped by the program in response to events in the Trace. Clamping a pattern alters the probabili-

ties that certain types of codelets will run, or that certain types of Workspace structures will be built,

which may lead the program to revise its interpretation of a problem by reorganizing structures in

the Workspace in accordance with the ideas represented by the pattern. Thus patterns serve as a

“medium” through which the program is able to wield control over its own behavior.

When an event is recorded in the Trace, the themes most active at the time of the event are

stored along with it. These themes serve as the event’s thematic characterization. In the case

of a snag event, the thematic characterization represents a failed way of interpreting the problem.

For example, in solving abc⇒ abd; xyz⇒ ?, Metacat usually first perceives abc and xyz as going

in the same direction, which leads to a snag whose thematic characterization includes the theme

StringPosition:identity. If Metacat continues to hit the same snag over and over, a series of snag

events will accumulate in the Trace, all with very similar thematic characterizations. This similarity

may be noticed by codelets (the probability becoming higher as more snags accumulate), causing

them to take action by clamping the “offending” themes, including StringPosition: identity, with

strong negative activation. This encourages the program to explore alternative ways of interpreting

the problem, which may subsequently lead it to discover other answers such as wyz. In this way,

Metacat can recognize its own repeated failures and respond accordingly.

Codelets called Progress-watchers are responsible for deciding whether or not to unclamp a

clamped pattern. In general, the purpose of clamping a pattern is to catalyze a series of events

that reorganize the perceptual configuration of the Workspace in some way. It is therefore better to

wait until the structure-building activity occurring in the wake of a clamp has settled down before

concluding that the clamp has “run its course”. If a Progress-watcher codelet runs while a pattern

is clamped, it examines the most recent event in the Trace to determine how much time has elapsed

since the event occurred. If the amount of elapsed time is less than a minimum settling period,

then the codelet simply fizzles, leaving the clamped pattern still in effect. On the other hand, if

enough time has passed without any new important events having transpired, the codelet unclamps

the pattern and then evaluates the amount of progress that was made since the clamp occurred.

Depending on the amount of progress achieved, the codelet may decide to spawn a follow-up codelet
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to see whether a new answer can be made based on the newly-created structures.

The criteria for evaluating the success of a clamp can vary. Sometimes, the purpose of clamping

a pattern is to promote the creation of specific types of Workspace structures. Other times, the

purpose is to encourage the creation of structures of any type, so long as they are compatible with

the clamped pattern. The progress achieved by a clamp can be measured by observing the number

of structures that get built in the immediate aftermath of the clamp, and the extent to which they are

compatible with the pattern.

If no patterns are clamped when a Progress-watcher codelet runs, then instead of checking on

the progression of events in the Trace, the codelet checks on the current rate of structure-building

activity in the Workspace. This activity is measured by a number from 0 to 100, which serves as a

quick estimate of the “freshness” of the current structures in the Workspace. More precisely, it is an

inverse function of the average age of the most recently created structures. Thus the activity level

tends to remain high as long as new structures are being built, but eventually drops to zero in the

absence of new structures.

If the activity level is zero, indicating that nothing much is happening in the Workspace, then

Metacat may have arrived at an impasse in its search for answers to the current problem. This is not

quite as bad as hitting a snag, but it still ought to prod the program into trying something different.

However, in the case of an impasse, there is usually no clear set of “offending” structures or themes

to pin the blame on, unlike in the case of a snag. Indeed, the impasse may well arise from a lack of

appropriate structures, rather than from the existence of the “wrong” structures. Therefore, in the

absence of Workspace activity, Progress-watcher codelets check to see whether particular types of

new structures may be needed. If so, they may clamp a pattern of codelet urgencies in response, in

an attempt to catalyze structure creation.

For example, a Progress-watcher might examine the quality of the rules that have been built

so far. If no good rules yet exist, the codelet might try to encourage the creation of better rules

by clamping a pattern of codelet urgencies that strongly increases the probability that rule-seeking

codelets will run, while inhibiting other types of codelets. Eventually, other Progress-watchers will

turn off the clamp once enough time has passed with no more events having been added to the Trace.
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Since this particular clamp is only concerned with the creation of new rules, the amount of progress

achieved is judged solely on the basis of the quality of the rules that get created in the clamp’s wake

(if any).

6.1 Answer Justification

Metacat’s pattern-clamping mechanisms give it another important capability, which Copycat lacks.

Unlike Copycat, Metacat is able to evaluate analogies suggested to it by the user, in addition to

making analogies on its own. When provided with a specific answer to a problem, the program

“works backwards” from the answer toward an understanding of why it makes sense. Once the

answer has been understood, it can be compared and contrasted with other answers that the program

has either been shown or has discovered on its own.

This type of “hindsight understanding” presents little difficulty for humans. People who are

asked to solve the problem abc⇒ abd; mrrjjj⇒ ?, for example, may not think of the answer mrrjjjj,

even when given an unlimited amount of time. However, as soon as this answer is suggested to them,

they have no trouble seeing why it makes sense, even though they didn’t think of it themselves. In

a similar vein, suggesting the somewhat tongue-in-cheek answer abd usually elicits a few laughs,

along with nodding agreement that it makes sense in a silly way, although few people give this

answer on their own (Mitchell, 1993). This is not to say that every suggested answer can be readily

understood in retrospect (for example, a person might never figure out the justification for an answer

such as mssjjj), but for many non-obvious answers, no additional explanation beyond just the answer

itself is needed.

When Metacat runs in justify mode, it attempts to discover a way of interpreting the problem

such that the given answer makes sense. To do so, it begins by building up perceptual structures

among the letter-strings, as usual. This bottom-up approach, however, may lead it to build an

inconsistent interpretation of the problem that does not support the answer in question. Neverthe-

less, examining parts of this interpretation may suggest new ideas to focus on. More precisely, an

Answer-justifier codelet may compare the rule structures involved and, based on their differences,

clamp a pattern of themes designed to reorganize the mapping between the initial string and the
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target string in a way consistent with the rules and the answer.

For example, when Metacat is asked to justify the answer wyz to the problem abc⇒ abd;

xyz⇒ ?, it usually starts out by building same-direction mappings between all of the strings. (Snags

do not arise in justify mode, since the answer already exists.) In addition, the “top” rule Change

letter-category of rightmost letter to successor describing abc⇒ abd, and the “bottom” rule Change

letter-category of leftmost letter to predecessor describing xyz⇒wyz may be created. This state of

affairs is shown in Fig. 5. Although the three string mappings are locally consistent when consid-

ered in isolation, together they do not make sense at a global level. The letters c and x are not seen

as corresponding to each other, yet they are both identified by the rules as being the objects that

change in their respective strings (the c to its successor and the x to its predecessor).

Comparing the two rules to each other, however, suggests the idea of rightmost-leftmost sym-

metry, as well as successor-predecessor symmetry. This idea can be captured by a pattern of themes

including StringPosition:opposite, Direction: opposite, and GroupType: opposite.2 Metacat can ex-

plore the ramifications of this idea by positively clamping these themes in the Themespace. The

state of the Temporal Trace at the time of the clamp is shown above the Workspace in Fig. 5. As

can be seen, clamping the pattern causes the concept of opposite in the Slipnet to become highly

activated. The ensuing top-down thematic pressure strongly promotes the creation of new structures

that support mapping abc and xyz onto each other in a crosswise fashion, and significantly weakens

existing incompatible structures such as the a–x and c–z bridges. As a result, the original map-

ping between abc and xyz shown in Fig. 5 is swiftly reorganized by codelets into a new mapping

consistent with the clamped themes.

Fig. 6 shows the final, globally consistent interpretation, in which c and x are seen as corre-

sponding. Furthermore, in the wake of the clamp, the previously unrecognized alphabetic symmetry

between a and z has been noticed on account of the increased attention focused on these letters by

top-down pressure, resulting in a first ⇒ last slippage being made. Several other conceptual slip-

pages induced by the active opposite concept are also visible in the Trace. Consequently, the final

answer description for wyz includes the themes AlphabeticPosition:opposite, Direction: opposite,

2GroupType and ObjectType are synonyms for the concepts GroupCategory and ObjectCategory.
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Figure 5: An inconsistent interpretation of the answer wyz

Figure 6: The final, consistent interpretation of wyz
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GroupType: opposite, and StringPosition:opposite.

6.2 Jootsing

Another type of codelet that watches the action from the high-level vantage point of the Temporal

Trace is called a Jootser (a term coined by Hofstadter, short for “jumping out of the system”).

These codelets are responsible for noticing repetitive behavior that the program has fallen into.

An example of such behavior arising from repeatedly hitting a snag in abc⇒ abd; xyz⇒ ? was

mentioned earlier. However, Jootser codelets are sensitive to other kinds of situations as well. For

example, it is possible for Metacat to become “fixated” on some idea, such that it ends up clamping

the same pattern over and over again, without making any significant progress. In this case, too,

Jootser codelets may notice a series of recurring events in the Trace and take action.

For instance, if an analogy problem happens to involve a string that changes in some compli-

cated way, it may be too difficult for the program to build a rule that describes this change. The

program may end up repeatedly clamping patterns in a futile effort to spur the creation of new rules.

Repetitive clamping behavior can even arise from unsuccessful attempts to break out of a cycle

of snags. That is, clamping a pattern in response to a recurring snag may prove to be ineffective,

leading only to further snags and more pattern-clamping, rather than to a new interpretation of the

problem.

Faced with several similar clamp events in the Trace, a Jootser codelet decides probabilistically

whether to “joots” based on the number of clamps and the average amount of progress achieved by

each. The more clamp events there are, the more likely jootsing is to occur, especially if the amount

of progress is low, unless recent clamps appear to be making more headway than earlier ones.

Jootsing from repeated clamps, however, does not involve clamping any new patterns in response,

in contrast to jootsing from repeated snags. Instead, Metacat simply “gives up” in a graceful manner

and stops.

The following two examples illustrate the idea of jootsing. In the first, Metacat tries to justify

the answer aaabccc to the problem eqe⇒ qeq; abbbc⇒ ?. It eventually gives up after trying un-

successfully several times to connect the concept of LetterCategory in eqe to the concept of Length
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Figure 7: An emerging but still incomplete interpretation of aaabccc

in aaabccc.

By time step 2437, the program has perceived both abbbc and aaabccc as successor groups

based on the letter-categories a–b–c, and has created a variety of top and bottom rules describing

eqe⇒ qeq and abbbc⇒ aaabccc (see Fig. 7). Over the next 2000 time steps, the program clamps

several patterns of themes as a result of comparing various top and bottom rules to one another. For

example, at time step 4363, the program compares a top rule that describes the objects of eqe as

swapping their letter-categories with a similar bottom rule that describes the objects of abbbc as

swapping their lengths. These rules differ by only one concept, but to make them inter-translatable,

a LetterCategory ⇒Length slippage must somehow be made between eqe and abbbc. The program

therefore clamps patterns of themes designed to induce the creation of a mapping involving this

slippage (see Fig. 8). Unfortunately, however, building such a mapping requires eqe to be seen as a

single, chunked group, which is impossible in the current version of Metacat, since only successor-

ship, predecessorship, or sameness relations are recognized among letters. Thus the program falls

into an unsuccessful cycle of pattern-clamping. Eventually, at time step 6196, a Jootser codelet

notices the series of repeated clamps in the Trace and decides to terminate the run, without having

achieved a complete understanding of aaabccc (see Fig. 9).

31



Figure 8: Attempting to induce a LetterCategory ⇒Length slippage by clamping themes

Figure 9: The final, unjustified interpretation of aaabccc
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As this example shows, once Metacat recognizes that its attempts to justify an answer are not

succeeding, it may decide to settle for an unjustified answer, depending on how close it can come

to a complete justification. In general, if valid rules exist for describing both the top and bottom

string changes, and if these rules are almost the same under translation, differing by at most a

few concepts, then the program will throw in the towel, reporting its failure to understand how the

unjustified slippages arise. It will also include unjustified themes based on these slippages in the

answer description that is created at the end of the run.

The more unjustified slippages there are, however, the less likely jootsing is to occur. Never-

theless, there is always the possibility that the program will give up too easily, reporting an answer

as unjustified when in fact it could be completely justified with further effort, although in practice

this does not happen very often. On the other hand, of course, it is impossible for Metacat to know

which answers are beyond its ability to justify in principle, since this would require a type of self-

knowledge far beyond the capability of the present program (for example, Metacat would have to

know that it is not capable of seeing eqe as a single group). In any case, the program at least knows

that it has settled for an unjustified answer, and notes this fact, along with the associated unjustified

themes, in its Episodic Memory.

The second example of jootsing involves the same problem, eqe⇒ qeq; abbbc⇒ ?, but this

time Metacat must solve it on its own, instead of being given an answer to start with. In this run, the

program begins by structuring abbbc as a successor group composed of the letter a, the group bbb,

and the letter c, as in the previous example. The two rules shown below are also created to describe

eqe⇒ qeq:

• Swap letter-categories of all objects in string

• Change letter-category of leftmost letter to ‘q’
Change letter-category of middle letter to ‘e’
Change letter-category of rightmost letter to ‘q’

Around time step 1100, the program attempts to apply the first rule to abbbc, which results in a

snag, since a three-way swap between a, b, and c is impossible (see Fig. 10). If the second rule had

been chosen instead of the first, the program would have found the answer qeeeq, but because this

rule is less abstract than the first, it is less likely to be chosen on average.
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Figure 10: Attempting to swap the components of abbbc

Over the next 3000 time steps, Metacat tries again and again to swap the components of abbbc,

often breaking various structures in the process, but always rebuilding them in the same way as

before. Eventually, at time step 4280, a Jootser codelet notices the pattern of recurring snag events

in the Trace, all of which involve the themes StringPosition: identity, ObjectType: identity, and

ObjectType: different. These themes arise from the program’s interpretation of the letters e, q,

and e in eqe as corresponding, respectively, to the letter a, the group bbb, and the letter c in abbbc.

The ObjectType: identity theme is based on the e–a and e–c bridges, while the ObjectType: different

theme results from the bridge between q and bbb, since one is a letter and the other is a group.

In an effort to avoid the recurring snag, the codelet probabilistically decides to negatively clamp

the ObjectType: identity theme. The ensuing thematic pressure results in abbbc being reinterpreted

as a predecessor group going to the left, and a new rule being created to describe eqe⇒ qeq, but

these new structures do not really change the basic situation. Soon afterwards, another Jootser

codelet tries again, this time clamping both ObjectType themes, which effectively paralyzes the

program for the duration of the clamp period, since no structures can be built that are compatible

with both of these themes simultaneously. Fig. 11 shows the state of the Workspace and Trace at

the time of the latter clamp.
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Figure 11: The situation late in the run, after several snags and clamps have occurred

A few hundred codelets later, the program hits the snag again. This is followed shortly thereafter

by another clamp. This clamp, like the one before it, achieves no new progress. After hitting the

snag yet again, the program finally decides to give up. More precisely, at time step 5933, a Jootser

codelet notices the three clamp events in the Trace, all of which have overlapping sets of associated

themes. Moreover, neither of the two most recent clamps have resulted in any discernible progress,

which further increases the probability of jootsing. Consequently, the program prints a termination

message and ends the run, instead of just continuing to cycle.

6.3 Levels of Control in Self-Watching Systems

Settling for an unjustified answer after repeatedly trying to make sense of it, as in the first example,

or attempting to circumvent a recurring snag by clamping themes, as in the second example, can be

thought of as “first-order” jootsing. In contrast, recognizing when repeated attempts to circumvent

a snag are leading nowhere, as in the second example, can be thought of as “higher-order” or “meta-

level” jootsing—that is, jootsing from repeated attempts at jootsing.

This important distinction can be framed more clearly in terms of event types in the Temporal
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Trace. Let us designate as Type I an event that occurs directly in response to processing Workspace

structures. For example, snag events are of Type I, because they arise from a failed attempt to apply

a rule to a string (as shown earlier in Fig. 10). A clamp event that occurs as a result of comparing

two rules when trying to justify an answer (as shown in Fig. 8) is also of Type I. Likewise, clamping

a pattern of codelet urgencies in an effort to spur the creation of new structures such as rules is

a Type I event as well, since this happens in response to poor-quality (or nonexistent) structures

in the Workspace. In other words, Type I events in the Trace arise from first-order, subcognitive

processing activity in the Workspace.

On the other hand, a Type II event is one that occurs directly in response to Type I events

in the Trace. For example, clamping a pattern of themes in response to a recurring snag (as in

the second example of section 6.2) is a Type II event, since it is triggered by noticing a series

of snag events in the Trace. In other words, Type II events arise from patterns of activity at the

cognitive processing level, or, said another way, from viewing subcognitive processing activity at an

appropriately abstract level of description. Thus first-order jootsing corresponds to noticing a series

of Type I events in the Trace that all share similar thematic characterizations, and responding in

some appropriate way, while meta-level jootsing corresponds to noticing and responding to Type II

events.

The important point is that the same mechanisms are responsible for both first-order and meta-

level jootsing in Metacat—namely, Jootser codelets and the explicit representation of processing

events in the Temporal Trace. This reflects our belief that a self-watching system should not be

organized as a rigid hierarchy of distinct levels, with each level responsible only for detecting and

responding to patterns occurring at the level immediately below it, implying the need for an infinite

stack of separate “watcher” mechanisms. Instead, a single set of mechanisms should be capable

of detecting first-order patterns, higher-order patterns within these patterns, patterns of patterns

of patterns, and so on, with all levels fused together and no limit in principle on the potential

complexity of the patterns involved (Hofstadter, 1985a).
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7 Program-Generated Commentary

As Metacat works on an analogy problem, it displays a running commentary in English summarizing

the “ideas” that occur to it as it tries to discover an answer (or to make sense of one provided to

it). This narrative, which appears in Metacat’s Commentary window, corresponds closely to the

chain of events in the Temporal Trace, although it is not an event-by-event transcription of the

information recorded there. Rather, it consists of explanatory messages generated from time to time

by codelets as they go about their business. For example, when Metacat encounters a snag, it reports

this fact and briefly explains why the snag has occurred. Upon discovering a new answer, it states

its “opinion” of the answer’s quality, and mentions any other answers it has seen in the past that the

newly-found answer reminds it of. The program also mentions when it is getting “frustrated” by a

lack of progress, such as in the case of failing to create good rules for describing string changes.

Furthermore, after attempting to focus on some new idea by clamping a pattern of themes, it gives

a brief assessment, in retrospect, of the progress achieved by the clamp. The program can also

comment on the similarities and differences between various answers, if prompted by the user.

Fig. 12 illustrates the type of commentary typically generated by the program during a run. The

example on the left shows a run on the problem abc⇒ abd; xyz⇒ ? in which the program hits the

z snag a couple of times and then answers xyd (the Temporal Trace from this run was shown earlier

in Fig. 4). As it happens, the answer xyd reminds the program of a similar answer to a different

problem that it has already solved. Continuing on, the program then finds the “do-nothing” answer

xyz, based on the rule Change letter-category of letter ‘c’ to ‘d’. This rule is even more literal-

minded than the rule Change letter-category of rightmost letter to ‘d’. At this point, prompted by

the user, the program compares the answer xyz to the answer xyd, expressing a preference for xyd.

Next, Metacat is given the answer dyz to the same problem and asked to justify it (Fig. 12,

right). In this run, the program has difficulty at first discovering a rule to describe the change from

xyz to dyz. Its comment about “trying harder” arises from clamping a pattern of codelet urgencies in

response to this lack of rules. As it turns out, three new rules get created in the wake of this clamp.

The program therefore judges the amount of progress made by the clamp as satisfactory. In fact,

analyzing the newly-created rules leads the program to subsequently clamp a pattern of themes in
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Figure 12: Metacat’s commentary from a run on the problem abc⇒ abd; xyz⇒ ? in which it found
the answers xyd and xyz (left), and from a justification run on the same problem in which the
program was given the answer dyz (right).

an effort to create a mapping between abc and xyz that is compatible with the rules. This second

clamp is indicated by the comment, “Aha! I have another idea...” This clamp spurs the creation of

many new structures, leading to the interpretation of abc and xyz as mirror images of each other,

which in turn leads to a successful justification of dyz. The program therefore judges the progress

achieved by the second clamp to be very high, even though it considers dyz itself to be a “pretty

mediocre” answer. Finally, again prompted by the user, the program compares this answer to the

answer xyd found earlier, which it judges in the end to be of higher quality than dyz.

From these examples, it may appear that Metacat possesses a sophisticated linguistic ability.
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However, it must be stressed that this is not the case. The program’s commentary is generated by a

set of prefabricated phrase-templates, which get filled in and combined in flexible ways according

to context. See Marshall (1999, Chapter 4) for a detailed discussion of these mechanisms. In the

run shown in Fig. 12, for example, the explanation of the snag is generated on the basis of the

Workspace structures and Slipnet concepts involved in the snag—namely, the letter z, the string xyz,

and the concepts of LetterCategory and successor. As an added touch, the second time the program

hits the snag, it inserts the word “again”, on account of the fact that a previous snag event exists

in the Temporal Trace. In addition, the program uses stock phrases to describe certain numerical

values, such as the overall measure of answer quality (e.g., “pretty mediocre”, “pretty bad”), or the

progress achieved by a clamp (e.g., “some”, “a lot of”), or the strength of reminding of one answer

by another (e.g., “strongly”). Other phrases are completely canned, such as “I seem to have run

into a little problem”, which the program prints out whenever it hits a snag, or “Let’s see...”, which

is printed whenever the program compares answers. Furthermore, no type of linguistic interaction

with the program is possible.

The purpose of Metacat’s commentary is to show the progression of activity that occurs during

a run in a very user-friendly and somewhat whimsical fashion, as if the program were “thinking

out loud” while it solves problems, and also to summarize, in an easily understandable way, the

parallels and distinctions between answers that are perceived by the program. It is not intended as

a serious model of language processing. As will be discussed below, answers are compared on the

basis of their underlying conceptual representations, which consist of the themes and rules stored in

answer descriptions. Metacat’s ability to recognize similarities and differences between analogies

at this representational level is what counts, not its ability to summarize these comparisons in a

human-readable form.

That said, it is important to add that not all of the words used by the program are completely

devoid of semantic content. To be sure, most of them are: “okay”, “think”, “mediocre”, “I”, “me”,

and so on. However, some of them, such as “letter”, “letter-category”, “group”, “successor”, and

“direction”, denote concepts that the program does genuinely understand—in a limited but quite

defensible sense—within the confines of its letter-string world. These words correspond to Slipnet
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Figure 13: Commentary from a justification run with “Eliza mode” on (left) and off (right), showing
the one-to-one correspondence between the comments generated in each case.

concepts, whose semantics emerge from the complex ways in which they interact with perceptual

processing, as discussed earlier in section 4.

Although the colloquial tone of Metacat’s commentary is meant to be humorous, it raises the

potential danger of the so-called “Eliza effect”, which refers to the widespread tendency of people

to read far more meaning than is warranted into text generated by a computer program. Clearly, the

output generated by Metacat might lead (or mislead) a casual observer into falling for this effect.

Therefore, in the interest of transparency, the program can be run in two different linguistic output

modes. When running in “Eliza mode”, Metacat generates the type of commentary shown in Fig. 12.

With this mode turned off, the program uses more neutral language to describe the events that occur

during a run (the explanations generated when comparing answers, however, are not affected). For

example, Fig. 13 shows the output from the second run of Fig. 12, alongside the isomorphic output

produced with Eliza mode turned off. Exactly the same number of paragraphs are generated in

either case.

7.1 Comparing Analogies

When Metacat compares two analogies, it retrieves their answer descriptions from its Episodic

Memory and analyzes the themes and rules contained therein. In general, two answer descrip-
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Problem/Answer Themes Type of Rule
abc⇒ abd; xyz⇒wyz AlphabeticPosition:opposite Abstract

StringPosition:opposite
rst⇒ rsu; xyz⇒wyz StringPosition:opposite Abstract
abc⇒ abd; xyz⇒ xyd StringPosition:identity Literal
rst⇒ rsu; xyz⇒ xyu StringPosition:identity Literal
abc⇒ abd; xyz⇒ dyz AlphabeticPosition:opposite Literal

StringPosition:opposite
rst⇒ rsu; xyz⇒ uyz StringPosition:opposite Literal

Table 1: Answer descriptions for the xyz family of analogies

tions may share identical themes (called common themes), they may have themes of the same type

which differ by relation (called differing themes), or one or both answers may have themes that

are not present in the other answer at all (called unique themes). For example, consider again

the xyz family of analogies discussed in section 3 (Fig. 1). Table 1 shows some of the informa-

tion stored in the answer descriptions created by Metacat for these analogies, including themes

characterizing the mapping between the initial string and target string. (For clarity, not all of the

stored information is shown.) The answers xyd and xyu share a common StringPosition:identity

theme. On the other hand, xyu and uyz are based on the differing themes of StringPosition:identity

and StringPosition:opposite. In the case of the two wyz answers, the first one contains a unique

AlphabeticPosition:opposite theme.

Analyzing the themes and rules shown in Table 1 brings out clearly the similarities and differ-

ences between these analogies. For example, a crucial distinction between the first wyz answer and

dyz is the abstractness of the rule used to describe abc⇒ abd. The descriptions of xyd and xyu

are identical, reflecting the strong underlying similarity of these two literal-minded analogies. The

difference between the two wyz analogies lies in the presence or absence of the idea of alphabetic

symmetry. Moreover, the way in which these analogies differ is precisely the same as the way in

which dyz differs from uyz.

The coherence of an answer can be judged by comparing the abstractness of the answer’s themes

with the abstractness of the concepts making up the answer’s rule. For example, dyz is characterized

by themes involving the abstract concept of opposite, but depends on a literal-minded interpretation
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of abc⇒ abd. This “dissonance” is the reason that Metacat considers dyz to be an incoherent

analogy, as it explained in Fig. 12.

The following is a sampling of Metacat’s explanations of the similarities and differences be-

tween some of the analogies in Table 1. To generate these explanations, the program was first run

(in justify mode) on each of the answers, and was then asked to compare them. The figures show

the output generated by the program.

In Fig. 14, the program compares the answers wyz and xyd to the problem abc⇒ abd; xyz⇒ ?,

and explains why it considers wyz to be the better analogy. The phrase “a richer set of ideas” refers

to the fact that wyz’s answer description contains more themes than xyd’s description.

The next examples illustrate answer comparison across different problems, namely, abc⇒ abd;

xyz⇒ ? and rst⇒ rsu; xyz⇒ ?. This amounts to comparing answers “vertically” in Fig. 1. In

Fig. 15, the program explains why it considers the answers xyd and xyu to be fundamentally the

same analogy. As the program notes, the rules giving rise to these answers are very similar, since

they both involve changing the rightmost letter in a literal-minded way. The program assigns a

rating of “pretty mediocre” to each answer, based on the low degree of abstractness of the answers’

underlying themes and rules.

In Fig. 16, the two wyz answers are compared. In this case, the program recognizes the essential

difference between these analogies—namely, the presence of alphabetic symmetry in one but not

the other—despite the superficial identity of the two answers.

In Fig. 17, the program compares the answers dyz and uyz, each of which involves a somewhat

incoherent blend of abstract and literal-minded perspectives. As in the previous wyz vs. wyz case, the

program identifies the presence or absence of alphabetic symmetry as the fundamental difference

between these two analogies. It also notes their peculiar incoherence, expressing a preference for

uyz.

7.2 Reminding

Closely related to answer comparison is the phenomenon of reminding, in which one answer may

trigger the retrieval from memory of other answers that are in some way similar. This may happen
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Figure 14: abc⇒ abd; xyz⇒ xyd versus abc⇒ abd; xyz⇒wyz

Figure 15: abc⇒ abd; xyz⇒ xyd versus rst⇒ rsu; xyz⇒ xyu

Figure 16: abc⇒ abd; xyz⇒wyz versus rst⇒ rsu; xyz⇒wyz

Figure 17: abc⇒ abd; xyz⇒ dyz versus rst⇒ rsu; xyz⇒ uyz
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Figure 18: Six answer descriptions and one snag description in memory

whenever a new answer is discovered or justified by the program. When a new answer is found, the

answer description created from the information in the Temporal Trace acts as an index into memory,

causing other stored answer descriptions to become activated in proportion to their similarity to the

new answer. Similarity between answer descriptions is determined by a numerical measure from 0

to 100 called the distance, which measures the amount of overlap of the answer descriptions’ themes

and concepts. If the activation level of an answer description exceeds a fixed threshold, Metacat will

be reminded of the answer, with the activation level corresponding to the strength of recall.

Fig. 18 shows an example of the state of Metacat’s memory upon discovering the answer wyz

to the problem rst⇒ rsu; xyz⇒ ?, after having seen a few other answers to this problem and to the

problem abc⇒ abd; xyz⇒ ?. There is also a snag description for abc⇒ abd; xyz⇒ ?, indicating

that the program ran into a snag when solving this problem on its own. The activation levels of

answers are indicated by shades of grey, ranging from white for fully-activated answers to dark grey

for dormant ones (so that the less strongly activated an answer is, the more it appears to fade into the

background of Metacat’s memory). In this example, wyz is the most active answer, since it was just

found. It has partially activated the other wyz answer, and, to a lesser extent, uyz. The other answers,

however, are too distant from wyz to be recalled. As a result, Metacat reports in its Commentary

window that the newly-found answer “somewhat” reminds it of the other wyz answer, and “vaguely”
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reminds it of uyz. (The program uses the terms “vaguely”, “somewhat”, and “strongly” to describe

the activation levels of answer descriptions, corresponding respectively to the numerical ranges 1–

30, 31–70, and 71–100.)

Snag descriptions enable Metacat to “appreciate” certain answers in ways that otherwise would

not be possible. For example, consider again the answer aaabccc to the problem eqe⇒ qeq;

abbbc⇒ ?. As we saw in the sample runs of section 6.2, the program is unable to get this an-

swer on its own, because it is incapable of perceiving e–q–e and 1–3–1 as unified chunks, due to

the absence of predecessor, successor, or sameness relations among the parts. Consequently, it is

unable to connect the idea of letter to the idea of number at an abstract level, and therefore never sees

these ideas as playing analogous roles in eqe and abbbc. Instead, it ends up repeatedly attempting to

swap the a’s, b’s, and c’s. On the other hand, if this answer is provided by the user, the program can

make sense of it, although in an incomplete way. It still considers the connection between letter and

number to be an “unjustified idea”. More precisely, it includes an unjustified theme in the answer

description for aaabccc based on its failure to make the slippage LetterCategory ⇒Length .

The same is true for the answer aaabaaa to the related problem eqe⇒ qeq; abbba⇒ ?. Metacat

can almost make sense of it, but cannot get it on its own. However, there is a crucial difference

between aaabaaa and aaabccc, as was pointed out earlier in section 3. In eqe⇒ qeq; abbba⇒ ?,

swapping letter-categories is perfectly feasible, so there is no need to view abbba as 1–3–1 . That

is, no snag arises in this problem. In a sense, then, the answer aaabccc is the better analogy, since

seeing abbbc as 1–3–1 provides an elegant way around a snag, while seeing abbba as 1–3–1 is

unnecessary. Metacat can make this observation, but it can only do so if it knows that the problem

eqe⇒ qeq; abbbc⇒ ? leads to a snag. If it has tried this problem on its own, it will know this,

because a corresponding snag description will exist in memory. Conversely, if it is shown the

answer aaabccc without having first tried to solve the problem itself, it will remain unaware of the

possibility of a snag arising, and will not perceive this subtle distinction between the two analogies.

The following experiment illustrates this behavior. First, Metacat’s memory was cleared in

order to reset the program to a “tabula rasa” state. It was then shown the analogy eqe⇒ qeq;

abbba⇒ aaabaaa and asked to justify it. At the end of the run, the program created an answer
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Figure 19: aaabaaa versus aaabccc before encountering the snag

Figure 20: aaabaaa versus aaabccc after encountering the snag

description for aaabaaa, which it then stored in memory. Next, the program was shown the analogy

eqe⇒ qeq; abbbc⇒ aaabccc. At the end of the second run, the program reported that aaabccc

strongly reminded it of the first answer, aaabaaa (reminding strength: 80). At this point, the pro-

gram had not yet attempted to solve eqe⇒ qeq; abbbc⇒ ? on its own, and therefore did not know

that a snag can arise. When asked to compare these two analogies, the program reported that it saw

essentially no differences between them. Fig. 19 shows the program’s commentary.

The program was then reset to a tabula rasa state and asked to justify aaabaaa, just as before.

However, it was next given the problem eqe⇒ qeq; abbbc⇒ ? to work on its own, with no answer

provided. In this run, the program attempted unsuccessfully to swap the letters of abbbc a couple

of times, and then happened to discover the more literal-minded answer qeeeq. The failure to swap

the letters, however, caused a snag description to be created for this problem in memory. Next, the

program was shown the answer aaabccc to eqe⇒ qeq; abbbc⇒ ?, as before, and asked to justify

it. This time, the program reported that aaabccc reminded it only vaguely of aaabaaa (remind-

ing strength: 20), indicating that it perceived the analogies as being quite different—although still

46



recognizably related. The program’s commentary is shown in Fig. 20.

8 Discussion

A number of researchers have developed cognitive models that incorporate architectural principles

similar to those of Metacat, including emergent processing arising from many nondeterministic

agents acting concurrently, and the spreading of activation among nodes of a semantic network in

response to context-sensitive pressures. Kokinov’s DUAL cognitive architecture, which forms the

basis of the AMBR1 and AMBR2 models of analogical reasoning and memory retrieval developed

by Kokinov and Petrov, is a case in point (Kokinov, 1994a, 1994b; Kokinov & Petrov, 2001). The

development of these models has been guided by the belief that subprocesses underlying analogy-

making should be integrated into a larger cognitive system comprising perception, memory, learn-

ing, and reasoning. As in Metacat, dynamic context-sensitive emergent processing plays a central

role in DUAL and AMBR, allowing for the close interaction of representation-building, mapping,

transfer, and reminding.

Despite their architectural similarities, however, Metacat and AMBR differ in terms of the rela-

tive emphasis each model places on different aspects of cognition. The more recent AMBR2 model

(Kokinov & Petrov, 2001) is particularly strong in its approach to modeling the storage and retrieval

of memory episodes. In AMBR2, episode representations are highly emergent, decentralized, and

context-sensitive, and interact with the mapping process in a psychologically plausible manner. In

contrast, Metacat currently lacks sophisticated mechanisms for episodic memory indexing and re-

trieval. In the current version of the program, when a new answer is discovered, the newly-created

answer description is individually compared to all others stored in memory, in order to determine

the new activation levels of the stored descriptions—and hence which answers will be recalled as

a result of finding the new answer. This simplistic approach does not scale well if many answers

exist in memory, and is thus unsatisfactory in principle. Furthermore, as Kokinov and Petrov have

pointed out, these memory structures are essentially localized and static (although their activation

levels may change, as mentioned above). Unlike themes and Slipnet concepts, answer descriptions

do not interact with each other through spreading activation, and do not actively influence percep-
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tual processing, as they undoubtedly should in order to model priming effects and other influences

of previous problem-solving experiences on perception. Developing better mechanisms for episodic

memory organization and retrieval in Metacat is thus a high priority for future research.

On the other hand, Metacat is strongly committed to modeling concepts as active, dynamic

entities that acquire their meanings from within the system itself, through their interactions with

perception, as discussed earlier in section 1. AMBR also models concepts, but their meanings are

not tied to the system’s own perceptions in the same way as in Metacat. For example, AMBR may

solve analogy problems involving the concepts of water and teapot, but the structures represent-

ing these concepts in memory presumably do not become activated by the system’s perception of

real water or real teapots. In contrast, the concepts behind Metacat’s analogies, such as letter or

successor-group, acquire their meanings precisely as a consequence of how they respond to the

perception of “real” letters and groups in Metacat’s microworld.

Another important difference is Metacat’s focus on modeling self-perception, an aspect of cog-

nition that is not addressed by most other models of analogy-making. As we saw earlier, the infor-

mation gleaned from self-watching plays a crucial role in the high-level characterization of answers,

enabling the program to perceive abstract similarities and differences between analogies as a whole.

We believe that a psychologically realistic and complete model of analogy-making should offer

some account of higher perceptual levels, including those that reflect aspects of the system’s own

behavior. In our model, the mechanisms responsible for internal self-perception are not funda-

mentally different from those responsible for external perception. Both involve the building and

manipulation of structures by codelets, whether in the Temporal Trace (for internal perception) or

in the Workspace (for external perception). Furthermore, these processes are tightly interwoven,

and are highly dependent on the context-sensitive activations of concepts.

Metacat also shares similarities with case-based reasoning (CBR) approaches to analogy (Kolod-

ner, 1993, 1994; Leake, 1996). For instance, Metacat’s stored answer descriptions can be likened to

cases in CBR, since they form a corpus of experience on which the program can draw when faced

with new situations. The discovery of a new answer may trigger the retrieval of similar answers

that the program has seen in the past, in a way reminiscent of the retrieval of stored cases in CBR

48



according to their degree of similarity to the target situation. In Metacat, retrieved answers are

compared to the current answer by analyzing the similarities and differences between the answers’

associated themes. This is roughly akin to comparing cases in CBR in order to determine which

aspects of a retrieved case can be applied directly to the target situation without modification, and

which aspects must be adapted to fit it. Finally, Metacat’s snag descriptions can be viewed as cases

that store failure information about analogies.

However, there are important differences between CBR and Metacat. First of all, even though

Metacat solves analogy problems, it was not conceived as a model of problem-solving per se.

Rather, its focus is on modeling the way in which context-sensitive concepts allow analogies to

be perceived and understood. It is more concerned with analogical perception (and self-perception),

than with analogical reasoning employed specifically as a tool for solving problems. Moreover, the

goal of much CBR work has been to create systems that learn from experience to solve problems

in an increasingly effective or efficient manner, whereas in Metacat the notion of improving the

program’s performance on analogy problems is not relevant. However, some recent CBR-based

approaches to modeling creativity (Bento & Cardoso, 2001; Cardoso & Wiggins, 2002) seem to be

more in harmony with Metacat’s goals than previous CBR systems have been.

9 Conclusion

A prime objective of this research is to explore how adaptable, context-sensitive concepts can give

rise to understanding by enabling analogies between apparently dissimilar situations to be perceived.

The present work extends and deepens the ideas developed in Copycat by incorporating mechanisms

for self-watching, episodic memory, and reminding into the model. These mechanisms make it

possible for Metacat to compare and contrast analogies in an insightful way. The ability of the

program to perceive subtle parallels and distinctions between analogies represents a significant step

beyond the perceptual abilities of Copycat, although much work still remains to be done.

The examples presented in section 7 illustrate Metacat’s ability to observe and describe its own

behavior, to recall previously-encountered answers, and to explain the similarities and differences

it perceives between analogies. This ability relies on storing abstract descriptions of answers and
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processing events, characterized by patterns of themes, in memory. It is important to emphasize

that answer descriptions are just organized collections of Slipnet concepts, since they are composed

of themes and rules, which are in turn composed of concepts. These concepts, as the fundamental

building-blocks of answer descriptions, form the substrate on which the program’s understanding of

analogies is based, and acquire their semantics through the ways in which they respond to situations

in Metacat’s letter-string world. Consequently, the English-language commentary generated by the

program about analogies, although just a surface-level veneer in many ways, ultimately rests on a

deeper foundation of conceptual representation tied to perception.

Appendix: Source Code

The complete source code for Metacat is available, along with instructions for downloading and run-

ning the program, at http://www.cogsci.indiana.edu/metacat. Demos of the examples discussed

in this paper and in Marshall (1999) are included with the program.
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