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abstract

This dissertation describes Metacat, an extension of the Copycat computer model

of analogy-making and high-level perception developed by Douglas Hofstadter and

Melanie Mitchell as part of a research program aimed at computationally modeling

the fundamental mechanisms underlying human cognition. Central to the philosophy

of Copycat is the belief that the ability of the human mind to perceive analogies

between situations lies at the core of intelligence.

Copycat operates in an idealized microworld of analogy problems involving short

strings of letters. The program understands only a limited set of concepts relating

to its letter-string world, but its \
uid" conceptual processing mechanisms give it

considerable 
exibility in recognizing and applying these concepts in many diverse

situations.

The present work builds on these achievements by focusing on the issue of self-

watching|namely, the ability of a system not only to perceive situations, but also to

observe and to explicitly characterize its own perceptual processes. Copycat focuses

exclusively on perceiving patterns within its input data, while ignoring patterns that

occur in its processing of those data. Consequently, Copycat lacks insight into how

it arrives at its answers. It is thus unable to explain why it considers one analogy to

be better or worse than another.

The Metacat project is concerned with extending the model in a way that allows it

to create much richer representations of the analogies it makes, enabling it to compare

and contrast answers in an insightful way. This involves incorporating an episodic

v



memory into the architecture, along with an ability for the program to monitor itself,

so that it can recognize, remember, and recall important patterns that occur in its own

\train of thought" as it makes analogies. By monitoring its own processing, Metacat

can recognize when it has fallen into a repetitive pattern of behavior, enabling the

program to subsequently break out of the pattern. Furthermore, based on the \meta-

level" information gleaned from self-watching, Metacat can come to understand and

explain the answers that it �nds in a way that Copycat cannot.
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chapter one

The Copycat Model

The Metacat project is an extension of the Copycat computer model of analogy-

making and high-level perception originally developed by Douglas Hofstadter and

Melanie Mitchell as part of an ongoing research program aimed at computationally

modeling the fundamental mechanisms underlying human cognition. Central to the

philosophy of this research program is the belief that the ability of the human mind

to perceive similarities between di�erent situations|and to make analogies based on

these similarities|lies at the core of intelligence. To understand the mental mech-

anisms by which analogical thinking and perception take place is to understand the

source of the remarkable 
uidity of the human mind, including its hidden wellsprings

of creativity.

1.1 High-Level Perception

Copycat focuses on the idea of high-level perception, which can be regarded as that

level of perceptual processing in which semantically-de�ned concepts play a critical

role [Chalmers et al., 1992]. In contrast, low-level perception involves the processing

of raw, modality-speci�c sensory data obtained directly from the environment, such

as the processing of light-intensity information from the retina by the visual cortex

of the brain, or the processing of auditory information from the inner ear by the

1



2 The Copycat Model

temporal cortex. Low-level perceptual processing is a necessary prerequisite for high-

level perception to occur, and there are many intermediate processing stages, involving

many levels of abstraction, leading from the former to the latter. The end result of

this process is the conscious recognition or understanding of the input stimulus as an

instance of a particular mental concept or set of concepts.

Consider, for example, the everyday experience of recognizing your own mother.

A pattern of light falls on the hundred million or so photoreceptor cells in your retina,

and a fraction of a second later, the idea of your mother comes to mind. A particular

mental concept has become highly activated, while most others remain dormant.

This process of recognition, for the most part, takes place below the level of conscious

awareness. One does not have to do much deliberate thinking in order to successfully

recognize one's mother (at least in the absence of degraded environmental conditions

such as poor lighting). High-level perception, like many other mental phenomena,

depends largely on subcognitive processing mechanisms [Hofstadter, 1985c].

The recognition of a person as belonging to the category of mother is a fairly pro-

saic example of high-level perception. This same general phenomenon, however, often

occurs at much higher levels of abstraction, such as when a person hears a piece of mu-

sic for the �rst time and recognizes it as coming from a particular composer or musical

style, or when a painting is clearly recognized to be, say, an Impressionist work, or as

belonging to Picasso's \Blue period". Moving to an even higher level of abstraction,

an entire situation involving messy and complicated webs of people, objects, rela-

tionships, and choices may collectively be seen as a \Catch-22" situation|that is, as

an instance of this particular concept. Even the seemingly straightforward concept

of mother is, in reality, a remarkably subtle matter. Depending on context, a huge

variety of things can be recognized as being abstract instances of the mother concept.

To name just a few examples: the planet Earth is often regarded as being the mother

of all living things, an idea commonly expressed by the phrase \Mother Earth". The
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nation of Russia is often considered to be the mother of the Russian people, as in

the phrase \Mother Russia". Betsy Ross is often described as \the mother of the

American 
ag". And the Biblical notion of the Apocalypse is sometimes billed as

\the mother of all battles". Normally, one is not inclined to regard planets, nation-

states, or military campaigns as likely candidates for motherhood; indeed, in a strict

sense such notions do not even make sense. But given the right context, people

can e�ortlessly see how the concept applies, thanks to the natural 
uidity of human

cognition.

1.2 Conceptual Fluidity and Analogy-Making

In general, a concept in the mind is not a sharply-de�ned entity with clear-cut bound-

aries, always applying to certain things (such as someone's mother) but never to

others (such as someone's father, or a planet). Rather, the boundaries of concepts

are inherently ill-de�ned and blurry, and are strongly in
uenced by the context in

which high-level perception takes place. We refer to this type of inherent 
exibility

as conceptual 
uidity, in order to stress the idea of concepts as nonrigid, malleable,

adaptable, and highly context-sensitive.

Not only are the \shapes" of individual concepts dynamically adaptable; so too

are the \conceptual distances" separating them. To some extent, every concept in the

mind consists of a central core idea surrounded by a much larger \halo" of other re-

lated concepts. The amount of overlap between di�erent conceptual halos is not rigid

and unchangeable, but can instead vary according to the situation at hand. Much

work has been done in cognitive psychology investigating the nature of the distances

between concepts and categories [Shepard, 1962; Tversky, 1977; Smith and Medin,

1981; Goldstone et al., 1991]. For most people, certain concepts lie relatively close

to one another in conceptual space, such as the concepts of mother and father (or
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perhaps mother and parent), while others are farther apart, at least under normal

circumstances. However, like the boundaries de�ning individual concepts, the degree

of association between di�erent concepts can change radically under contextual pres-

sure, with the potential result that two or more normally quite dissimilar concepts

are brought close together, so that they are both perceived as applying equally well

to a particular situation, such as when the Earth is seen as an instance of both the

mother concept and the planet concept. This phenomenon, referred to in the Copycat

model as conceptual slippage, is what enables apparently unrelated situations to be

perceived as being fundamentally \the same" at a deeper, more abstract level.

As another example, consider a typical American adult's concept of Vietnam. On

the surface, this concept refers to a particular nation located in Southeast Asia. But

in the average American mind at least, it is also tightly associated with the huge

political and military debacle in which the United States got mired in the late 1960's

and early 1970's, along with all of the internal social and cultural strife that occurred

as a result. This entire complex political{historical situation is conventionally referred

to in America as simply \Vietnam". Hovering about the central core of this concept

are enormous numbers of other related concepts, some closer in, some farther out|

concepts such as communism, war, Cambodia, President Nixon, social unrest, the

Pentagon, rice, 1968, dominos, failure, and so on. Other concepts clearly lie very far

away from the core: penguins, say, or rollerskates, or computer software. Or do they?

Consider the following humorous quip, which appeared on the World Wide Web:

\Windows 95: Microsoft's Vietnam?" [Leake, 1996]. Whether or not one agrees with

its sentiment, its meaning is readily understood. Windows 95, a computer operating

system, can be perceived as an instance of the concept of Vietnam. In doing so, an

implicit analogy has been made between two complex and apparently distinct entities,

mapping, among other things, the United States onto Microsoft, the 1960's onto the

1990's, and, perhaps, former U.S. President Richard Nixon onto Microsoft Chairman



1.3 The Ubiquity of Analogy in Human Thought 5

Bill Gates. In a more serious vein|and relying on less of a conceptual leap|the 1979

Soviet invasion of Afghanistan is commonly regarded by American political observers

as being \the Soviet Union's Vietnam". (Similarly, the 1994{96 con
ict in Russia's

breakaway Chechnya region might be a strong contender for the title of \Russia's

Vietnam".) It is the complex, 
uid nature of concepts that allows such analogies to

be e�ortlessly understood and appreciated.

1.3 The Ubiquity of Analogy in Human Thought

Traditionally, researchers working on the computational modeling of analogy have

tended to view analogy-making as a special type of thinking useful for solving prob-

lems via the technique of analogical reasoning. According to this view, a good way to

solve a given problem is often by recourse to a similar problem that one has encoun-

tered and solved previously. By setting up an analogy between the previous problem

and the current problem, and using the previous solution as a guide, one can often

discover a solution to the problem at hand [Evans, 1968; Carbonell, 1986; Riesbeck

and Schank, 1989; Leake, 1996]. This type of reasoning is often used by students

when trying to work through scienti�c or mathematical problems in textbooks. Typ-

ically, a worked-out example in the text, similar to the problem to be solved, is �rst

identi�ed (the more similar, the better). The worked-out example solution is then

applied to the corresponding elements of the new problem (hopefully without too

much modi�cation required), yielding a solution [Chi et al., 1989].

This type of analogical reasoning is certainly a powerful technique for solving

problems, but it is only part of the picture. In contrast to the conscious, deliberative

use of analogy as a tool for reasoning about problems, most analogy-making in the

mind occurs spontaneously and unconsciously, at the subcognitive level, almost with-

out ever being noticed. To regard analogy-making only as a specialized cognitive tool
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useful in solving problems is to ignore the ubiquity of analogy in everyday thought

processes.

To take just one example from personal experience, I was at a picnic one day,

where I had been playing frisbee with several friends. At one point, I approached

the serving table where the food was laid out, hungrily eyeing the potato salad, with

frisbee in hand, and noticed to my disappointment that there were no more paper

plates left. I happened to glance down at the frisbee I was holding, and at that

moment I suddenly thought of the idea of using my frisbee as a makeshift plate. In

thinking of this, I did not consciously set up a deliberate analogy between the idea

of a frisbee and the idea of a plate in hopes of solving the problem of where to put

my food; rather, I simply saw the frisbee in a new light, as a plate. Another way of

saying this is that the particular situation I was in caused me to recognize the object

in my hands as an instance of the plate concept, whereas under normal circumstances

the object causes only the frisbee concept to become activated. Said yet another

way, a slippage between the concepts of frisbee and plate occurred in my mind which

resulted in the object being perceived simultaneously as an instance of both concepts.

As this example illustrates, the distinctions between categorization, recognition,

reminding, and analogy-making are not clear-cut. Rather, all of these mental phe-

nomena represent di�erent types of high-level perception, and are best viewed as

points along a broad continuum ranging from simple recognition tasks all the way

to highly abstract analogies and poetic metaphors. Robert French gives many won-

derful examples of everyday analogy-making running the full length of this spectrum

[French, 1995, Chapter 1]. He also discusses the \me-too" phenomenon, an extremely

common type of analogy-making that pervades ordinary, day-to-day conversation.

Hofstadter has collected a large number of �rst-hand examples of \me-too" analogies

as well [Hofstadter, 1992; Hofstadter and FARG, 1995]. The following exchange be-

tween two people having a drink in a hotel lobby|one of whom had a beer and the
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other a Coke|is typical:

Shelley: I'm going to pay for my beer now.

Tim: Me, too.

Such \mundane" analogy-making occurs all the time in human thinking, mostly below

the level of conscious awareness. Conscious, step-by-step analogical reasoning in

the service of problem-solving is certainly one manifestation of analogy-making, but

it is just the tip of the iceberg. Everyday thought and language are permeated

with myriad, 
eeting analogies e�ortlessly made and understood, most of which go

unnoticed because they seem so unremarkable|such as thinking of a Coke as a beer,

or a frisbee as a plate (or describing analogical reasoning as the tip of an iceberg,

which is a fairly abstract analogy in and of itself). Indeed, as George P�olya wrote,

\analogy pervades all our thinking, our everyday speech and our trivial conclusions

as well as artistic ways of expression and the highest scienti�c achievements" [P�olya,

1957].

1.4 Creativity, Randomness, and Subcognition

The connection between analogy-making and scienti�c creativity has long been rec-

ognized. Analogies have played an instrumental role in the creation of new and some-

times revolutionary scienti�c theories. One of the most famous examples, discussed

at length by Margaret Boden in her book The Creative Mind: Myths and Mechanisms

[Boden, 1991], was the discovery of the molecular structure of the benzene molecule

by Friedrich von Kekul�e in 1865, who, while dozing by the �reside, experienced a

vision of a snake biting its own tail. In a 
ash, he realized that a molecular ring

structure was the answer to the mystery of the benzene molecule's geometry, which,

up until that time, had been assumed by chemists to consist of a linear sequence of

atoms. This insight led to the establishment of the �eld of aromatic chemistry. As
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this example shows, the capacity for creative, insightful thinking is deeply tied to the

capacity for perceiving abstract similarity between things that, on a more concrete

level, would appear to be utterly di�erent. Keith Holyoak and Paul Thagard's book

Mental Leaps: Analogy in Creative Thought contains a good discussion of many other

instances of analogically-inspired creativity in science [Holyoak and Thagard, 1995,

Chapter 8].

In her enlightening book, Boden examines many historical examples of creativity

taken from art, music, science, and literature. In almost all verbal or written accounts

of the creative process, whether scienti�c, artistic, or otherwise, the actual moment

of insight experienced by the creator seems to take on an almost mystical or inde-

scribable aura. It seems notoriously di�cult to pin down, in any precise way, exactly

which thought processes are involved in the creative act itself. Indeed, it often seems

as if new ideas come randomly, without warning, from \out of the blue". As the

mathematician Jacques Hadamard put it [Koestler, 1964]:

On being very abruptly awakened by an external noise, a solution long

searched for appeared to me at once without the slightest instant of re-


ection on my part.

Both Henri Poincar�e and Arthur Koestler were interested in the underlying mental

mechanisms of creativity that give rise to such seemingly unanalyzable 
ashes of

insight. Poincar�e expressed a view of creativity as the random coming together of

diverse ideas in the subconscious mind, much like a swarm of gnats or a collection

of gas molecules jostling against one another [Poincar�e, 1921]. Koestler, however,

maintained that a purely random association of ideas is not enough; the mixing of

ideas must be guided by mental structures acting as constraints, a process he termed

the \bisociation of conceptual matrices" [Koestler, 1964]. Indeed, this notion of

directed randomness in the service of creativity turns out to be of critical importance

in understanding the 
uid mechanisms of cognition, and consequently plays a central
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role in the architecture of the Copycat program.

On the other hand, both Koestler and Poincar�e agreed that the processes involved

in creative thinking are carried out largely at the subconscious level. As Koestler

eloquently observed [Koestler, 1964]:

The moment of truth, the sudden emergence of a new insight, is an act

of intuition. Such intuitions give the appearance of miraculous 
ashes, or

short-circuits of reasoning. In fact they may be likened to an immersed

chain, of which only the beginning and the end are visible above the

surface of consciousness. The diver vanishes at one end of the chain and

comes up at the other end, guided by invisible links.

In fact, Poincar�e distinguished four phases of creativity that occur during problem-

solving: an initial preparatory phase involving conscious attempts to solve the prob-

lem using familiar methods; an incubation period in which the conscious mind is fo-

cused on other things while at the same time ideas are being continually recombined

at a deeper, subconscious level; an abrupt 
ash of insight at the level of conscious

awareness; and, �nally, an evaluation phase in which the insight's rami�cations are

consciously worked out in full. He characterized the sudden 
ash of illumination as

\a manifest sign of long, unconscious prior work".

1.5 A Computer Model of Conceptual Fluidity

A fundamental motivation driving the Copycat project, and consequently the Metacat

project, is a belief in a common set of mechanisms responsible for creative insights

and analogy-making|from the most rare�ed strokes of artistic and scienti�c genius all

the way down to the (far more common) type of run-of-the-mill analogy-making that

pervades everyday thought and language. According to this view, creative analogical

thought is a natural by-product of the dynamic, 
uid nature of concepts in the mind.
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Conceptual 
uidity provides the means through which 
exible high-level perception

takes place.

Copycat is a computer model of the nondeterministic, subcognitive mental pro-

cesses out of which conceptual 
uidity emerges. It represents the tangible instan-

tiation of a general theory of mind describing how 
uid concepts interact with and

guide perception, and how genuine understanding|at least in a limited domain|can

emerge from the dynamics of this interaction. A fully detailed exposition of the Copy-

cat project can be found in [Mitchell, 1993] and [Hofstadter and FARG, 1995]. The

rest of this chapter gives a thorough, but condensed, overview of Copycat, along with

several examples illustrating the behavior of the program. Since the Metacat project

builds directly on the Copycat architecture, this background is necessary in order to

understand the work on Metacat described in the remainder of this dissertation.

1.5.1 An idealized microworld for studying analogy-making

The domain in which Copycat operates is a microdomain|a tiny, idealized world

explicitly designed to isolate the essential, fundamental aspects of analogy-making

and creativity by stripping away from it as many insigni�cant and confusing \real-

world" details as possible. This act of idealization brings out the deep issues of high-

level perception in stark relief, rendering them accessible and amenable to careful,

controlled study.

Speci�cally, the raw material of Copycat's domain consists of the 26 lowercase

letters of the alphabet. Copycat analogy problems are stated in terms of three strings

of letters: the initial string, the modi�ed string, and the target string. A typical

Copycat problem is the following: \If the string abc changes to the string abd , how

might the string mrrjjj change in an analogous way?" Or, displayed graphically:
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abc ) abd

mrrjjj ) ?

On �rst seeing this problem, most people answer eithermrrkkk ormrrjjk [Mitchell,

1993]. The rightmost component of abc (i.e., the letter c) is perceived as changing to

its successor, so doing \the same thing" tomrrjjj amounts to changing the rightmost

component of mrrjjj to its successor (i.e., either the group of three j 's viewed as a

chunk, or just the rightmost letter j ).

There are, however, many other defensible answers to this problem, which people

tend to give less often, including:

� mrrjjd (change the rightmost letter literally to d)

� mrrddd (change the entire rightmost group to d 's)

� mrrjjj (change only c's to their successor)

� mrrjkk (view mrrjjj as the three letter-pairsmr{rj{jj and change the right-

most pair to its successor)

� mrrjdd (view mrrjjj as mr{rj{jj , but change the rightmost pair to d 's)

� mrsjjj (change the third letter to its successor)

� mrdjjj (change the third letter to d)

� mrrjjjj (view mrrjjj abstractly in terms of group lengths, as 1{2{3, and

increase the rightmost length by one)

� mrrkkkk (view mrrjjj as 1{2{3, but change both the length and letters of

the rightmost group)

� mrsjjk (view mrrjjj as mrr{jjj and change the third letter of each group to

its successor)
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� mrskkk (change each letter after the two leftmost letters to its successor)

� mssjjj (change each instance of the third letter to its successor)

� abd (change the entire string literally to abd)

� abbddd (change the letters to a 's, b's, and d 's, but retain the 1{2{3 structure)

� mrk (change j to k but make everything single letters)

� mrd (change j to d but make everything single letters)

Clearly, some of these answers are more obvious than others, and the obvious ones

may not be the most aesthetically pleasing ones, but there is no single, indisputably

\correct" answer. In fact, a wide range of answers is possible for almost any imag-

inable Copycat problem. Despite its apparent simplicity, Copycat's domain harbors

an exceedingly rich variety of subtle analogy problems often admitting deeply elegant

yet non-obvious answers [Hofstadter, 1984b; Hofstadter, 1985a; Mitchell, 1993]. This

is the mark of a well-designed microdomain. The depth and complexity of analogy-

making in the Copycat world has not been sacri�ced at the expense of simplicity; on

the contrary, the deep issues of analogy-making have been brought to the surface and

laid bare, precisely because of the domain's austerity.

An analogy from physics may be useful in thinking about the utility of mi-

crodomains. In order to understand complex physical phenomena occurring in the

real world, physicists �rst devise idealized theoretical models of the phenomena, in

an attempt to understand their most essential aspects. Only after these fundamental

aspects have been understood can further progress be made in understanding the

full complexity of the phenomena as they occur in the real world. For instance, in

order to understand the complex motion of real-world objects, it is necessary to �rst

understand the motion of objects in an idealized, frictionless world. Ignoring the com-

plicating factor of friction allows the fundamental laws of motion to be understood,
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which in turn provides the foundation necessary for achieving a deeper understanding

of motion involving friction.

Likewise, modeling human analogy-making or other \real-world" cognitive phe-

nomena in a microdomain necessarily involves selectively ignoring certain aspects

of cognition, while concentrating on others of more fundamental importance. This

does not mean, however, that the former aspects are unimportant or unworthy of

investigation|only that they are better left for later investigations, after a deep un-

derstanding of the truly fundamental aspects of cognition has been achieved.

In the \frictionless" world of Copycat's microdomain, the fundamental aspects

under study are the 
uid nature of concepts and the phenomenon of conceptual

slippage. Other aspects of cognition have been deliberately idealized away, such as

the retrieval of knowledge from a large repertoire of experience stored in memory,

or the learning of new concepts from experience. To be sure, no full and satisfying

account of cognition will be possible without a deep understanding of these latter

phenomena. However, such an account|whenever it may come|will surely rest on

a deep understanding of the nature of concepts in the mind.

Like the idealized models of physics, Copycat's microdomain facilitates the study

of concepts and analogy-making by avoiding many types of \friction" that would

otherwise further compound the di�culty of understanding these mental phenomena.

In the meantime, it remains a formidable challenge, indeed, to develop a computer

program capable of displaying the full range of creativity and 
exibility exhibited by

people on problems taken from this domain|however tiny and idealized it may be.

It is also important to stress the generality of Copycat's domain. The letter-

string microworld has been carefully designed with an eye toward universality. All

information pertaining speci�cally to letters has been factored out, such as the actual

shapes of letters or any associated semantic connotations. In the Copycat world,

letters are nothing more than abstract, atomic categories, much like the notion of an
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unde�ned term in geometry. It is irrelevant whether or not letter-strings happen to

form recognizable words or phrases. Furthermore, only three relations among letters

are meaningful: sameness, predecessorship, and successorship. All letters except a

have an immediate predecessor, and all letters except z have an immediate successor;

hence the alphabet does not \wrap around" from z back to a.1 No other properties

of letters are involved.

Thus, it is misleading to regard Copycat analogy problems as being about alpha-

betical strings of letters per se. Rather, they should be viewed simply as idealized

situations involving a set of abstract objects, among which certain relations may hold.

The architecture of Copycat is \con�gured" so that these objects and relations cor-

respond to our intuitive notions about successorship, predecessorship, and sameness

among letters of the alphabet, but this need not be the case. A di�erent con�guration

could be chosen to re
ect a di�erent set of objects and relationships, without signi�-

cantly altering the architecture of the program. In fact, a program similar to Copycat,

called Tabletop, models certain spatial aspects of high-level perception that occur in

a di�erent domain: that of objects on an ordinary table, such as cups, glasses, and

silverware [Hofstadter and French, 1992; French, 1995; Hofstadter and FARG, 1995].

Important di�erences exist between Copycat and Tabletop, but the two programs can

be regarded essentially as di�erent instantiations of a single underlying architecture,

each of which operates in an abstract domain of objects and relations. Copycat is

con�gured so that these objects and relations mirror certain properties of letters of

the alphabet, while Tabletop is con�gured so that they mirror certain properties of

objects on a table.

Copycat's microdomain is sometimes criticized as being unable to represent analo-

gies between di�erent domains of knowledge. So-called \cross-domain" analogies|for

1The choice of a strictly linear alphabet was made deliberately, in order to introduce structural

irregularity to the domain. This gives an interesting twist to certain analogy problems involving the

\edge" letters a and z, to be discussed later.
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example, between the solar system and the Rutherford-Bohr model of the atom, or

between water 
owing through a pipe and heat 
owing through a metal bar [Gentner,

1983; Holyoak and Thagard, 1989; Falkenhainer et al., 1990]|typically involve source

and target situations characterized by very di�erent subsets of \real-world" concepts.

The true power of analogy manifests itself in such mappings through the transfer of

useful ideas between apparently dissimilar domains. In contrast, it is argued, since

Copycat's source and target situations are both restricted to letter-string concepts

only, the model is \domain-speci�c", and hence fails to capture the most important

aspects of analogical processing. As [Forbus et al., 1998] puts it:

The most dramatic and visible role of analogy is as a mechanism for

conceptual change, where it allows people to import a set of ideas worked

out in one domain into another. Obviously, domain-speci�c models of

analogy cannot capture this signature phenomenon. (page 247)

. . .

If we are correct that the analogy mechanism is a domain-independent

cognitive mechanism, then it is important to carry out research in multiple

domains to ensure that the results are not hostage to the peculiarities of

a particular micro-world. (page 251)

However, such a hasty conclusion overlooks the principle of universality at the core of

Copycat's letter-string domain. Since the \letters" of Copycat's world|as far as the

program is concerned|are really just atomic categories joined together by abstract

relationships, there is in principle no reason why idealized versions of \cross-domain"

analogies cannot be constructed within this microdomain as well.

Indeed, the answer mrrjjjj to the problem \abc)abd; mrrjjj)?" mentioned

earlier (which will be discussed more fully in section 1.5.4) could be interpreted as

just such an analogy. On the surface, di�erent sets of ideas apply to the situations

represented by the strings abc and mrrjjj . For example, the idea of successorship
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is clearly present in the former situation, while the notion of a group is central to the

latter. In an abstract sense, these strings could be viewed as situations taken from

two very di�erent domains, each of which involves a subset of the concepts available

in the encompassing letter-string microdomain. If the two situations are looked at in

the right way, however, the idea of successorship can be transferred over from the �rst

situation to the second, resulting in a kind of \mini-paradigm-shift" that reveals the

hidden 1{2{3 structure of mrrjjj , which consequently leads to the answer mrrjjjj .

Of course, both of these \domains" involve concepts taken from Copycat's letter-

string world, but the crucial point is that they involve di�erent sets of concepts,

just as the domains of \cross-domain" analogies from the real world involve di�erent

subsets of real-world concepts taken from the larger universe of real-world things and

relationships.

In fact, on closer examination, the distinction between di�erent domains is often

not clear-cut. For instance, Holyoak and Thagard discuss a complex analogy be-

tween World War II and the Persian Gulf War [Holyoak and Thagard, 1995]. Should

this analogy be regarded as a \cross-domain" analogy, or as an analogy between two

situations within the common domain of military con
icts? What about the anal-

ogy between the solar system and the Rutherford-Bohr atom? Does this analogy

involve two distinct domains (i.e., the domain of atomic physics and the domain of

astronomy), or the single domain of scienti�c models?2 The purported distinction

between \cross-domain" and \intra-domain" analogies (as well as the distinction be-

tween \domain-general" and \domain-speci�c" approaches to modeling analogy) is

in fact largely arti�cial, and depends very much on the particular de�nition of the

2The performance of the Structure-Mapping Engine (SME) program, developed by Brian Falken-

hainer, Ken Forbus, and Dedre Gentner, on this particular analogy problem has often been cited

as support for the claim that SME can handle analogies between very di�erent real-world domains

[Falkenhainer et al., 1990]. See [Hofstadter and FARG, 1995] for a detailed examination and discus-

sion of these claims, as well as similar claims made by Holyoak and Thagard about their Analogical

Constraint Mapping Engine (ACME) program|another model of analogy supposedly able to make

cross-domain mappings [Holyoak and Thagard, 1989].
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domains involved, which in turn depends on the particular way in which we choose

to carve up the world into categories. The power of a microdomain derives from its

ability in principle to model any number of di�erent aspects or domains of the real

world within a common abstract framework.

1.5.2 The architecture of Copycat

The Copycat architecture is divided into two principal components, which can be

thought of as corresponding very roughly to short-term and long-term memory. Copy-

cat's \short-term memory", called the Workspace, serves as the locus of perceptual

activity during a run of the program. However, in contrast to human short-term

memory, information in Copycat's Workspace cannot be transferred to \long-term

memory" or otherwise retained inde�nitely. The information in the Workspace is

speci�c to each individual run, and has no e�ect on subsequent runs of the pro-

gram.3 The Workspace is similar to the Blackboard architectural component of the

Hearsay II speech-understanding system, from which the Copycat project derived

much early inspiration [Erman et al., 1980].

When Copycat is given an analogy problem to work on, it starts out with the letter-

strings in its Workspace. Small, nondeterministic computational agents called codelets

notice relations among the individual letters and build new structures around them,

e�ectively organizing the letters into a coherent high-level picture. Codelets \swarm"

about the Workspace looking for suitable structures to work on, much like enzymes in

a cell. All processing occurs through the collective actions of many codelets working

in parallel, at di�erent speeds, on di�erent aspects of an analogy problem, without

any centralized \executive" controlling the course of events. The overall macroscopic

3Addressing this de�ciency is a central goal of the Metacat project, and will be discussed further

in Chapter 2.
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behavior of the program is not explicitly programmed; rather, is a statistically emer-

gent consequence of a large number of stochastic, localized micro-actions performed

by codelets.

In
uencing the perceptual activity occurring in the Workspace are active concepts,

which reside in the \long-term memory" component of Copycat, called the Slipnet

(shown schematically in Figure 1.1). Most perceptual structures in the Workspace

are, in fact, instances of particular concepts in the Slipnet (such as letter or group).

The Slipnet serves as the program's permanent repository of knowledge about its

domain. It contains representations for various concepts relevant to solving letter-

string analogies|such as successor and predecessor , the abstract notion of opposite,

the letter-categories a, b, c, and so on|as well as a numerical estimate of the in-

trinsic degree of abstractness of each concept, called the concept's conceptual depth

(not shown in the �gure). The Slipnet also encodes information about the inherent

associative distances between concepts, which determine the propensities for various

conceptual slippages to occur. A slippage between a pair of Slipnet concepts occurs

whenever instances of the concepts in the Workspace are seen as playing identical

roles in di�erent contexts.

Some concepts in the Slipnet are themselves instances of other concepts. For

example, the concepts left and right are both instances of the more abstract Direction

concept, and the concepts leftmost, rightmost, middle, single, and whole are all

instances of the String-Position concept. Nodes that represent various categories of

concepts, such as Direction or String-Position, are called category nodes, and are

shown capitalized in the �gure.

Although the Slipnet contains permanent information, it is not a static structure.

Over the course of a run, concepts in the Slipnet assume di�erent levels of activation;

as this happens, distances between concepts grow and shrink, changing the propensi-

ties for various slippages to occur. The stochastic behavior of codelets is dynamically
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biased by the time-varying pattern of concept activations in the Slipnet. In turn,

this pattern of activations is itself an emergent consequence of codelet processing.

Conceptual activity in the Slipnet thus in
uences, and is in
uenced by, perceptual

activity in the Workspace, forming a tightly-coupled feedback loop between these two

architectural components.

1.5.3 Conceptual activity in the Slipnet

In some ways, the Slipnet is similar to a traditional semantic network, in that it

consists of a set of nodes connected by links. Each of these links has an intrinsic

length that represents the general degree of association between the linked nodes,

with shorter links connecting more strongly associated nodes (the links drawn between

nodes in Figure 1.1 do not in general re
ect the actual lengths involved). Each node

corresponds to an individual concept, or rather, to the core of an individual concept.

A concept is more properly thought of as being represented by a di�use region in

the Slipnet centered on a single node. Nodes connected to the core node by links are

included in the central node's \conceptual halo" as a probabilistic function of the link

lengths. This allows single nodes to be shared among several di�erent concepts at

once, depending on the links involved. Thus, concepts in the Slipnet are not sharply

de�ned; rather, they are inherently blurry, and can overlap to varying degrees.

Unlike traditional semantic networks, however, the Slipnet is a dynamic structure.

Nodes in the Slipnet receive frequent infusions of activation, as a function of the type

of perceptual activity occurring in the Workspace. Activation spreads throughout a

node's conceptual halo, 
owing across the links emanating from the core node to its

neighbors. The amount of spreading activation is mediated by the link lengths, so

that more distant nodes receive less activation. However, the link lengths themselves

are not necessarily �xed. Some links are labeled by particular Slipnet nodes, and

may stretch or shrink in accordance with the activation of the label node. A labeled
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link encodes a speci�c type of relationship between two concepts, in addition to the

conceptual distance separating them. For example, the link between the predecessor

and successor nodes is labeled by the opposite node, and the link from the a node

to the b node is labeled by the successor node. Whenever a node becomes strongly

activated, all links labeled by it shrink. As a result, pairs of concepts connected by

these links are brought closer together in the Slipnet, allowing activation to spread

more easily between the two, and also making it more likely for conceptual slippages

to occur between them.

In the absence of further infusions of activation, a node's activation level gradually

decays towards zero at a rate that depends inversely on its conceptual depth. Thus,

shallow, \surface-level" concepts such as a tend to decay more rapidly than highly

abstract concepts like opposite. As a node's activation decays, any links labeled by

it relax back to their intrinsic lengths. The Slipnet thus has a decidedly \spongy"

feel to it, re
ecting the 
uid nature of the concepts it represents. Slipnet concepts

\awakened" by perceptual activity occurring in the Workspace, and to a lesser de-

gree neighboring concepts awakened through spreading activation, distort the overall

\shape" of the Slipnet, temporarily blending and blurring various concepts into one

another. Driven by the gradual ebb and 
ow of activation, new patterns of active con-

cepts continually emerge in the Slipnet, deforming and reshaping it anew, throughout

the course of a program run.

1.5.4 Perceptual activity in the Workspace

Conceptual activity in the Slipnet in
uences the behavior of codelets as they build

new structures in the Workspace. These structures include bonds representing suc-

cessor, predecessor, or sameness relations between adjacent letters of a string; groups

composed of adjacent letters (or possibly other groups) that have been bonded to-

gether by a common relation; bridges between letters or groups in di�erent strings;
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various types of descriptions of structures; and a rule describing the way in which

the initial string changes into the modi�ed string.

Bonds and groups bind the individual letters of a string (i.e., the raw, unstructured

perceptual input) together into hierarchical chunks. For example, during a typical

run of the problem \abc)abd; mrrjjj)?", sameness bonds are created between

the adjacent j 's and the pair of r 's in mrrjjj . These bonds then serve as the basis

for creating two sameness groups, rr and jjj .

Codelets, in addition to building up the internal organization of strings by chunk-

ing letters into groups, also build mappings between strings. A mapping consists of a

set of bridges between letters or groups in two di�erent strings that play similar roles

in each string. Each bridge is supported by a set of concept-mappings that describe

how the objects connected by the bridge correspond to one another. For example,

a bridge between c in abc and jjj in mrrjjj might be supported by the concept-

mapping letter) group (a slippage representing the idea that one object is a letter

and the other a group), and the concept-mapping rightmost) rightmost (an \iden-

tity mapping" representing the idea that both objects are rightmost in their strings).

The distributed nature of codelet processing interleaves the mapping process with the

chunking process, and as a result each process in
uences and drives the other.

Codelets also build rules, which are Workspace structures representing how the

initial string changes into the modi�ed string.4 There are usually several possible ways

of describing this change, depending on the level of abstraction used. For example,

two possible rules describing abc)abd are Replace letter-category of rightmost letter

by successor and the more \literal-minded" rule Replace letter-category of rightmost

letter by `d'.

Whenever new Workspace structures are built, concepts in the Slipnet relating to

4This usage of the term \rule" di�ers signi�cantly from the traditional AI meaning of the term.

In particular, Copycat's rules are completely unrelated to the types of rules used in expert systems

or other rule-based problem-solving systems.
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them receive activation, which then spreads to neighboring concepts. In turn, highly-

activated concepts exert top-down pressure on subsequent perceptual processing by

promoting the creation of new instances of these concepts in the Workspace. Thus,

which types of newWorkspace structures get built depends strongly on which concepts

are relevant (i.e., highly activated) in a given context.

For example, the creation of the groups rr and jjj inmrrjjj causes the sameness

and sameness-group concepts in the Slipnet to become highly activated, which makes

it more likely that the letter m itself will be seen as a sameness group as well,

even though it consists of just a single letter. Given the context of the rr and jjj

sameness groups, seeing m as a group of length one makes sense. The creation

of such a group causes the Length concept|up until now deemed irrelevant to the

situation|to become activated in the Slipnet. Once the relevance of this idea has been

recognized, a higher-level successor group composed of m , rr , and jjj encompassing

the entire string can then be built, based on the concept of Length (i.e., 1{2{3)

rather than Letter-Category (i.e., m{r{j). This brings out the abstract successorship

structure of mrrjjj , allowing it to be mapped as a whole onto the letter-category-

based successor group abc, which leads to the answer mrrjjjj . Such a mapping

represents the recognition of abc and mrrjjj as being fundamentally the same at a

deep level, even though their surface resemblance is negligible. Figure 1.2 shows the

�nal activations of concepts in Copycat's Slipnet at the end of a run in which the

program found the answer mrrjjjj .5 The size of a circle represents the activation

level of a node. In particular, the successor-group node is highly activated, re
ecting

the relevance of this concept in the current context.

5Copycat was originally implemented in Common Lisp and C for the SunView window system.

The version of the program shown here is a complete reimplementation written in Scheme for the

X window system using John Zuckerman's superb SchemeXM/SGL package, an extended symbolic

graphics language for X/Motif based on Chez Scheme [Zuckerman, 1992a; Zuckerman, 1992b; Dyb-

vig, 1996].
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Figure 1.2: The �nal activations of Slipnet concepts for a run of Copycat on the

problem \abc)abd; mrrjjj)?", in which the program found the answer mrrjjjj.

Di�erent ways of looking at the initial/modi�ed change, combined with di�er-

ent ways of building the initial/target mapping, give rise to di�erent answers. The

con�guration of structures in the Workspace collectively represents an interpretation

of a given analogy problem, and leads to a particular answer for the problem. To

produce an answer, codelets use the slippages underlying the initial/target mapping

to \translate" the rule describing the initial/modi�ed change into a new rule that

applies to the target string.

For example, if the abc)abd change is described as Replace letter-category of

rightmost letter by successor, and the abstract successor-group similarity between abc

and mrrjjj has been noticed, then the rule will be translated as Replace length of

rightmost group by successor, yielding the answer mrrjjjj . On the other hand, if this

similarity has not been noticed|that is, if the mapping between abc and mrrjjj

does not include a bridge supported by the slippage Letter-category)Length|then
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Figure 1.3: The �nal Workspace con�guration for a run of Copycat on the problem

\abc)abd; mrrjjj)?", in which the program found the answer mrrjjjj.

other answers such asmrrkkk , mrrjjk ,mrrddd , ormrrkkd may be found instead,

depending on the rule and whether or not c in abc is seen as corresponding to

the jjj group or to just the rightmost letter j in mrrjjj . Figure 1.3 shows the

Workspace at the end of a run in which mrrjjjj was found. (This is the same run

that was referred to in Figure 1.2.) Many structures can be seen, including concept-

mappings supporting the vertical bridges between abc andmrrjjj , the rule describing

abc)abd , the translated rule describing mrrjjj )mrrjjjj , and several tentative

structures that were being explored but had not yet been built by codelets (shown as

dotted lines). A complete discussion of Copycat's behavior on this problem, including

screen dumps of sample runs, can be found in [Mitchell, 1993] and [Hofstadter and

FARG, 1995].
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1.5.5 Codelets and the parallel terraced scan

In general, the letter-strings of an analogy problem can be interpreted in many dif-

ferent, often mutually exclusive ways. For most problems, the potential number of

distinct con�gurations of bonds, groups, bridges, and so on, is very large. If Copycat

were simply to try out every possible con�guration, one after the other, trying to

�nd a compelling interpretation of the strings, it would be quickly overwhelmed by a

combinatorial explosion of possibilities. Instead, in order to discover a good overall

con�guration of structures from among a vast set of possibilities within a reasonable

amount of time, many potential pathways through \interpretation space" must be

searched simultaneously, with relatively more attention being devoted to exploring

promising pathways than to pathways that don't seem to be leading anywhere inter-

esting. This type of di�erential parallelism, called the parallel terraced scan, is one of

the central ideas underlying the Copycat architecture.

To achieve this di�erential e�ect, Workspace structures are built in stages rather

than all at once. At �rst, a structure is simply proposed as a possible candidate

by codelets. This tentative structure subsequently undergoes an evaluation stage,

in which its potential for strengthening the existing perceptual organization in the

Workspace is estimated. Finally, if the structure seems promising enough, it gets

built, and acquires a strength value indicating how well it �ts into its surrounding

context. The presence of the newly-built structure may in turn alter the strengths of

other structures in the Workspace, or the activation levels of concepts in the Slipnet,

thereby changing the perceptual context and consequently in
uencing the fate of

other tentative structures still in the early stages of creation.

Since any structure must pass through several stages during its creation, all

structures are ultimately built by chains of codelets, rather than by single codelets.

Codelets responsible for proposing new structures or evaluating proposed structures

spawn new codelets, which then continue the process at the next stage in the chain.
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Distributing the process of structure creation over several stages is critical, because

the interleaving of these stages allows many mutually-dependent processes to e�ec-

tively run in parallel, exploring the search space in various directions simultaneously.

Perceptual activity in the Workspace consists of a large number of these tightly in-

tertwined, concurrent exploratory processes.

Sometimes a structure is proposed that would be incompatible, if built, with an

existing structure. In \abc)abd; mrrjjj)?", for instance, the c cannot corre-

spond to both the jjj group and the single rightmost letter j at the same time, since

this would make no sense in an analogy. Bridges representing these correspondences

are mutually incompatible. An existing structure in the Workspace may, in fact, be

destroyed in favor of a new, more promising one if the existing structure has a low

strength value relative to the proposed structure.

In addition to its strength, each structure has a salience value that determines how

much it tends to attract attention from codelets. More speci�cally, codelets choose

Workspace structures for processing as a probabilistic function of their saliences.

Some types of codelets are concerned with general bottom-up properties of the

input data, while other types are driven by speci�c top-down contextual pressures.6

For instance, some bottom-up codelets examine adjacent letters or groups to see if

any type of bond can be made between them, regardless of the current perceptual

context. In contrast, top-down codelets look for ways to build structures that support

a particular concept. If, for example, several sameness groups have been built in

a string (as in mrrjjj , described earlier), the sameness concept will be strongly

activated in the Slipnet. In this context, there is greater pressure to notice sameness

relations, if they exist, than successor or predecessor relations. The active sameness

concept 
oods the Workspace with top-down codelets speci�cally looking for sameness

6All in all, there are 24 di�erent types of codelets in Copycat. See [Mitchell, 1993] for a detailed

description of each type.
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among letters, increasing the likelihood that other sameness bonds will be created.

In general, top-down codelets driven by context-sensitive pressures are the means

through which conceptual activity in the Slipnet in
uences perceptual activity in the

Workspace.

Because Copycat is implemented on a serial computer, codelets have to be run one

at a time. In order to realize the di�erential parallelism of the parallel terraced scan,

a pool of available codelets is maintained, called the Coderack, from which codelets

are selected probabilistically to run. Each codelet in the Coderack is assigned an

urgency value re
ecting the codelet's estimated promise of the pathway it is exploring.

Codelets are selected to run as a stochastic function of their urgencies, and as a result,

promising regions of Copycat's search space tend to be explored more quickly and to

a greater depth, on average, than less promising regions, although even the lowest-

urgency codelets always have some chance of running. This is important, because in

principle all regions of the search space should always remain open to the possibility

of exploration, even if they do not currently appear to be interesting. This type

of urgency-modulated stochasticity, which allows di�erent processes to advance at

di�erent rates according to their estimated promise, gives rise to the parallel terraced

scan.

1.5.6 Temperature and nondeterminism

The nondeterministic nature of Copycat's processing implies that di�erent runs of

the program on the same analogy problem may produce di�erent answers. Indeed,

the program is usually able to discover a range of answers for any given problem.

If Copycat is run many times on a single problem, clear trends emerge. Typically,

the program �nds one or two answers much more frequently than it �nds other an-

swers. These answers are, in some sense, more \obvious" to the program, and lie in

easily accessible regions of Copycat's search space. For example, Figure 1.4 shows
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Figure 1.4: Summary of 1000 runs of Copycat on the problem \abc)abd;

mrrjjj)?", showing each answer's frequency and average �nal temperature. From

[Mitchell, 1993].

a histogram of Copycat's answers for the problem \abc)abd; mrrjjj)?". The

straightforward answer mrrkkk is by far the most common|both for Copycat and

for people [Mitchell, 1993].

In general, the most obvious answer is not necessarily the \best" answer. The

notion of answer quality is represented in Copycat by a dynamically changing number

called the temperature (ranging from 0 to 100), which re
ects the degree of perceptual

order in the Workspace. At the beginning of a run, when few perceptual structures

exist, the temperature of the Workspace is very high, re
ecting a general absence

of understanding of the input strings. Gradually, as codelets examine the situation

and build new structures, increasing the perceptual organization of the Workspace,

the temperature falls, re
ecting a more coherent understanding of the strings. If,

however, structures are subsequently destroyed, the temperature will increase. At

the end of a run, the �nal Workspace temperature can be interpreted as a measure of

the quality of the answer found, with lower temperatures indicating higher quality. An

insightful answer|one based on a strong, coherent mapping between the initial and

target strings|typically has a very low �nal temperature. For example, the average
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�nal temperatures of Copycat's answers for the problem \abc)abd; mrrjjj)?"

appear immediately below each answer in Figure 1.4.

Temperature does more than simply re
ect the ever-changing degree of order in

the Workspace. It also continually in
uences the many probabilistic decisions made

by codelets throughout the course of processing. Temperature acts as a focusing mech-

anism for the search process by dynamically regulating the amount of randomness

used in making decisions. At high temperatures, it is hard to distinguish promising

from unpromising directions, since little structural information exists in the Work-

space. As a consequence, decisions are made in a highly random manner, with codelet

urgencies, as well as the strengths and saliences of existing structures, having only a

marginal e�ect. However, as regularities among the letter-strings are discovered and

structures are built, Copycat begins to gain \con�dence" in its understanding of the

situation, and less randomness seems called for in making decisions. At lower temper-

atures, therefore, decisions are still stochastic, but are more strongly biased according

to current urgencies, saliences, and strengths. At very low temperatures, decisions

become largely deterministic, with the highest-urgency codelets almost always being

chosen to run next, the most salient structures almost always being looked at, and so

on. Thus, the type of strategy Copycat uses to explore its search space ranges along

a broad continuum, from being very di�use and highly parallel at high temperatures

to being very serial and focused at low temperatures.

As an illustration of this, Figure 1.5 shows the state of Copycat's Coderack at two

di�erent points during the earlier run of the problem \abc)abd; mrrjjj)?" from

Figure 1.3. For each possible codelet type, the relative probability that a codelet of

that type will be selected to run next is indicated by a horizontal bar. The left image

shows the selection probabilities of codelets at an early point in the run, when the

temperature is high. As can be seen, the selection probabilities are all roughly the

same, re
ecting the still-strongly-parallel nature of processing. In contrast, the right



1.5 A Computer Model of Conceptual Fluidity 31

Figure 1.5: The state of Copycat's Coderack at two di�erent points during a run of

the problem \abc)abd; mrrjjj)?", showing the relative selection probabilities of

codelets. The temperature of the Workspace at each point is also shown.
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image shows the situation later in the run, after the temperature has dropped to a

much lower value. Processing is now much more serial and deterministic, with the

selection of Bond-evaluator codelets being strongly favored at the moment|as indi-

cated by the large spike in selection probability. (Typically, at low temperatures, this

pattern of spiking varies dramatically from moment to moment|changing according

to the need for particular types of codelets to run next. Watching this in \real time"

on the screen conveys, in a quite vivid way, the serial nature of processing at low

temperatures.)

In summary, Copycat's Workspace temperature guides the program as it explores

\interpretation space" in search of strong, consistent mappings between letter-strings.

The search for a good con�guration of perceptual structures leading to a high-quality

answer proceeds via a large number of �ne-grained stochastic decisions made by

codelets during processing. These decisions, which depend on the current temper-

ature, cause new structures to be built, or existing structures to be destroyed. This

changes the temperature, which in turn in
uences further structure creation, and so

on, forming a kind of feedback loop. Temperature thus serves as a very crude mech-

anism for self-watching in Copycat, since it allows the program, to some extent, to

regulate its own behavior. That is, by coupling the stochastic activity of codelets

to the temperature, the program becomes sensitive to the consequences of its own

behavior, since the temperature re
ects this behavior in a very broad way. This

type of rudimentary self-watching, however, is quite primitive. Accordingly, as will

be explained in the next chapter, developing a much more sophisticated approach to

self-watching is one of the central goals of the Metacat project.



chapter two

From Copycat to Metacat

As a result of the work on Copycat, much light has been shed on many central issues of

cognitive science and arti�cial intelligence, including the nature of concepts and their

appropriate representation in computers, the relation of concepts to perception, and

the role of emergent computation in computer models of cognition [Hofstadter and

FARG, 1995; Mitchell, 1993; Mitchell and Hofstadter, 1990; Mitchell, 1990]. Although

this work represents a considerable achievement, it nevertheless must be regarded as

only the �rst step toward a more comprehensive realization of the original ideas

underlying the project [Hofstadter, 1984a]. Initial work necessarily concentrated on

certain foundational issues of cognition while postponing others for future research.

In particular, Copycat focused on the computational modeling of:

� The internal structure of concepts in long-term memory

� The mutual interaction of concepts in long-term memory

� The organization of raw perceptual data into a coherent high-level interpretation

� The interaction between concepts and high-level perception

Coming to grips with these fundamental issues has been the major contribution of

the Copycat project.

33
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2.1 A Short History of FARG Work

Copycat is part of a broader ongoing research program whose ultimate objective is to

capture as closely as possible, in a computational model, the full range of human psy-

chological processes responsible for high-level perception and analogy-making. This

is, of course, a very ambitious goal, given the overwhelming subtlety and complexity of

human cognition. Over the years, several projects by Hofstadter and his colleagues in

the Fluid Analogies Research Group (FARG) have taken di�erent routes toward this

same general goal by focusing on di�erent aspects of high-level perception [Hofstadter

and FARG, 1995]. All of these projects have involved building computer models that

operate in carefully-designed microworlds.

2.1.1 Jumbo

The earliest such project|and the one most directly related to Copycat|was called

Jumbo, and modeled the processes involved in chunking unstructured perceptual parts

into hierarchical, integrated wholes [Hofstadter, 1983]. Jumbo worked in the domain

of anagram puzzles, attempting to rearrange a given set of \jumbled" letters into

English-like words. The program's knowledge was limited to the general clustering

properties of vowels and consonants in the English language (e.g., the fact that s

and h form a frequent consonant cluster, while z and q do not). It had no built-in

dictionary of English words to consult. Coming up with actual English words, how-

ever, was not the point; the focus of Jumbo was on building 
uid representational

structures|structures that could be easily recon�gured at a moment's notice. Solv-

ing word jumbles clearly requires the ability to regroup and reshu�e combinations

of letters on many di�erent levels (for example, reperceiving \week-nights" as \wee-

knights", or rearranging \pang-loss" into \lang-poss" or \loss-pang"). This type of

representational 
uidity, however, is not limited solely to anagram puzzles, but is
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instead a deep property of perception in general. Work on Jumbo focused on devel-

oping the computational mechanisms needed to support 
exible, malleable perceptual

representations. In fact, Jumbo's recon�gurable data structures were the precursors

to Copycat's bonds and groups. The Jumbo architecture also pioneered the idea of

the parallel terraced scan, and incorporated computational temperature as a crude

form of self-watching. Unlike Copycat, however, Jumbo did not attempt to model

concepts at all.

2.1.2 Seek-Whence

Another early precursor to Copycat was the Seek-Whence project [Meredith, 1986;

Meredith, 1991], which modeled the perception of abstract patterns hidden in open-

ended sequences of numbers, such as the one shown below:

2 1 2 2 2 2 2 3 2 2 4 2 2 5 2 2 . . .

The task of the program was to try to predict the next number in a sequence. Se-

quences were presented to the program one term at a time rather than all at once,

which required the program to continually re�ne and, if necessary, revise its under-

standing of the basis of the sequence as new terms were provided. Unlike many

sequence extrapolation programs, Seek-Whence had almost no knowledge of mathe-

matical concepts beyond simple integer predecessorship and successorship; thus, in

particular, it had no knowledge of addition, subtraction, or other arithmetical op-

erations. Instead, the strength of the program was its ability to create hierarchical

perceptual structures and to reorganize them dynamically according to context as

more and more terms of a sequence appeared. After seeing the �rst �ve terms of

the above sequence, for example, the program might settle on the idea of a simple

alternation between 2's and the sequence of natural numbers, thus leading it to in-

correctly predict a 3 as the next term. In the light of this and subsequent terms, it
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would be forced to revise its view of the sequence in favor of some other represen-

tation. Eventually, after seeing enough terms, it might reperceive the sequence as

a progression of integers in which each one is surrounded by 2's, e�ectively shifting

the perceptual boundaries of the sequence's basic underlying pattern of organization.

Work on Seek-Whence thus broadened the development of 
uid perceptual mecha-

nisms begun in Jumbo by focusing on the critical notion of context-sensitivity. Like

Jumbo, however, Seek-Whence made no attempt to model the structure of concepts

themselves.

2.1.3 Tabletop

The fundamental nature of concepts was addressed by Copycat, and by the Tabletop

project already mentioned in Chapter 1. Tabletop was an idealized model of analogy-

making in a world of objects on a table, such as cups, glasses, and silverware [French,

1995]. A particular object on one side of the table would be singled out, or \touched",

and the program's task was to \do the same thing" from the point of view of an ob-

server seated on the other side of the table. Which object was seen as the counterpart

to the touched object from the new perspective depended on many factors, includ-

ing the types of objects on the table, their particular spatial arrangement, and their

semantic connotations. Touching a fork on one side of the table, for example, might

correspond to touching a spoon on the other side if no fork were available there,

since the concepts of fork and spoon are generally associated quite closely with each

other in most people's minds. Many subtle and competing pressures to touch various

objects could be created and systematically varied by changing the relative positions

and groupings of objects on the table. Like Copycat, Tabletop's perception of a given

situation was guided by a context-sensitive network of active concepts. Unlike Copy-

cat, however, Tabletop explored high-level perception in a two-dimensional domain

in which spatial proximity played a key role. It also utilized a somewhat di�erent
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approach to calculating computational temperature. Nevertheless, both models in-

corporated similar architectural components and processing mechanisms supporting


uid concepts.

2.1.4 Letter Spirit

Finally, the Letter Spirit project extended the 
uid conceptual machinery developed

in Copycat and Tabletop to the world of visual letter perception and design [McGraw,

1995; Hofstadter and FARG, 1995]. Initial work on this project concentrated on the

perception and categorization of gridletters, which are highly stylized letterforms

of the lowercase roman alphabet drawn on a two-dimensional grid consisting of 56

allowable line segments [Hofstadter, 1987]. Designing a full set of gridletters from a

to z in a single abstract, yet well-de�ned style is a challenging act of artistic creation.

The goal of the Letter Spirit project is to develop a program capable of perceiving

the visual style common to an initial set of gridletters, and then designing the rest of

the alphabet in the same style. This very ambitious project, currently in its second

phase, is intended to model the deepest aspects of creative artistic design.

A key element of the Letter Spirit architecture is the \central feedback loop of

creativity", in which the program not only creates new letterforms in a particular

style, but also judges the quality of the letterforms it creates, in order to assess how

well they actually re
ect the desired style, possibly revising them as a result. This

continual cycle of creation, assessment, and revision is essential to the design process,

and ought to play a key role in any faithful computer model of creativity. Current

work on Letter Spirit is focused on imbuing the program with this type of ability

to step back and evaluate its own performance, something almost entirely lacking

in Copycat, and is closely related to the central issues of Metacat [Rehling, 1997;

Rehling, 1999].
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2.2 Copycat's Weaknesses

In many ways, Copycat is a strong, psychologically-plausiblemodel of creative analogy-

making. The range of answers it �nds on many analogy problems is comparable to the

range of answers given by people. Furthermore, the answers most frequently found

by the program tend to be the ones most often suggested by people [Mitchell, 1993].

Moreover, Copycat's rankings of its answers according to their �nal temperature val-

ues often agrees quite well with people's intuitive judgments of answer quality.

On the other hand, Copycat sometimes comes up with extremely bizarre answers,

based on seeing its strings in ways that a human almost never would. Mitchell

identi�es three classes of unrealistic answers: (1) bad-grouping answers, which result

from the program building groups based on no particular motivation, such as building

a rightmost group rss in the string ppqqrrss; (2) answers involving unmotivated

slippages, in which slippages are made without any underlying motivation; and (3)

answers involving the unmotivated use of group lengths, in which the concept of group

length is seen as playing a role in a problem, but for no particular reason. Fortunately,

the program tends to �nd such answers very infrequently.

Still, the fact that it �nds them at all might appear to be a weakness of the

program, since this does not seem to accurately re
ect human behavior. However,

it is actually a strength, because the program's stochastic processing mechanisms

keep open the possibility of �nding not only \crackpot" answers such as these (albeit

infrequently), but also, on occasion, deeply creative answers. No potential way of

interpreting the strings is ruled out a priori. This is as it should be, provided that

Copycat's stochastic mechanisms lead it to �nd reasonable, run-of-the-mill, human-

like answers most of the time. Indeed, the fact that Copycat discovers very creative

answers infrequently is a strength of the model as well, since a program that almost

always discovered deeply creative answers would be no more psychologically plausible

than a program that almost always gave nonsensical answers. After all, even the
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most creative people in the world do not make great, insightful, creative discoveries

every day of their lives. The problem with Copycat is not that it sometimes discovers

bizarre answers based on random, unmotivated ideas. Rather, the problem is that

Copycat does not recognize when it has done so. Although Copycat assigns lower

temperatures to \better" answers, it does this mechanically and without any insight;

it has no explicit understanding of what makes an answer good or what makes one

nonsensical.

2.2.1 Copycat lacks insight into its own behavior

Copycat's limitations as a general cognitive model become all too apparent when

viewed against the wider backdrop of human cognition. Of course, full human cog-

nition is such an extraordinarily complicated phenomenon that no computer model

could hope to capture it in its entirety, at least given the current nascent state of cog-

nitive science. The aim of Copycat, however, has always been to model the essence of

cognition as faithfully as possible by isolating its most important and indispensable

features. But here the model su�ers from a serious weakness. Stated simply, Copycat

has virtually no insight into the answers it comes up with. It is unable to say why

a particular answer it has found makes sense (or doesn't), or how it arrived at the

answer, or how the answer compares to other possible answers. In contrast, people

are usually able to give an account of why they consider some Copycat analogies to

be better or worse than others. Something of central importance to human cognition

is clearly missing from the Copycat model.

The reason for this lack of insight is that Copycat focuses almost exclusively

on perceiving patterns and relationships in its perceptual data (the letter strings),

while ignoring patterns that occur in its own processing of those data. It lacks any

explicit, internal representation or knowledge of the underlying process that leads to

the discovery of an answer|knowledge that could provide a basis for evaluating the
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answer's strengths or weaknesses, thereby permitting an insightful assessment of its

quality. Said another way, the problem is that Copycat's behavior is too unconscious.

Unlike people, when Copycat solves analogy problems it exhibits an almost complete

lack of \awareness" of what it is doing and of the ideas it is working with. Of course,

this is not too surprising, since Copycat was intended to be a model of the subcognitive

mechanisms underlying cognition. All of the nondeterministic codelet activity in the

Workspace|the building of bridges and groups, the making of slippages, and so on|

was intended to represent perceptual activity carried out at the subcognitive level,

below the level of \consciousness". Copycat's lack of a higher cognitive level, however,

is a major de�ciency of the model, and stands in stark contrast to human cognition,

since people are generally aware of their own thought processes, at least on some

level.

For example, an interesting psychological phenomenon called the self-explanation

e�ect has been described and studied in the context of students learning to solve

physics problems from examples [Chi et al., 1989; Chi et al., 1994]. In this series of

studies, students mentally monitored their own comprehension or misunderstanding

as they studied worked-out textbook examples of mechanics problems, generating

verbal explanations of the example solutions in the process. Those students who

learned most e�ectively from the examples were consistently able to generate more

detailed and in-depth explanations of their understanding, demonstrating a greater

capacity for accurate monitoring of their own cognitive processes, which in turn re-

duced their reliance on worked-out examples in solving subsequent problems. Such

studies clearly illustrate the ability of people to pay attention to patterns in their own

thinking. (See also [Pirolli and Bielaczyc, 1989; VanLehn et al., 1992; VanLehn and

Jones, 1993; Sandoval et al., 1995].)

As was mentioned at the end of Chapter 1, computational temperature can be

viewed as a rudimentary form of self-watching in Copycat. But such a simple feed-
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back mechanism is far too crude to be considered a serious model of self-awareness.

Furthermore, although the �nal temperature of an answer can serve as a rough indi-

cation of answer quality, it o�ers no insight at all into why an answer is good or bad.

A single integer value simply doesn't contain enough information. In order for the

program to gain a deeper level of insight into its answers, it must achieve a deeper

understanding of its own behavior. A sophisticated self-watching ability is needed.

An example that makes Copycat's lack of awareness of its own behavior painfully

clear is the following analogy problem:

abc ) abd

xyz ) ?

In Copycat's microworld, the letter a has no predecessor and the letter z has no

successor. The alphabet was explicitly designed not to cycle back to a after z, so an

answer such as xya , based on taking the successor of z in xyz , is impossible. One

is forced to adopt a di�erent strategy as a result of this constraint. One way out is

simply the literal-minded answer xyd . On the other hand, if the alphabetic symmetry

between the \opposite" letters a and z is noticed, then the elegant answer wyz may

come to mind, based on seeing abc and xyz as mirror images of each other \wedged"

against opposite ends of the alphabet, with abc going to the right via successorship

and xyz going to the left via predecessorship.1 This answer is quite creative, and

most people see wyz as being strongly analogous to abd , even though the idea is not

at all obvious at �rst.

When Copycat tries to solve this problem, it almost invariably perceives abc

and xyz as going in the same direction, which is certainly a reasonable thing to

do. However, this interpretation of the situation leads inevitably to an attempt

1Equivalently, one could see abc as a left-directed predecessor group and xyz as a right-directed

successorship group, but this doesn't change the symmetry.
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Figure 2.1: A snag situation resulting from Copycat's attempt to change the letter z

to its successor.

to take the successor of z, since z is seen as corresponding to c. This attempt

fails, and Copycat \hits a snag", as shown in Figure 2.1. It is forced to reinterpret

the situation. Often, it circumvents this di�culty by changing the rule describing

abc)abd from Replace letter-category of rightmost letter by successor to Replace

letter-category of rightmost letter by `d', leaving intact the same-direction mapping

between abc and xyz , which then yields the answer xyd . Sometimes, however, the

same-direction mapping itself is broken and eventually replaced by a very di�erent,

crosswise mapping based on the opposite a{z symmetry, yielding wyz . More often

than not, though, after breaking the mapping, Copycat tends to rebuild the same

structures all over again, which leads it right back to the snag situation. Round and

round in circles it goes, hitting the snag over and over again, until it �nally manages
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to stumble onto some other way out, such as falling back on the literal-minded rule

mentioned above. Unfortunately, Copycat hits the snag an average of nine times per

run on this problem|and sometimes as often as twenty or thirty times in a single run.

This is quite unlike typical human behavior. People tend to \get the message" after

attempting some unsuccessful strategy a few times. They either get bored and give

up completely, or, recognizing that their strategy isn't working, they try something

di�erent.

2.2.2 Copycat cannot remember what it has done

As this example makes clear, the program is unable to recognize when it has fallen

into a repetitive pattern of behavior. It has no memory of its actions over time,

and thus cannot compare its current situation to other situations encountered in the

past. This holds true not only on short-term time scales involving a single run of the

program in which some situation is encountered over and over again (i.e., a snag), but

also on longer time scales involving several answers to a single problem, or di�erent

answers to di�erent problems. Once Copycat discovers an answer to a problem, it

stops and reports the answer, along with the �nal temperature, but does not retain

this information further. On subsequent runs of the program, no recollection of the

answer is possible. This makes comparison of di�erent answers impossible, either for

a single analogy problem or among di�erent problems.

Copycat's Workspace and Slipnet are sometimes regarded as the program's short-

term and long-term memory. To some extent, this is justi�ed, since the Workspace

contains perceptual structures that exist only during the course of a run, whereas

the Slipnet contains the permanent set of concepts the program understands about

its microworld. This conceptual information is hard-wired into the program, and

thus persists over the course of many runs. The activations of Slipnet concepts,

however, are reset to a standard initial state at the beginning of every run. Changes
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in conceptual distances and activation levels that occur during a run are not retained

after the program stops with an answer. Likewise, all perceptual structures built in

the Workspace during a run are erased as soon as a new run is begun. Consequently,

any type of learning that might occur over multiple runs of Copycat is impossible|

although, to be fair, learning per se was never intended to be a central focus of the

project, since the notion of learning to make \better" Copycat analogies is not entirely

clear. Nevertheless, it is clear that in order for the program to be able to recognize

patterns in its own behavior, it needs a more sophisticated type of short-term memory

than what the Workspace provides, and in order for it to be able to compare di�erent

answers to a given problem, or to compare di�erent problems as wholes, it needs a

more comprehensive type of long-term memory than what the Slipnet provides.

2.2.3 Copycat cannot perceive di�erences between strings

Yet another limitation of the model concerns the creation of rules. Work on Copycat

focused on the mapping process between the initial and target strings, and paid rel-

atively little attention to the creation of rules describing the change from the initial

string to the modi�ed string. That is, the �rst phase of development concentrated on

developing mechanisms for perceiving similarity between strings via bridges and slip-

pages, rather than on characterizing di�erences between strings via rules. For exam-

ple, in the problem \abc)abd; mrrjjj)?", Copycat is able to see abc andmrrjjj

as being \the same" by building a mapping between the strings in which both are

represented as successor groups at an abstract level of description, based on concept-

mappings such as Letter-Category)Length and successor-group) successor-group.

In contrast, abc and abd di�er by just a single letter, and this di�erence is relatively

easy to characterize in terms of a rule.

In fact, Copycat places severe restrictions on what types of changes are allowed

to the initial string. At most, a single letter-category change involving just one
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letter is allowed. Thus, the program is able to characterize abc)abd , but more

general changes|even as simple as abc) cba or abc)abcc, in which more than

one letter changes or the length of the string changes|cannot be captured by any rule.

Under such rigid restrictions, creating an initial/modi�ed mapping and abstracting

a rule based on it is an essentially trivial task, because such a mapping is always

one-to-one and always involves just one possible type of change. Developing more

robust mechanisms for perceiving and characterizing di�erences between strings was

postponed to a later phase of the project.

2.3 The Objectives of the Metacat Project

2.3.1 Handling arbitrary strings

Accordingly, one of the primary objectives of the Metacat project has been to ex-

tend and generalize Copycat's rule-building mechanisms so that the program is able

to handle a wider class of analogy problems. Restrictions on the types of changes

allowed between the initial string and the modi�ed string have been greatly relaxed.

To this end, the bridge-building mechanisms for creating mappings between strings,

which were fully applied only to the task of perceiving similarity between the initial

and target strings in Copycat, have been generalized in Metacat to handle arbitrary

mappings between the initial and modi�ed strings. This is an important step toward

increasing the model's 
exibility, although it does not constitute a major conceptual

advance beyond the theoretical ideas originally developed in the Copycat architecture.

Nevertheless, developing a generalized ability to perceive similarities and di�erences

between arbitrary strings lays the necessary groundwork for addressing Metacat's

further objectives.

Hofstadter has outlined �ve other important challenges to be addressed in any

future work stemming from Copycat [Hofstadter and FARG, 1995, Chapter 7]. For
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the most part, meeting these challenges involves overcoming the weaknesses of Copy-

cat discussed earlier. The remainder of this section reviews these �ve objectives and

discusses to what extent they have been addressed in the development of the Meta-

cat architecture described in this dissertation. A detailed discussion of Metacat's

expanded rule-building mechanisms will be deferred until Chapter 3.

2.3.2 Self-watching

The central, long-term goal of the Copycat line of research is to computationally

model how high-level cognitive phenomena such as creativity, self-awareness, and

understanding can arise out of a subcognitive substrate composed of a huge number

of tiny, nondeterministically-interactingmicro-agents, each of which is far too small by

itself to support such phenomena. Few people would suggest that individual neurons

in the brain (or individual molecules, for that matter) are \conscious" in anything like

the normal sense in which humans experience consciousness. Unless one is mystically

inclined, one is forced to accept the fact that consciousness arises, somehow, out of

nothing but billions of individual molecular chemical reactions and neuronal �rings.

How can individually meaningless physical events in a brain|even a huge number of

them|ultimately give rise to meaningful awareness? Hofstadter argues that two key

ideas are of paramount importance [Hofstadter and FARG, 1995, page 311]:

What seems to make brains conscious is the special way they are or-

ganized|in particular, the higher-level structures and mechanisms that

come into being. I see two dimensions as being critical: (1) the fact that

brains possess concepts, allowing complex representational structures to

be built that automatically come with associative links to all sorts of prior

experiences, and (2) the fact that brains can self-monitor, allowing a com-

plex internal self-model to arise, allowing the system an enormous degree

of self-control and open-endedness.
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Such a capacity for self-monitoring (or self-watching) rests on a foundation of

high-level perception|already well-developed in Copycat|which allows concepts to

be used in very 
exible ways. The principal objective of Metacat is thus to develop

mechanisms that will allow the program to monitor its own actions and, consequently,

to make explicit the ideas that come into play during the course of solving a given

analogy problem. This amounts to building a higher-level \cognitive" layer on top of

Copycat's \subcognitive" layer, which can watch and remember what happens at the

lower level as perceptual structures are built, recon�gured, and destroyed in pursuit

of an answer.

To do this, Metacat needs to create an explicit sequential record of the most

important processing events that occur as it works on a problem. The temporal

record left behind by the program can then be examined by codelets for patterns|in

much the same way that Copycat's codelets examine letter-strings for patterns. By

monitoring its own perceptual processing, and by building explicit representations of

this activity, Metacat should be able to achieve a deeper awareness of what its answers

are really about by examining the key ideas and events that led to the discovery of

particular answers. Furthermore, it should be able to recognize when it has fallen

into a repetitive or otherwise unproductive pattern of behavior. Recognizing that it is

stuck in a rut should enable it to subsequently \jump out of the system" by explicitly

focusing on ideas other than the ones that seem to be leading it nowhere.

2.3.3 Episodic memory and reminding

Metacat's ability to create an explicit temporal trace of its \train of thought" should

enable the program to form abstract, high-level characterizations of the answers it

�nds by extracting from the trace the most essential information about an answer.

The program should store these abstract answer characterizations in a long-term

episodic memory, allowing the program to gradually build up, over the course of
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several analogy problems, a repertoire of experience on which to draw when confronted

with new situations|rather than simply forgetting everything about an answer as

soon as a new problem is started. After having seen a number of letter-string analogy

problems, people are often reminded of previous problems when confronted with a

new problem that is similar to one they have already seen. Likewise, Metacat should

sometimes be \reminded" of answers it has previously seen if they are su�ciently

similar to an answer just found.

2.3.4 Comparing and contrasting answers

When people come up with more than one answer to an analogy problem, or when they

get reminded of some other answer they have encountered before, they can usually

explain|if pressed to do so|why the answers seem similar, or how they di�er. They

are able to compare and contrast answers in terms of the key ideas involved. Metacat

should be able to do this as well. For example, the essence of the mrrjjjj answer

to the problem \abc)abd; mrrjjj)?" lies in seeing both abc and mrrjjj as

successor groups, one based on the idea of letter category and the other based on the

idea of group length. This abstract similarity is what fundamentally distinguishes the

answer mrrjjjj from other, more straightforward answers to the same problem, such

asmrrkkk ,mrrjjk , ormrrddd , all of which overlook the hidden successorship fabric

lurking beneath the surface of mrrjjj . Although Copycat can recognize mrrjjj as a

successor group, it cannot point to this idea as being the key to the answer mrrjjjj .

Recognizing that the answers mrrkkk and mrrjjk are fundamentally similar

in a way that mrrkkk and mrrjjjj are not amounts to making analogies between

analogies, since each answer itself constitutes an analogy in the world of letter-strings.

Thus, an ability to make \meta-analogies" arises naturally from the ability to map

answers onto each other, whether through the process of reminding via spontaneous

memory retrieval, or through direct comparison of alternative answers to a problem.
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2.3.5 Working backwards from a given answer

An ability to insightfully evaluate the relative strengths and weaknesses of di�erent

answers should make it possible for Metacat to evaluate not only its own answers,

but also answers suggested to it by an outside agent. In other words, Metacat should

not only be able to �nd answers to analogy problems, it should also be able to justify

answers on their own terms, even if the program itself didn't come up with them.

This amounts to \working backwards" from a given answer toward an insightful

characterization of the answer, in order to understand why it makes sense. Once an

answer has been understood in this way, it can be compared and contrasted with

other answers that the program has either discovered previously itself, or been shown

by someone else.

This type of \hindsight understanding" presents little di�culty for humans. Peo-

ple who are asked to solve the problem \abc)abd; mrrjjj)?", for example, may

not think of the answer mrrjjjj , even when given an unlimited amount of time.

However, as soon as this answer is suggested to them, they have no trouble seeing

why it makes sense, even though they weren't able to think of it themselves. In a

similar vein, suggesting the somewhat \tongue-in-cheek" answer abd usually elicits

a few chuckles from people, indicating that they can see how it \makes sense", al-

though practically no one gives this answer on their own [Mitchell, 1993]. Of course,

this is not to say that every suggested answer can be readily understood in retrospect

(for example, a person might never �gure out the justi�cation for an answer such as

mssjjj ), but for many non-obvious answers, no additional explanation beyond just

the answer itself is needed.

2.3.6 Making up new analogy problems

Finally, a very long-term goal of the Metacat project is to endow the program with

the ability to make up entirely new, high-quality analogy problems on its own. This
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would require Metacat to have not only a deep understanding of the issues that

arise in individual analogy problems, but also a deep grasp of the inherent subtleties

of letter-string analogies in general. Such an ability would represent the program's

attainment of expert-level mastery over its microdomain|something that requires a

great deal of experience even for humans to attain. Inventing elegant and clever letter-

string analogy problems is a skill that is only acquired through doing many analogy

problems and by being acutely aware of the various competing pressures evoked by

rival answers. Thus, in any program able to invent its own problems, learning from

experience would almost certainly have to play a critical role. As the program invented

more and more analogy problems, it would gradually learn what makes for interesting

problems, and the subtlety and sophistication of its creations would increase. In order

to do this, the program would have to be able to \try out" problems it had invented,

comparing and contrasting the various possible answers with one another and with

other similar problems stored in its memory, and to recognize when it had come up

with something intriguing.

For example, the best problems are often those in which a straightforward, easy-

to-see answer masks a more elegant answer hidden \below the surface", such as the

problem \apc)abc; opc)?" [Hofstadter and FARG, 1995, page 317]. For this

problem, one possibility is to \take the bait" o�ered by the pc in both apc and opc

and simply change the p to b, obtaining obc. On the other hand, a more abstract way

of looking at things yields the answer opq , in which apc)abc and opc)opq are

both seen as \�xing a one-letter 
aw" in successor groups of length three. Recognizing

this problem as being interesting would require the program to appreciate the delicate

interplay of pressures between the rival answers obc and opq .

Once the program had pinpointed the key pressures inherent in a particular prob-

lem, it might then go on to suggest subtle variants of the problem by systematically
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changing the balance of pressures in interesting ways, possibly creating an entire fam-

ily of related problems stemming from the original. Such an ability of the program to

step back and assess the quality of its own analogy-problem creations, possibly revis-

ing and improving them as a result, is very similar in 
avor to the \central feedback

loop of creativity" of the Letter Spirit project mentioned earlier in section 2.1.4.

2.3.7 The objectives of the present work

All of the above objectives except for the last one (making up new analogy problems)

have been addressed in the development of the Metacat architecture described in this

dissertation. At the present stage, I believe that it is too early to attempt to imbue

the program with even a rudimentary ability to make up its own problems. A pro-

gram able to consistently invent good analogy problems would require a qualitatively

di�erent level of understanding than that modeled by the current Metacat program.

Such an escalation in ability would be, I believe, comparable in magnitude to the

escalation from the ability to make analogies, as was modeled in Copycat, to the

ability to comprehend analogies, as is modeled in Metacat. Therefore, tackling this

challenge is best left to a later stage of development. Only after the notion of com-

prehending individual analogies has been thoroughly explored and computationally

modeled should the task of building a program able to comprehend analogy-making

in general be undertaken.

2.4 An Overview of the Metacat Architecture

The remainder of this chapter presents a broad overview of the Metacat architecture,

and concludes with a discussion of Metacat's relationship to other work in AI and

cognitive science, particularly work in case-based reasoning and derivational analogy.
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Metacat is an extension of the Copycat model|not an alternative model de-

signed to supplant it. Consequently, Metacat's architecture includes all of Copycat's

main architectural components, such as the Workspace, the Slipnet, and the mech-

anisms that support distributed, nondeterministic codelet processing. In addition,

the mechanisms for building bridges and creating rules have been greatly extended

and generalized, and new architectural components have been incorporated into the

model. Together, these components provide a common framework in which to address

self-watching and the other objectives outlined in the previous section.

2.4.1 The Episodic Memory

Unlike Copycat, Metacat incorporates an episodic memory for its answers, which al-

lows it to remember its problem-solving experiences over time. When the program

discovers a new answer, it pauses temporarily to display the answer along with the

groups, bridges, rules, slippages, and other Workspace structures that gave rise to it,

instead of simply quitting. Together, these structures represent a way of interpreting

the analogy problem that yields the answer just found. All of this information, in-

cluding the problem itself, is then packaged together into an answer description and

stored in Metacat's memory, after which the program continues searching for alter-

native answers to the problem. Gradually, over time, a series of answer descriptions

accumulates in memory, each one containing much more information than just the

answer string itself.

The most important information stored in answer descriptions consists of struc-

tures called themes. Themes are high-level structures that represent the key ideas

underlying an answer. In Copycat, at the time an answer is found, the con�guration

of structures in the Workspace collectively represents a particular way of interpreting

the problem, but which aspects of that interpretation are essential and which are
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not remains unclear. In Metacat, themes are used to identify and explicitly repre-

sent those aspects of the interpretation that are most important in characterizing

the answer. This amounts to abstracting out an explicit, high-level description of

the answer's essence from the many Workspace structures and events that led to its

discovery. This high-level answer description is represented as a collection of themes,

and serves as the basis for comparing and contrasting the answer to other answers

stored in memory. Furthermore, Metacat may get reminded of similar answers it

has encountered in the past if the themes associated with a newly-discovered answer,

acting as memory retrieval cues, match those of some previously stored answer de-

scription su�ciently well. The pattern of themes in an answer description serves as

an index under which an answer can be stored and retrieved from memory.

2.4.2 The Themespace

Themes reside in Metacat's Themespace, and consist of pairs of Slipnet concepts. For

example, a theme representing the idea of alphabetic-position symmetry between two

objects is composed of the concepts Alphabetic-Position and opposite. In some ways,

themes act like ordinary Workspace structures. They are not initially present in the

Themespace; rather, they get built during the course of a run, in response to the

creation of various structures in the Workspace. In the same way that Workspace

structures such as bridges and groups explicitly represent patterns among input let-

ters, themes explicitly represent patterns among Workspace structures. Thus they

are in some sense \meta-level" Workspace structures.

In other ways, however, themes act like Slipnet concepts. They can take on var-

ious levels of activation, depending on the extent to which the ideas they represent

are present or absent in the current con�guration of structures in the Workspace.

Although each theme consists of a pair of Slipnet concepts, a theme's activation level

is distinct from the individual activations of its constituent concepts. Furthermore,
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a theme's activation may decay over time, and may be in
uenced by the activation

levels of other themes. Like Slipnet concepts, themes can, under certain conditions,

exert strong top-down pressure on perceptual activity occurring in the Workspace.

In fact, themes can assume both positive and negative levels of activation, rang-

ing from �100 to +100. Positively-activated themes exert \positive thematic pres-

sure", encouraging the building of Workspace structures compatible with the themes.

Negatively-activated themes, on the other hand, exert \negative thematic pressure".

Their e�ect is to discourage the creation of compatible structures, promoting instead

the creation of structures incompatible with the themes.

2.4.3 The Temporal Trace

In addition to the Themespace and Episodic Memory, Metacat's architecture includes

a separate short-term memory called the Temporal Trace (or just the Trace for short)

that serves as the focus for self-watching. Like the Themespace, the Temporal Trace

accumulates information over the course of a single run, so it can be viewed as an

extension of the Workspace. Speci�cally, the Trace stores an explicit temporal record

of the most important processing events that occur during the course of solving

an analogy problem. Examples of such events include recognizing some key idea

pertaining to the problem (by noticing the strong activation of a theme or concept

embodying the idea), encountering a snag situation, or discovering a new answer. Of

course, a huge number of events of all \sizes" occur during the processing of almost

any analogy problem, ranging from �ne-grained \micro events" (such as proposing

a bond between two letters, or evaluating the strength of some proposed structure)

all the way to global \macro events" (such as hitting a snag). However, only those

events above a threshold level of importance get represented in the Trace. This allows

Metacat to �lter out all but the most signi�cant events, giving the program a very

selective, high-level view of what it is doing.
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Once events have been explicitly represented in the Trace, they are themselves

subject to examination by codelets. This allows Metacat to perceive patterns in

its own processing in much the same way that Copycat perceives patterns in its

letter-strings|via codelets looking for relationships among perceptual structures. In

Copycat's case, these perceptual structures are the letters, groups, bonds, and so

on, stored in the Workspace; in Metacat's case, they also include \rei�ed" structures

stored in the Trace which are created from events that occur during the processing

of Workspace structures. When a new answer is found, an answer description can be

formed by examining the temporal record in the Trace to see which events contributed

to the answer's discovery.

Figure 2.2 shows a schematic diagram that summarizes Metacat's main architec-

tural components and the principal ways in which they interact. Metacat's basic

repertoire of concepts relating to the letter-string microworld are stored in the Slip-

net. The Themespace contains aggregate structures (i.e., themes) which characterize,

at an abstract level of description, the activity occurring in the Workspace. These

structures are themselves collections of Slipnet concepts, and (like Slipnet concepts)

can exert strong top-down pressure on processing in the Workspace. This processing,

in turn, in
uences the activation levels of both themes and concepts. Sitting above

the subcognitive processing level is the Temporal Trace, which \watches" the activity

occurring at the lower levels and records the most important events that take place.

Codelets can examine the resulting chain of structures in the Trace, which, under

certain circumstances, may result in particular patterns of themes in the Themespace

being clamped at high activation. This will in turn strongly in
uence subsequent

activity at the subcognitive level. Once an answer is found, a high-level description

of the answer can be formed by extracting from the temporal record the most im-

portant themes and events that contributed to its discovery. This description is then

stored as a new episode in memory indexed under the appropriate themes. In the
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Figure 2.2: Metacat's main architectural components, and the principal ways in which

they interact. The Themespace shares properties of both the Slipnet and the Work-

space. Both the Temporal Trace and the Themespace can be regarded as extensions of

the Workspace that contain \meta-level" perceptual structures. Together, these three

components constitute Metacat's short-term memory. The Episodic Memory and the

Slipnet together constitute Metacat's long-term memory.
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future, should Metacat encounter a problem that evokes a pattern of themes similar

to the pattern of themes stored with the answer description, the stored episode may

be recalled as a result. Furthermore, di�erent answers can be compared to each other

on the basis of the information stored in their descriptions.

2.4.4 Themes and self-watching: An example

As was mentioned earlier, themes take on varying levels of activation during the course

of processing. At any given moment, a theme's activation level represents an estimate

of the importance of its role in characterizing the program's understanding of the sit-

uation at hand. Thus, themes are �rst and foremost representational structures (in

this sense they are like Workspace structures). But under certain conditions, when

highly activated, they can also exert powerful top-down pressure on Metacat's sub-

cognitive processing mechanisms, strongly biasing the stochastic behavior of codelets

in favor of particular outcomes (in this sense they also exhibit Slipnet-like qualities).

As an example, consider again the problem \abc)abd; xyz)?" discussed at

the end of section 2.2.1. In Copycat, the idea of perceiving abc and xyz as going in the

same direction can be represented implicitly by a mapping consisting of the vertical

bridges a{x , b{y , c{z , and a higher-level bridge between the successor groups (or

predecessor groups) abc and xyz . In Metacat, this state of a�airs can be represented

explicitly by a \vertical" theme based on the concepts of String-Position and identity,

which captures the essential idea underlying the vertical mapping between abc and

xyz that objects having identical positions in their respective strings correspond

to one another. Conversely, seeing the strings as going in opposite directions is

represented in Copycat by a \crosswise" vertical mapping involving the bridges a{z

and c{x , the essence of which can be captured abstractly in Metacat by a String-

Position: opposite vertical theme.

Should a String-Position: opposite theme become highly activated, it will strongly
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promote the creation of Workspace structures that support the idea of mapping abc

onto xyz in a \mirror image" fashion, and will suppress the creation of structures

incompatible with this idea. For instance, the creation of vertical bridges based on

the concept-mappings rightmost) leftmost or leftmost) rightmost will become ex-

tremely likely, whereas leftmost) leftmost or rightmost) rightmost bridges will be

inhibited. Active themes can be thought of as Metacat's way of \seizing on" certain

key ideas implicit in an analogy problem and making them explicit, driving the pro-

gram toward an interpretation of the problem organized around these ideas. Di�erent

con�gurations of active themes in the Themespace will guide Metacat toward di�er-

ent interpretations of an analogy problem, which consequently may cause di�erent

answers to be discovered for the problem.

On the other hand, themes can sometimes acquire negative activation. Negatively-

activated themes exert negative thematic pressure on codelet processing, which tends

to drive the program away from certain interpretations of a problem. For example,

a strongly-negative String-Position: identity vertical theme will discourage the cre-

ation of bridges between letters of abc and xyz having the same string position,

such as a and x or c and z, making it di�cult to build a same-direction vertical

mapping between the strings. This will in turn push the program into other regions

of \interpretation space", encouraging it to explore alternative ways of creating this

mapping.

The ability to steer away from certain interpretations of an analogy problem by

negatively activating certain patterns of themes o�ers a way for Metacat to avoid

falling into mindlessly repetitive patterns of behavior, or at least to be able to \jump

out of the system" when it does end up falling into one. As was seen earlier, Copycat

is plagued by such \loopy" behavior on certain problems, for it has no way of noticing

patterns in its own processing. Although theme activation is not a su�cient mech-

anism, by itself, for overcoming repetitive behavior, Metacat's themes nevertheless
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provide a general framework in which to address this problem, which will now be

explained.

When an event is added to the Temporal Trace during the processing of an anal-

ogy problem, the themes most active at the time of the event are also noted along

with it. These themes serve as the event's thematic characterization. In the case of an

\answer event", a high-level answer description is abstracted from these themes and

the other events in the Trace and stored in Metacat's episodic memory, as was men-

tioned earlier. For a \snag event", however, the thematic characterization represents

a way of interpreting the analogy problem that has just led to failure. If Metacat

continues to hit the same snag several times in succession, a series of failure events will

accumulate in the Trace, all with very similar thematic characterizations. But since

these processing events are now represented as concrete perceptual structures, they

are subject to examination and manipulation by codelets in a natural way. Similarity

between multiple failure events in the Trace can be noticed by codelets in much the

same fashion that similarity between multiple letters or groups in the Workspace is

noticed. By monitoring its own behavior in this way, Metacat can recognize when it

is stuck in an ongoing, repetitive pattern of behavior. Furthermore, once the program

has recognized a particular thematic con�guration as leading to failure, it can clamp

the \o�ending" themes with strong negative activation, e�ectively steering itself away

from the unproductive interpretation leading to the snag. In this way, Metacat can

both recognize and subsequently break out of repetitive behavior. Figure 2.3 shows

this idea schematically.

2.4.5 Working backwards: An example

While negative thematic pressure is useful for avoiding problematic interpretations

that lead repeatedly to failure, positive thematic pressure can guide Metacat toward

interpretations based on particular key ideas. This makes it possible for the program
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Figure 2.3: Schematic diagram showing how themes common to several snag events

in the Temporal Trace can trigger negative thematic pressure, subsequently steering

Metacat away from a problematic interpretation of a problem (e.g., viewing abc and

xyz as going in the same direction), and eventually toward alternative interpretations.

to e�ectively work backwards on analogy problems, starting from a given answer.

When Metacat runs in \justify mode", it takes a problem together with an answer

supplied by the user and attempts to discover a way of interpreting the problem in

which the given answer makes sense. To do so, it begins by building up perceptual

structures among the letter-strings, as usual. This \bottom-up" approach, however,

may lead it to build an inconsistent interpretation of the problem that does not

support the answer in question. Nevertheless, examining di�erent parts of this inter-

pretation may suggest new ideas to try out. Metacat can explicitly focus on these

ideas, represented as patterns of themes, by clamping the themes with strong posi-

tive activation. The resulting thematic pressure forces the program to reorganize its

interpretation of the problem in accordance with these ideas, leading to a new|and

perhaps more coherent|way of looking at things.

For example, when Metacat is asked to justify the answer wyz to the problem

\abc)abd; xyz)?", it typically begins by building straightforward mappings in

which all the strings are seen as going in the same direction. In addition, it may



2.4 An Overview of the Metacat Architecture 61

Figure 2.4: An inconsistent interpretation of the answer wyz.

create a \top" rule describing the abc)abd mapping as Change letter-category of

rightmost letter to successor and a \bottom" rule describing the xyz )wyz map-

ping as Change letter-category of leftmost letter to predecessor. This state of a�airs

is shown in Figure 2.4. Although each of the three string mappings making up this

interpretation is locally consistent when considered in isolation, together they do not

make sense at a global level. The letters c and x are not seen as corresponding

to each other (since there is no bridge between them), yet they are both identi�ed

by the rules as being the objects that change in their respective strings (the c to
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its successor and the x to its predecessor). Comparing the two rules to each other,

however, suggests the idea of rightmost{leftmost symmetry, as well as successor{

predecessor symmetry. This idea can be captured by a set of vertical themes such as

String-Position: opposite, Direction: opposite, and Group-Category: opposite. Meta-

cat can explore the rami�cations of this idea by clamping the associated themes at

full activation in the Themespace. The resulting positive thematic pressure strongly

promotes the creation of new structures compatible with the idea of mapping abc

and xyz onto each other in a crosswise fashion, and signi�cantly weakens existing

structures incompatible with this idea, such as the a{x and c{z bridges. The net ef-

fect is that the original vertical mapping shown in Figure 2.4 is swiftly reorganized by

codelets into a new mapping consistent with the activated themes. Figure 2.5 shows

the �nal, globally consistent interpretation, in which c and x are seen as correspond-

ing. In addition, the previously unnoticed alphabetic-position symmetry between the

letters a and z has been identi�ed as a result of the increased attention focused on

these objects by top-down thematic pressure. Consequently, the �nal abstract char-

acterization of wyz includes an Alphabetic-Position: opposite vertical theme based

on the �rst) last slippage underlying the a{z bridge.

2.4.6 Comparing and contrasting answers: An example

As the previous example illustrates, themes allow Metacat to \size up" answers that

are suggested to it by others, by working backwards to discover interpretations that

make sense. For answers that the program discovers on its own, it can examine the

history of events in the Trace in order to create abstract descriptions of the answers.

In either case, once answers have been described in terms of their key underlying

themes and stored in memory, they can be compared and contrasted with each other

on the basis of these descriptions.
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Figure 2.5: The �nal consistent interpretation of wyz.
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As an example of how the similarities and di�erences between analogy problems

can be understood in terms of themes, consider again the answer wyz just described

for the problem \abc)abd; xyz)?" (Figure 2.5). This answer relies on an in-

terpretation of the problem in which abc and xyz are seen as going in opposite

directions, abc and abd are seen as going in the same direction, and abc is seen as

changing to abd in an abstract way rather than in a more literal-minded fashion (i.e.,

this change is described by the rule Change letter-category of rightmost letter to suc-

cessor). At the crux of this interpretation lies the alphabetic-position symmetry of the

letters a and z, which provides the justi�cation for perceiving abc and xyz as \mirror

images" of each other. These ideas can be represented abstractly by a collection of

structures that includes Alphabetic-Position: opposite and String-Position: opposite

vertical themes, a String-Position: identity top theme, and the aforementioned rule.

Together, these structures constitute wyz 's answer description in long-term memory.

In contrast, Figure 2.6 shows Metacat's Workspace after it has found the answer

xyd . In this interpretation of the problem, abc and xyz are seen as going in the

same direction, with letters in identical string positions linked by vertical bridges.

The strings abc and abd are mapped onto each other in a similar fashion, as shown

by the horizontal bridges across the top, and the c in abc is seen as changing literally

to d, as indicated by the rule Change letter-category of rightmost letter to `d'. These

are the essential ingredients of the answer xyd , and they can be explicitly represented

by an answer description that includes a String-Position: identity vertical theme, a

String-Position: identity top theme, and the above rule. The idea of alphabetic-

position symmetry does not arise in the case of xyd , so there is no corresponding

Alphabetic-Position: opposite theme involved.

Now consider the problem \rst) rsu; xyz)?", which is similar in many re-

spects to the \abc)abd; xyz)?" problem. In particular, the answers xyu and
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Figure 2.6: An interpretation of the problem \abc)abd; xyz)?" that yields the

answer xyd, showing the various Workspace structures involved.



66 From Copycat to Metacat

wyz are possible, based on many of the same considerations that applied in the ear-

lier problem. Seeing the answer xyu rests in part on seeing rst and xyz as going

in the same direction, while the answer wyz depends on seeing these strings as go-

ing in opposite directions. However, in this problem there is far less justi�cation for

seeing rst and xyz as mirror images of each other, unlike in the previous case of

abc and xyz , with their strong a{z symmetry. Indeed, the presence or absence of

alphabetic-position symmetry is the crucial di�erence between the two wyz answers.

Everything else about them is the same: both involve seeing abc and xyz (or rst

and xyz ) as going in opposite directions, both involve seeing abc and abd (or rst

and rsu) as going in the same direction, and both involve viewing the abc)abd (or

rst) rsu) change abstractly rather than literally. The diminished justi�cation for

the answer wyz in this problem tends to diminish its overall quality. While arguably

better than xyu , wyz is not nearly as superior to xyu as was wyz to xyd in the

previous problem. In short, xyd and xyu play essentially identical roles in their

respective problems, and are thus of comparable quality, while the two wyz answers

are quite di�erent, even though on the surface they appear to be identical.

In addition to these four answers, there are two other possibilities worth mention-

ing. The answer dyz , although perhaps a bit far-fetched, is certainly possible for the

problem \abc)abd; xyz)?". Seeing this answer depends on noticing the abstract

alphabetic symmetry between abc and xyz , and yet|somewhat ironically|taking

a very literal-minded view of the way in which c changes to d. Thus, making the

\analogous" change to xyz involves changing its leftmost letter simply to d. The

answer uyz for the problem \rst) rsu; xyz)?" arises in a similar manner, except

that here there is no good reason to see rst and xyz as mirror images of each other

in the �rst place. Just as for the two wyz answers, the key di�erence between dyz

and uyz lies in the presence or absence of the idea of alphabetic-position symmetry.

In other words, the way in which the two wyz answers are analogous to each other
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Problem/Answer Vertical Themes Rule Type

abc)abd; xyz)wyz Alphabetic-Position: opposite Abstract

String-Position: opposite

rst) rsu; xyz)wyz String-Position: opposite Abstract

abc)abd; xyz)xyd String-Position: identity Literal

rst) rsu; xyz) xyu String-Position: identity Literal

abc)abd; xyz)dyz Alphabetic-Position: opposite Literal

String-Position: opposite

rst) rsu; xyz)uyz String-Position: opposite Literal

Table 2.1: Six answers and their associated answer descriptions.

is exactly like the way in which the dyz and uyz answers are analogous to each

other. Here we have a simple example of a \meta-level" analogy in the letter-string

microworld.

Table 2.1 shows these six answers along with their associated answer descriptions.2

These descriptions bring out very clearly the similarities and di�erences among the

various possible answers to the two problems. For example, it is clear from examining

the themes that the crucial distinction between the �rst wyz answer and dyz is

whether the abc)abd change is perceived abstractly or literally (as indicated by

the rule involved). The thematic characterizations of xyd and xyu are identical,

revealing the deep underlying similarity between these two literal-minded answers.

The di�erence between the two wyz answers rests on the presence or absence of

the idea of alphabetic-position oppositeness. Furthermore, the way in which these

answers di�er is precisely the same as the way in which dyz di�ers from uyz .

This example gives the 
avor of how Metacat's characterizations of its answers in

2For the sake of clarity, not all of the information stored in these descriptions is shown here.

In particular, top themes are also present, as are other vertical themes based on Direction and

Group-Type. In addition to themes, the rules responsible for each answer are also included. Nev-

ertheless, the information shown here captures the essential similarities and di�erences that exist

between the answers.
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terms of themes allow it to compare and contrast idealized analogies in an insight-

ful way. Such an ability lies far beyond that of Copycat, which has only a crude

numerical measure of \quality" available as a basis for answer comparison. In addi-

tion, Metacat's answers can be retrieved from memory on the basis of their stored

descriptions. For example, suppose that Metacat �nds the answer xyu to the prob-

lem \rst) rsu; xyz)?". If it has previously encountered the answer xyd to the

problem \abc)abd; xyz)?", �nding xyu may remind it of the xyd answer it

has already seen|based on the strong similarity between the themes characterizing

xyu and the stored description of xyd|prompting Metacat to \comment" on the

similarity between the two answers.

Metacat's mechanisms that enable it to compare and contrast its answers in this

way will be explained more thoroughly in Chapter 4, and detailed sample runs of the

program on several families of analogy problems|including the examples discussed

above|will be presented and described in Chapter 5.

2.5 Relation to Other Work

Given the centrality of self-awareness to cognition, it is surprising how little work

has been done in AI and cognitive science on developing computer models that focus

directly on the issue of self-watching. Several researchers, however, have developed

models that exhibit some of the 
avor of Metacat and Copycat|namely, in their

focus on the notion of processing as the emergent consequence of many nondeter-

ministic micro-actions occurring in parallel, and on the idea of spreading activation

among nodes of a semantic network in response to context-dependent pressures. The

DUAL cognitive architecture, developed by Boicho Kokinov and incorporated into

the AMBR model of analogy-making by Kokinov and Alexander Petrov, is one such

model [Kokinov et al., 1996; Kokinov, 1994b; Kokinov, 1994a]. In addition, much
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work has been done on other issues that �gure prominently in Metacat, such as

analogy-making and reminding (see, for example, [Holyoak et al., 1998; Lange and

Wharton, 1994]).

Prior work on analogy-making includes the well-known structure-mapping theory

of Dedre Gentner [Gentner, 1983; Gentner, 1989], and the instantiation of this theory

in the form of the Structure-Mapping Engine (SME) computer model [Falkenhainer

et al., 1990; Forbus et al., 1994]. In a similar fashion, Keith Holyoak and Paul Tha-

gard's multiconstraint theory of analogy has been used as the basis of their ACME

computer model of analogy-making [Holyoak and Thagard, 1995; Holyoak and Tha-

gard, 1989]. Computer models of reminding include the MAC/FAC model developed

by Ken Forbus, Keith Law, and Dedre Gentner, and Holyoak and Thagard's ARCS

model [Thagard et al., 1990; Forbus et al., 1995; Law et al., 1994]. In addition,

much pioneering work on memory organization and retrieval has been done by Roger

Schank and his colleagues [Schank, 1982]. Over the years, this work has gradually

evolved into the now-thriving �eld of case-based reasoning (CBR).

In particular, Metacat touches on many of the issues underlying research in case-

based reasoning (for good overviews of CBR, see [Leake, 1996] or [Kolodner, 1993]).

Answer descriptions stored in Metacat's memory can be likened to \cases" in CBR, in

the sense that they form a corpus of experience on which the program can draw when

faced with new situations. When Metacat �nds a new answer, its stored experiences

may cause it to be reminded of similar answers it has seen in the past, in a way that is

reminiscent of the retrieval of previously-stored cases from memory in CBR according

to their degree of similarity to the current situation. The retrieved answer can then

be compared to the current answer on the basis of the thematic information stored

with it. This is roughly akin to comparing two cases in CBR in order to see how

the cases are similar (i.e., which aspects of the stored case can be applied directly,

without modi�cation, to the current situation), and how the cases di�er (i.e., which
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aspects must be adapted to �t the new situation). Furthermore, some work in CBR

is beginning to address \metacognitive" issues such as introspective reasoning and

self-questioning (see, for example, [Oehlmann, 1995; Oehlmann et al., 1994; Ram and

Cox, 1994; Fox and Leake, 1994]).

However, there are important di�erences between CBR and Metacat. First of all,

even though Metacat is concerned with solving analogy problems, it is not intended

to model problem-solving per se. Rather, its focus is on modeling the way in which


uid concepts allow analogies between di�erent situations to be perceived in a natu-

ral and psychologically plausible manner. It is concerned with analogical perception

(and, in particular, with self -perception), not analogical reasoning employed as a tool

for solving problems, as in CBR. Furthermore, the emphasis in much CBR work is

on systems that learn to solve problems in a progressively faster and more e�cient

manner, whereas in Metacat the notion of learning to perceive analogies with ever

increasing e�ciency and speed is irrelevant.

Metacat is actually closer to work on derivational analogy than to ordinary case-

based approaches that store only a �nal problem solution. In derivational analogy,

an entire trace of a problem-solving session is stored for future reference, not just

the solution produced in the end, together with a series of annotations describing

the conditions under which each step in the solution was taken [Carbonell, 1986;

Veloso and Carbonell, 1993; Veloso, 1994]. In Metacat, the thematic information

stored with an answer summarizes the important concepts and events that together

contributed to the discovery of the answer, much like the temporal problem-solving

trace of derivational analogy|although in Metacat's case, instead of storing the entire

trace, an abstract description of the answer based on the information in the trace is

stored.

In contrast to derivational analogy and CBR, however, Metacat (like Copycat)

is deeply concerned with the nature of concepts. One of the prime objectives of this
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research is to explore how 
uidly-adaptable concepts can give rise to understanding by

enabling analogies between disparate situations to be perceived. Metacat's concepts,

to be sure, come nowhere close to exhibiting the full power and 
uidity of human

concepts. Nevertheless, there is a sense in which they are genuinely meaningful

entities|not just empty static symbols that get shunted around by the program.

A concept node in the Slipnet|successor , for example|responds to the situation

at hand in a continuous, context-dependent way, re
ecting the degree of perceived

relevance or presence of the idea of successorship in the Workspace at any given

moment. A wide range of super�cially dissimilar strings can in principle activate

it|strings such as abc, ijk , pqrstu , iijjkk , mrrjjj , mmrrrjjjj , and aababcabcd .

Given the program's ability to 
exibly recognize a wide range of instances of the same

concept, some of them quite abstract, it is fair to say that Metacat's concepts have at

least some small degree of meaningfulness, or genuine semantics, within the con�nes

of its tiny, idealized world (see [Hofstadter and FARG, 1995, Chapter 6] for a more

complete discussion of this point).

Work on Metacat is aimed at deepening Copycat's understanding of its answers

by incorporating mechanisms for memory, reminding, and self-watching into the pro-

gram. Many important ideas from case-based reasoning are relevant to this aim, such

as the storing of past experiences as a repertoire of cases in memory, the activation

of stored cases by similar situations, and the issue of analogical similarity of di�erent

situations. Unfortunately, case-based reasoning research concentrates on these issues

at the expense of understanding the nature of concepts. Indeed, it seems likely that

CBR's ultimate success|at least as a cognitive model|will be limited on account

of its avoidance of this very di�cult but critically important question. In contrast,

Metacat can be seen as an attempt to broaden and enrich these ideas by focusing on

them within a framework of 
uid, context-sensitive concepts.



chapter three

Generalizing the

Representation of Rules

The broad-brush overview of the Metacat architecture presented in the previous chap-

ter outlined several new architectural components and mechanisms not present in

Copycat (i.e., themes, the Episodic Memory, the Temporal Trace, and the Theme-

space). These components provide the basis for Metacat's self-watching ability, and

together represent the model's central theoretical advance over the Copycat model.

However, the development of the Metacat architecture has also involved extending

and generalizing mechanisms that were present in the earlier model, such as the mech-

anisms for building mappings between strings, and for creating rules that describe

di�erences between strings. This chapter examines these architectural re�nements

in detail. A thorough discussion of Metacat's new architectural components for self-

watching, including the Themespace, the Temporal Trace, and the Episodic Memory,

will be given in the next chapter. The focus of the present chapter is primarily on

Metacat's generalized rule-building mechanisms, since it is here that restrictions in-

herent in the earlier model have been overcome to the greatest extent. However,

several improvements to other previously-existing Copycat mechanisms will also be

described.

72
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3.1 Similarities and Di�erences Between Strings

In order to construct a rule that describes how the initial string changes into the

modi�ed string, Copycat must examine the ways in which the components of the

strings correspond to each other, as well as how they di�er. For example, in order

to describe abc)abd as Replace letter-category of rightmost letter by successor, the

c in abc must be seen as corresponding to the d in abd . Said another way, c and

d must be seen as playing the same role in their respective situations|in this case,

the role of \rightmost letter in the string". Likewise, the two a 's must correspond to

each other, as must the two b's. Together, these correspondences e�ectively \align"

the strings in a straightforward, one-to-one fashion, capturing the essential similarity

shared by each letter of abc with its counterpart letter in abd|namely, the identical

positions occupied by corresponding letters within their respective strings.

In turn, this alignment highlights the di�erence between the strings, bringing out

the c)d change clearly. This change can then be described in various ways using

di�erent levels of abstraction. For example, c can be described as either changing

to its successor (viewing the c)d change abstractly) or as changing literally to

the letter d (viewing the change in a more concrete way). The �rst interpretation

results in the rule Replace letter-category of rightmost letter by successor, while the

second results in Replace letter-category of rightmost letter by `d'. Furthermore, the

letter c itself can be described either abstractly as the \rightmost letter" of abc (as

in the above two rules), or literally as the `c' of abc. Seeing things in the latter

way results in the even more literal-minded rule Replace `c' by `d'. These di�erent

ways of describing abc)abd may give rise to di�erent answers, depending on the

problem. For instance, in the problem \abc)abd; ijk)?", these three rules yield,

respectively, the answers ijl , ijd , and ijk .

In general, the bridges making up the mapping between the initial string and

the modi�ed string model the way in which the strings are perceived as being the
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same, while the rule models the way in which they are perceived as being di�erent.

These di�erences are perceived against the \background of similarity" provided by

the mapping.

Another example that illustrates this \�gure/ground" relationship is the problem

\pq) qp; ijkl)?". One way of perceiving pq) qp is to regard p and q as swapping

positions. This interpretation, supported by the bridges p{p and q{q , suggests

swapping the positions of the left and right letters of ijkl , yielding the answer ljki .

The \background of similarity" in this case is the idea of letter-category invariance|

seeing the two p's and the two q 's as corresponding to each other and thus implying

that their positions change. Consequently, a rule based on this mapping would specify

swapping the positions of the left and right letters of a string.

On the other hand, it is possible to see pq) qp di�erently|as p changing to its

successor and q changing to its predecessor. This interpretation suggests changing

the left letter of ijkl to its successor and the right letter to its predecessor, yielding

jjkk . Although people might not think of this answer at �rst, most would probably

agree, in retrospect, that it makes sense. Here, the similarity between pq and qp

rests on the idea of position-invariance|seeing the two left letters and the two right

letters as corresponding to each other|supported by the bridges p{q and q{p. A

rule based on this mapping would specify changes to the letter-categories of the left

and right letters of a string, rather than changes to their positions.

A third possibility, of course, is to regard pq as reversing direction as a whole,

yielding the answer lkji . Rather than focusing on the individual letters p and q, this

interpretation sees pq and qp as being the same group, implying that pq 's direction

changes. A mapping representing this idea of object-invariance at the group level

would consist of a single bridge between the oppositely-directed groups pq and qp,

which would in turn give rise to a rule that speci�es reversing the direction of a string

as a whole.
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3.2 Building Rules in Copycat

In Copycat, the ability to build arbitrary bridges between strings|and thus to char-

acterize their similarities|is restricted to the initial string and target string only.

Bridges between the initial string and modi�ed string (which Mitchell calls \replace-

ments") are only allowed between identically-positioned letters in each string, and no

bonds or groups can be built in the modi�ed string. Thus, the only allowable map-

pings on which to base a rule are simple one-to-one isomorphisms between strings

of identical length. Furthermore, rules describing more than a single letter change

are not possible, limiting the program's ability to characterize di�erences between

strings. For example, all of the rules describing pq) qp mentioned above are im-

possible for Copycat to build, since the �rst rule requires building the bridges p{p

and q{q , the second involves changes to both letters of pq , and the third requires

chunking the letters of qp into a group. Although the program can handle problems

involving abc)abd , it cannot handle other seemingly-simple string changes such as

abc)abcc, abc)abcd , or pq)ppqq .

Once all replacements have been built between the initial string and the modi�ed

string (an essentially trivial task, given the restrictions imposed on the mapping),

Copycat builds a rule by simply �lling in a prede�ned template of the form:

Replace of by

The \slot-�llers" of a rule template are individual concepts from the Slipnet, such

as letter, Letter-category , rightmost, or successor . The concepts making up a rule

specify: (1) which object changes in a string; (2) which aspect of that object changes;

and (3) how that aspect changes. For example, the rule Replace letter-category of

rightmost letter by successor consists of: (1) the concepts letter, String-Position,

and rightmost, specifying that the object to be changed is the string's rightmost

letter; (2) the concept Letter-Category , specifying that the letter's letter-category
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changes (as opposed to, say, the letter's position); and (3) the concept successor ,

specifying that the letter-category changes to its successor (as opposed to, say, `d'

or some other letter). The important point is that, internally, rules are structured

collections of Slipnet concepts. (Outwardly, rules are rendered in the form of short

English phrases, but this is really just a surface-level \gloss" masking the underlying

conceptual representation.)

3.3 Building Rules in Metacat

3.3.1 Generalized mappings between strings

In Metacat, the restrictions on bridges built between the initial string and the modi�ed

string have been relaxed. Any object of the initial string may map onto any object of

the modi�ed string, as long as the resulting bridge is supported by concept-mappings.

Furthermore, bonds and groups can now be built inside the modi�ed string. The same

codelet-based processes used in Copycat to build structures in the initial string and

target string (as well as between them) now extend to all three Workspace strings.

Thus, Metacat's Bond-scout, Group-scout, and Description-scout codelets probabilis-

tically choose from among objects in all three strings (according to the same criteria

used in Copycat for just the initial string and the target string) when scouting for

possible new structures to propose. In addition, Copycat's Correspondence-scout

and Replacement-�nder codelets have been superseded in Metacat by Bridge-scout

codelets, which are capable of proposing either vertical bridges between objects in

the initial string and target string, or horizontal bridges between objects in the ini-

tial string and modi�ed string. Metacat's vertical bridges are exactly the same as

Copycat's correspondences, whereas horizontal bridges are generalizations of Copy-

cat's replacements. Although horizontal bridges di�er slightly from vertical bridges in

the types of concept-mappings that can support them (to be explained below), they
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Figure 3.1: Horizontal and vertical mappings created by Metacat for the problem

\abc)aabbdd; ijkl)?". Concept-mappings underlying the horizontal bridges are

not shown.

are fundamentally equivalent to vertical bridges. Both types of bridges link objects

that play similar roles in a particular context.

An example illustrating Metacat's ability to build generalized string mappings

is the problem \abc)aabbdd; ijkl)?". Figure 3.1 shows a possible state of the

Workspace for this problem in which the letters of abc are mapped horizontally

(according to string position) to the sameness groups aa , bb, and dd in the modi�ed

string. Likewise, vertical bridges map abc onto the target string ijkl . Each bridge is

supported by a set of concept-mappings, although only those associated with vertical

bridges are displayed in Figure 3.1. In particular, the horizontal a{aa bridge is

supported by the concept-mappings leftmost) leftmost, letter) group, one) two

(since a letter of length one maps to a group of length two), and a) a; the b{bb

bridge is supported by middle)middle, letter) group, one) two, and b)b; and

c{dd is supported by rightmost) rightmost, letter) group, one) two, and c)d.
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On the other hand, the vertical a{i and c{l bridges are supported by the concept-

mappings leftmost) leftmost, rightmost) rightmost, and letter) letter, but not

the slippages a) i or c) l.

This example points out a subtle di�erence between horizontal and vertical bridges.

Both types of bridges can be supported by identity concept-mappings involving length

or letter-category, such as three) three or a) a, but slippages involving length or

letter-category, such as one) two or c)d, are only possible for horizontal bridges.

(Both horizontal and vertical bridges, however, can be supported by slippages based

on concepts other than length or letter-category, such as letter) group.) Thus, the

vertical a{i bridge lacks an a) i slippage, the c{l bridge lacks a c) l slippage, and

the bridge mapping the length-three group abc as a whole to the length-four group

ijkl lacks a three) four slippage.

The fundamental reason for this asymmetry is that horizontal bridge concept-

mappings serve as the basis for characterizing both similarities and di�erences be-

tween strings, while vertical bridge concept-mappings serve only as the basis for

characterizing similarities between strings. A rule must be \abstracted" from the

concept-mappings underlying the horizontal bridges that explicitly describes how the

initial string changes into the modi�ed string, but no such rule needs to be created

from the vertical bridges, since the notion of the initial string \changing into" the

target string is not meaningful. Surface-level di�erences between letter-categories or

lengths of objects are important when characterizing the changes that occur between

strings, but they are not as important in the perception of similarity between strings.

For example, in the problem \abc)abd; mrrjjj)?", both abc andmrrjjj can be

seen as successor groups, despite di�erences between the letter-categories and lengths

of their components, whereas the change from abc to abd cannot be adequately de-

scribed without taking into account the letter-category di�erence between c and d.

This point should become clearer when the rule abstraction process is described in
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greater detail.

As in Copycat, Metacat's Workspace objects have dynamically-varying, context-

dependent levels of importance and happiness associated with them, which together

determine an object's salience|its overall attractiveness to codelets. The importance

of an object is a function of the object's descriptions (speci�cally, the number of

currently-relevant descriptions, and the degree to which they are activated). The

happiness of an object depends on the strengths of the bonds, groups, and bridges

that together integrate the object into its surrounding context. Happiness re
ects

both how well the object contributes to the internal organization of its string, and

how well it \�ts into" the mappings constructed between strings.

However, unlike in Copycat, an object in Metacat's Workspace may be part of

more than one mapping between strings. For example, in Figure 3.1, the a in abc

corresponds \horizontally" to the aa group in aabbdd , as well as \vertically" to the

letter i in ijkl . In general, the horizontal mapping between the initial string and

modi�ed string is independent of the vertical mapping between the initial string and

target string. Objects that are part of both mappings (i.e., objects in the initial

string) therefore maintain separate happiness values for each mapping.1 Thus, in the

previous example, the b in abc has a lower vertical happiness value than either a

or c, since it remains unmapped to any object in ijkl , but the horizontal happiness

values of all three letters are about the same, since they all map to groups in aabbdd .

Since an object's salience depends on its happiness, objects with separate horizontal

and vertical happiness values also have separate salience values for each mapping.

This distinction is important mainly to Bridge-scout codelets, which tend to focus on

the weaker mapping when looking for possible bridges to propose.

1This is also true for objects in the target string when Metacat \works backwards" from a given

answer to an understanding of that answer. In this case, an additional horizontal mapping is created

between the target string and the answer string. Metacat's ability to justify a given answer in this

manner will be discussed in section 4.3 of Chapter 4.
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3.3.2 From mappings to rules

To build a rule, codelets examine the concept-mappings underlying the horizontal

bridges built between the initial string and modi�ed string. They look for regularities

among these concept-mappings|particularly among the slippages|and then build a

high-level description of the mapping based on the patterns they have noticed. Unlike

in Copycat, there are no �xed rule templates to be �lled in which determine a priori

the internal structure of rules. Instead, rules in Metacat are constructed according

to a set of basic guidelines (outlined below) that allow rules of arbitrary length and

complexity to be created, at least in principle.

Changes to objects in a string can be described either \intrinsically" or \extrinsi-

cally". An intrinsic change describes a single object that changes in some way|for

example, the letter c changing to its successor in abc)abd . An extrinsic change,

on the other hand, describes several objects that change in some way relative to each

other (by exchanging some attribute among themselves). An example would be two

letters that swap their positions in a string, such as p and q in pq) qp.

In general, the guidelines for constructing rules are as follows:

1. An intrinsic change can involve any aspect of an object (not just the object's

letter-category).2 In abc)abcc, for example, c's length changes from one to

two, and its object-type changes from a letter to a group (assuming that the

letter c in abc is seen as corresponding to the group cc in abcc).

2. An extrinsic change can involve two or more objects. For example, eqe) qeq

can be described extrinsically as a letter-category swap (involving the letter-

categories e and q) among all three letters of the string eqe .

2The one exception to this is that a change to an object's string position cannot be described

intrinsically|although it can be described extrinsically in conjunction with other objects whose

positions also change.
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3. For a particular set of objects, an extrinsic change can specify exchanging any

number of attributes of the objects. For example, in eeqee) qeeq , the objects

ee , q, and ee in eeqee can be described as swapping their lengths as well as

their letter-categories (assuming that these objects are seen as corresponding,

respectively, to q, ee , and q in qeeq).

4. Both intrinsic and extrinsic changes can designate all of the components of

a particular object as changing|rather than the object itself. For example,

abc)xxx can be described by a single intrinsic change specifying that all

objects in the string abc change to x.

5. A rule can specify any number of intrinsic or extrinsic changes to a string (in

any combination).

6. Finally, a special type of rule called a verbatim rule can describe an entire

string as changing literally to a particular sequence of letters. For example,

abc)pxgk can be described in this way. Verbatim rules do not specify any

other types of changes.

Like rules in Copycat, Metacat's rules are represented internally as structured col-

lections of Slipnet concepts, but are expressed outwardly in the form of short English

phrases. The English-like appearance of rules, however, is somewhat deceptive. There

is nothing like an embedded \natural language module" for rules in Metacat. Instead,

the constraints placed on the structure of rules ensure that the set of concepts making

up a rule can be transcribed into passable English in a relatively straightforward way,

avoiding the need for sophisticated linguistic processing. Unfortunately, Metacat's

\English" falls somewhat short of native-level mastery, occasionally resulting in a

vague or awkward-sounding rule. However, this is not really important from a the-

oretical standpoint, since the purpose of rules is to represent relationships between

strings in abstract conceptual terms, rather than in a more concrete linguistic form.
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In some ways, this emphasis on the conceptual level is reminiscent of Schank's

conceptual-dependency approach to mental representations, in which a small set of

abstract primitives is used to represent a wide variety of concrete, real-world sit-

uations [Schank, 1975; Schank and Abelson, 1977]. In Schank's theory, the level

of representation that really counts is that of the underlying conceptual primitives.

Likewise, the same is true for Metacat's rules. The English appearance of rules is re-

ally just a surface-level fa�cade. However, unlike the primitives of Schank's theory, the

conceptual primitives out of which Metacat's rules are built (i.e., Slipnet concepts)

are not empty, static entities; rather, they are active representational structures that

respond in dynamic and context-sensitive ways to the pattern of perceptual activity

occurring in the Workspace.

3.3.3 A sampler of Metacat rules

This section presents a representative sampling of the types of rules that Metacat

is able to build. These examples illustrate more clearly the various guidelines for

constructing rules given in the previous section. Each example shows a pair of strings

along with one or more possible rules describing how the �rst string changes into the

second string. Since the creation of a rule depends on the particular mapping created

between the strings, the bridges between corresponding string objects are indicated

as well. In general, mappings may be described in more than one way, depending on

the level of abstraction used to refer to the string objects. For this reason, many of

the examples below list several possible rules for a single pair of strings (although not

every possible rule is necessarily shown).

The following rules describe intrinsic changes involving various attributes of string

objects, such as letter-category or length. The examples in this group illustrate the

�rst point appearing in the list of rule-creation guidelines given earlier.
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� abc)abd (assuming a mapping with bridges a{a , b{b, and c{d)

� Change letter-category of rightmost letter to successor

� Change letter-category of rightmost letter to `d'

� Change letter-category of letter `c' to `d'

� abc)abcc (assuming bridges a{a , b{b, and c{cc)

� Increase length of rightmost letter by one

� Increase length of letter `c' by one

� abc)abccc (assuming bridges a{a , b{b, and c{ccc)

� Change rightmost letter to a group of length three

� aaa)a (assuming a bridge aaa{a)

� Change whole group to a letter

� a) z (assuming a bridge a{z )

� Change alphabetic-position of single letter to opposite

� abc) cba (assuming a bridge abc{cba)

� Reverse direction of whole group

� axc) cxa (assuming bridges a{a , x{x , and c{c)

� Reverse direction of string

� abc)abcd (assuming a bridge abc{abcd)

� Increase length of whole group by one

� Change length of whole group to four
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� abcd)abc (assuming a bridge abcd{abc)

� Decrease length of whole group by one

� aabbcc)aabbccdd (assuming a bridge aabbcc{aabbccdd)

� Increase length of whole group by one

Rules describing extrinsic changes, in which one or more object attributes are ex-

changed among several di�erent string objects, are shown in the next set of exam-

ples. These examples illustrate the second and third points appearing in the list of

guidelines given earlier.

� abc) cba (assuming bridges a{a , b{b, and c{c)

� Swap positions of leftmost letter and rightmost letter

� Swap positions of letter `a' and letter `c'

� abc) cba (assuming bridges a{c, b{b, and c{a)

� Swap letter-categories of leftmost letter and rightmost letter

� aabccc)aaabcc (assuming bridges aa{aaa , b{b, and ccc{cc)

� Swap lengths of leftmost group and rightmost group

� aabccc)aacbbb (assuming bridges aa{aa , b{c, and ccc{bbb)

� Swap letter-categories of middle group and rightmost group

� aabaa) bbabb (assuming bridges aa{bb, b{a , and aa{bb)

� Swap letter-categories of leftmost group, middle letter, and rightmost group

� Swap letter-categories of leftmost group, letter `b', and rightmost group
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� azx) zax (assuming bridges a{a , z{z , and x{x )

� Swap positions of letter `a' and letter `z'

� Swap positions of alphabetic-�rst letter and alphabetic-last letter

� eqe) qeq (assuming bridges e{q , q{e , and e{q)

� Swap letter-categories of leftmost letter, middle letter, and rightmost letter

� eeqee) qeeq (assuming bridges ee{q , q{ee , and ee{q)

� Swap letter-categories and lengths of leftmost group, middle group, and

rightmost group

The next set of examples shows how both intrinsic and extrinsic changes can refer to

all of the components of a particular object. This is a powerful abstraction capability,

which allows systematic changes across a string to be captured in a natural and

succinct manner. The real power behind this way of describing string changes becomes

apparent when rules are translated and applied to new situations (i.e., to new strings).

For example, in the problem \eqe) qeq; axaxa)?", viewing the eqe) qeq

change as a letter-category swap involving all of the letters of eqe implies swapping

all of the letters of axaxa , yielding the answer xaxax , whereas viewing the swap

as explicitly involving the leftmost, middle, and rightmost letters of eqe implies

swapping only the a 's in axaxa , which leaves the string unchanged.

The examples below serve to illustrate the fourth point in the list of guidelines

given earlier.

� abc) bcd (assuming bridges a{b, b{c, and c{d)

� Change letter-categories of all objects in whole group to successor
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� abc)aabbcc (assuming bridges a{aa , b{bb, and c{cc)

� Increase lengths of all objects in whole group by one

� Change all objects in whole group to groups of length two

� aaabbbccc)aabbcc (assuming bridges aaa{aa , bbb{bb, and ccc{cc)

� Decrease lengths of all objects in whole group by one

� Change lengths of all objects in whole group to two

� abc)aaa (assuming bridges a{a , b{a , and c{a)

� Change letter-categories of all objects in whole group to `a'

� abbccc)abc (assuming bridges a{a , bb{b, and ccc{c)

� Change all objects in whole group to letters

� abbccc)aaabbbccc (assuming bridges a{aaa , bb{bbb, and ccc{ccc)

� Change lengths of all objects in whole group to three

� aabbcc)xxx (assuming bridges aa{x , bb{x , and cc{x )

� Change all objects in whole group to the letter `x'

� eqe) qeq (assuming bridges e{q , q{e , and e{q)

� Swap letter-categories of all objects in string

� eeqee) qeeq (assuming bridges ee{q , q{ee , and ee{q)

� Swap letter-categories and lengths of all objects in string
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� abbbc)aaabccc (assuming bridges a{aaa , bbb{b, and c{ccc)

� Swap lengths of all objects in whole group

Several di�erent changes to a string (both intrinsic and extrinsic) can be described

by a single rule. The following examples involve strings that change in multiple ways.

The rules in this series of examples illustrate the �fth point in the list of guidelines

given earlier.

� abc) cba (assuming bridges a{c, b{b, and c{a)

� Change letter-category of leftmost letter to `c'

Change letter-category of rightmost letter to `a'

� abc)abdd (assuming bridges a{a , b{b, and d{dd)

� Change letter-category of rightmost letter to successor

Increase length of rightmost letter by one

� Change letter-category of rightmost letter to `d'

Increase length of rightmost letter by one

� Change letter-category of rightmost letter to successor

Change rightmost letter to a group of length two

� Change rightmost letter to a `d' group of length two

� Change letter `c' to a `d' group of length two

� abc)ddba (assuming bridges a{a , b{b, and c{dd)

� Change letter-category of rightmost letter to successor

Increase length of rightmost letter by one

Reverse direction of whole group

� Change rightmost letter to a `d' group of length two

Reverse direction of whole group
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� abc) bbccdd (assuming bridges a{bb, b{cc, and c{dd)

� Change letter-categories of all objects in whole group to successor

Increase lengths of all objects in whole group by one

� abc) cbba (assuming bridges a{a , b{bb, and c{c)

� Increase length of middle letter by one

Swap positions of leftmost letter and rightmost letter

� Increase length of middle letter by one

Reverse direction of whole group

� abc) ccbbaa (assuming bridges a{aa , b{bb, and c{cc)

� Reverse direction of whole group

Increase lengths of all objects in whole group by one

� eqe) qqeeqq (assuming bridges e{qq , q{ee, and e{qq)

� Increase lengths of all objects in string by one

Swap letter-categories of all objects in string

Finally, a verbatim rule describes changing one string into another in the most literal-

minded way possible, essentially ignoring any relationships between corresponding

letters or groups in the strings. Of course, if no such relationships exist to begin with,

then the only way to describe the situation is with a verbatim rule. Two examples

of such rules are shown below, rounding out the list of rule-creation guidelines given

earlier. (In fact, all of the string changes given in the preceding examples could have

been described by verbatim rules as well.)

� abc)abd

� Change string to \abd"
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� abc)mrrjjj

� Change string to \mrrjjj"

3.3.4 The internal structure of rules in detail

To more clearly appreciate the 
exibility|and limitations|of Metacat's rule repre-

sentation, it is necessary to examine the internal structure of rules more precisely.

Essentially, a rule consists of an arbitrarily-long list of rule clauses, of which there

are three possible types:

� An intrinsic clause refers to a single object in a string, and speci�es an arbitrary

number of changes either to the object itself or to its components.

� An extrinsic clause refers to a set of objects in a string, and speci�es one or

more attributes that are exchanged among the objects.

� A verbatim clause does not refer to any objects in a string. It simply speci�es

a new sequence of letters to which the string changes.

In fact, a rule may contain no clauses at all, in which case it is the \identity rule"

Don't change anything. Verbatim rules consist of exactly one verbatim clause. All

other rules consist of combinations of intrinsic and extrinsic clauses.

The detailed structure of rules can be described in terms of a simple grammar,

much like those used to specify the formal syntax of programming languages. This

\rule grammar" is shown in Figure 3.2. A rule is essentially a nested list structure

whose atomic elements are either Slipnet nodes, or special \tag" symbols that serve as

markers for various intermediate-level structures. The identity rule is represented by

the empty list. In the �gure, Slipnet nodes are shown in slanted type (e.g., successor)

and tag symbols are shown in sans serif type (e.g., extrinsic).
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hrule i �! (fhintrinsic-clause i j hextrinsic-clause ig . . . )
j (hverbatim-clause i)

j ( )

hintrinsic-clause i �! (intrinsic (hobject-description i) (hchange-description i . . . ))

hextrinsic-clause i �! (extrinsic (hobject-description i . . . ) (hobject-attribute i . . . ))

hverbatim-clause i �! (verbatim (hplatonic-letter i . . . ))

hobject-description i �! (hobject-type i hobject-attribute i hobject-descriptor i)

j (string String-Position whole)

hobject-type i �! letter j group

hobject-attribute i �! fany Slipnet category node g

hobject-descriptor i �! fany Slipnet descriptor node g

hchange-description i �! (hreferent i hobject-attribute i hchange-descriptor i)

hreferent i �! object j components

hchange-descriptor i �! hplatonic-relation i j hobject-descriptor i

hplatonic-relation i �! successor j predecessor j opposite

hplatonic-letter i �! a j b j c j . . . j z

Figure 3.2: A grammar that describes the precise structure of Metacat's rules.
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The symbols intrinsic, extrinsic, and verbatim distinguish di�erent types of rule

clauses. Verbatim clauses|the simplest|contain just a list of platonic Slipnet letters

representing a literal transformation to a new string consisting of exactly those letters.

The rule Change string to \abd", for example, consists of the single verbatim clause

(verbatim (a b d)).

In contrast, both intrinsic and extrinsic clauses refer to speci�c objects in a string

via object-descriptions. An object-description is a trio of Slipnet nodes that uniquely

identi�es a particular object in a string. The �rst node indicates whether the object

is a letter or a group; the second and third nodes specify some attribute of the

object that distinguishes it from other objects in its string. For example, an object-

description consisting of the nodes letter, String-Position, and rightmost would refer

to the letter c in the string abc, or to the rightmost letter k in iijjkk . An object-

description consisting of the nodes group, Length, and three would refer to the group

jjj in mrrjjj , or to the group bbb in abbbc. An object-description consisting of

letter, Letter-Category , and b would refer to the letter b in abcd .

In general, any Slipnet category node|in conjunction with any descriptor node

associated with the category|may be used to designate an object. It is also possible

for an object-description to refer to the string itself, rather than to a speci�c letter or

group, even though there is no \string" concept in the Slipnet. In this case, the special

symbol string is used as the object type, along with the attribute String-Position and

the descriptor whole. Such an object-description, for example, could be used to refer

to the string pxq , which cannot otherwise be described as a unit (unlike the string

abc, which can be described as a group encompassing the whole string).

An extrinsic clause contains a list of object-descriptions specifying a set of objects

in a string, as well as a list of the object-attributes that get exchanged among the

designated objects (such as their string positions or letter-categories). Since any num-

ber of objects may \participate" in an exchange, any number of object-descriptions
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may appear in an extrinsic clause. For example, the rule Swap letter-categories and

lengths of leftmost group, middle letter, and rightmost group, which could describe the

string change eeqee) qeeq , consists of an extrinsic clause containing three object-

descriptions:

� (group String-Position leftmost)

� (letter String-Position middle)

� (group String-Position rightmost)

and two object-attributes: Letter-Category and Length. As a special case, if an

extrinsic clause contains only one object-description, then the designated object's

components are involved in the exchange, rather than the object itself. For example,

eeqee) qeeq could be described more generally as Swap letter-categories and lengths

of all objects in string (assuming that ee groups exist in eeqee). The extrinsic clause

for this rule would contain just one object description:

� (string String-Position whole)

and the same two object-attributes as before: Letter-Category and Length, indicating

that the string's component objects ee , q, and ee exchange their letter-categories and

lengths.

In contrast to an extrinsic clause, an intrinsic clause refers to just one object in

a string, so only one object-description is needed. However, any number of changes

to this object may be speci�ed. Consequently, any number of change-descriptions

are permitted in an intrinsic clause. Each change-description describes a particular

change made either to the object itself, or to all of the object's components (if the

object is not a letter). A change-description consists of three parts: a tag symbol that

indicates whether the change applies to the object or to the object's components, the

particular object-attribute being changed (such as Letter-Category or Length), and a
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descriptor that speci�es how the attribute changes. This descriptor may be either an

abstract relationship (i.e., successor , predecessor , or opposite), or a literal descriptor

(such as d or three). For example, the change-description

(object Length successor)

says to increase the length of an object by one. This change-description, in conjunc-

tion with the object-description (group String-Position whole), would transform the

string abc to abcd (assuming that abc is seen as a string-spanning successor group).

On the other hand, if the change-description's referent symbol were components in-

stead of object, then the length of each letter in abc would be increased by one,

resulting in the string aabbcc. Alternatively, both of these string changes could be

described in a literal way by using an explicit length descriptor in place of successor

(i.e., four in the case of abc)abcd , or two in the case of abc)aabbcc). Sometimes,

using a literal change-descriptor is the only way to describe a change, as in the case

of abc)abcde or abc)aaabbbccc (since the concept of \double-successorship"

is unknown to Metacat). Finally, for any particular object-attribute, only certain

platonic relations can be used to describe a change at an abstract level. For exam-

ple, changing a group's length can be described abstractly by the relations successor

and predecessor , but changing its direction can only be described by the relation

opposite, since the idea of successorship or predecessorship makes no sense for a

direction. These examples are summarized in Figure 3.3.

In general, any number of intrinsic or extrinsic clauses are permitted in a rule, so

any number of independent changes|involving any number of objects in a string|

can be expressed. In practice, however, most rules describe no more than two or

three changes, simply because the more complicated it becomes to describe the trans-

formation of one string into another, the more di�cult it becomes for Metacat to

discover any underlying similarity between the strings in the �rst place, on which it
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String change Object-description Change-description

abc)abcd (group String-Position whole) (object Length successor)

abc)abcd (group String-Position whole) (object Length four)

abc)aabbcc (group String-Position whole) (components Length successor)

abc)aabbcc (group String-Position whole) (components Length two)

abc)abcde (group String-Position whole) (object Length �ve)

abc)aaabbbccc (group String-Position whole) (components Length three)

abc) cba (group String-Position whole) (object Direction opposite)

Figure 3.3: Examples of intrinsic change-descriptions applied to the string abc (seen

as a string-spanning successor group).

could then base a rule. For example, the string change abc)ddaxxx could theo-

retically be described as reversing the direction of abc while simultaneously changing

(1) the letter-category and length of the rightmost letter c to its successor; (2) the

letter-category of the middle letter b to its predecessor; and (3) the letter-category

and length of the leftmost letter a to x and three, respectively. Such a contrived rule,

while indeed expressible as a set of intrinsic-clauses, is unlikely to ever be built, since

it relies rather arbitrarily on seeing a as corresponding to xxx and c as correspond-

ing to dd (much more likely would be the verbatim rule Change string to \ddaxxx").

The point is that the expressive power of Metacat's rule formalism is substantially

greater than Metacat's power to discover rules. In other words, Metacat's ability

to describe di�erences between strings is limited more by the constraints that arise

out of its mechanisms for perceiving similarity between strings than by restrictions

imposed by the grammatical formalism used to represent rules.

We round out the present section by exhibiting the complete internal structure of

several of the rules listed in the \Metacat rule sampler" given earlier (see Figure 3.4).

The English language \fa�cade" of each rule appears in a box immediately above the

rule's actual representation in terms of Slipnet concepts, along with a pair of strings

that could serve as the basis for building the rule.
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Change alphabetic-position of single letter to opposite a) z

((intrinsic ((letter String-Position single))

((object Alphabetic-Position opposite))))

Reverse direction of whole group

Increase lengths of all objects in whole group by one
abc) ccbbaa

((intrinsic ((group String-Position whole))

((object Direction opposite)

(components Length successor)

(components Object-Category group))))

Change rightmost letter to a `d' group of length two

Reverse direction of whole group
abc)ddba

((intrinsic ((letter String-Position rightmost))

((object Letter-Category d)

(object Object-Category group)

(object Length two)))

(intrinsic ((group String-Position whole))

((object Direction opposite))))

Swap lengths of leftmost group and rightmost group aabccc)aaabcc

((extrinsic ((group String-Position leftmost)

(group String-Position rightmost))

(Length)))

Increase lengths of all objects in string by one

Swap letter-categories of all objects in string
eqe) qqeeqq

((intrinsic ((string String-Position whole))

((components Length successor)

(components Object-Category group)))

(extrinsic ((string String-Position whole))

(Letter-Category)))

Figure 3.4: The complete internal structure of several rules from section 3.3.3.
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One last point is worth mentioning. In general, if a string change involves one or

more letters that change their length, then the corresponding rule structure will in-

clude change-descriptions stipulating that Object-Category changes to group|since

increasing a letter's length necessarily turns it into a group|in addition to the ap-

propriate Length change-descriptions. However, in order to avoid redundancy, the

English rendition of such a rule does not usually mention these \extra" change-

descriptions explicitly. The second and �fth rule examples in Figure 3.4 illustrate this

point (although the third rule, which is more literal than the others, does mention the

letter-to-group change explicitly). In any case, regardless of a rule's outward English

appearance, all of the information that uniquely characterizes the rule is present in its

underlying conceptual structure, which is the only representational level that really

matters.

3.3.5 Measures of rule quality

In Copycat, the strength of a rule is a function of (1) the conceptual depths of

its descriptors, and (2) whether or not these descriptors play a role in the current

mapping between the initial string and target string (more speci�cally, between the

changed letter in the initial string and its corresponding object in the target string).

For example, to describe abc)abd , Copycat may build the rule Replace letter-

category of rightmost letter by successor or the rule Replace `c' by `d'. The former

rule involves the concepts rightmost and successor , which have greater conceptual

depth than the concepts c or d, so this rule is in general the stronger one|unless the

concept of c (rather than rightmost) happens to apply to c's corresponding object in

the target string. This would be the case in the problem \abc)abd; xccx)?" if

the c in abc were mapped to the middle cc group in xccx (based on the concept-

mapping c) c), rather than to the rightmost letter x (based on the concept-mapping

rightmost) rightmost).
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In Metacat, the calculation of rule strength is less straightforward, because the

internal structure of rules may be arbitrarily complicated. The quality of a rule in

Metacat depends not only on the conceptual depths of the rule's constituent concepts,

but also on the internal \coherence" of these concepts. More precisely, the quality of

a rule is a function of three independent measures:

� The uniformity of a rule, which re
ects to what extent di�erent rule clauses

describe objects (or changes to those objects) in the same way.

� The abstractness of a rule, which re
ects the depths of the concepts used to

describe objects (or changes to those objects).

� The succinctness of a rule, which re
ects the number of rule clauses used to

describe objects (or changes to those objects).

All of these measures, to be discussed below, depend only on the internal structure

of a rule. In the current version of Metacat, the quality of a rule is not sensitive to the

perceptual context in which the rule is used (unlike in Copycat, as described above),

although ideally it should be. The situation in Metacat is complicated by the fact

that a single rule may specify any number of objects as changing in the initial string.

Some of these objects may be described in the same way as their corresponding target

string objects (as in the case of a leftmost object mapping to a leftmost object), while

others may be described di�erently (as in the case of a rightmost object mapping

to a `c' object). All of these potentially con
icting considerations would need to be

taken into account in order to judge the quality of a rule with respect to a particular

perceptual context. In other words, the quality of a rule should be a function both of

the rule's internal structure and of the string mappings that exist in the Workspace.

This problem should eventually be remedied. Nevertheless, the present method of

calculating rule quality su�ces to allow rules to be qualitatively ranked, relative to

one another, in a plausible fashion.
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Uniformity

As explained in section 3.3.4, rule clauses refer to objects in a string in terms of

attributes such as string position (e.g., the rightmost letter) or letter-category (e.g.,

the `c' letter). When several objects change in a string, there should be pressure to

refer to these objects in a uniform way, using the same object-attribute. Likewise,

there should be pressure to describe the changes in a uniform way|either all in terms

of abstract relationships (such as successor), or all in terms of literal descriptors (such

as d). The uniformity of a rule is thus a function of:

1. The uniformity of the intrinsic-clause object-description attributes. For exam-

ple, the string change abc)xxx could be described by each of the three rules

shown below:

(1) Change letter-category of leftmost letter to `x'

Change letter-category of middle letter to `x'

Change letter-category of rightmost letter to `x'

(2) Change letter-category of letter `a' to `x'

Change letter-category of letter `b' to `x'

Change letter-category of letter `c' to `x'

(3) Change letter-category of alphabetic-�rst letter to `x'

Change letter-category of letter `b' to `x'

Change letter-category of rightmost letter to `x'

Rule (1) and Rule (2) are equally uniform, since both identify all of the changed

objects either in terms of their string positions or their letter-categories. In

contrast, Rule (3) describes the objects using a heterogeneous mixture of three

di�erent object-attributes, so it is less uniform than the other two rules.

2. The uniformity of the extrinsic-clause object-description attributes. For exam-

ple, the string change abc) cba could be described by each of the three rules

shown below:



3.3 Building Rules in Metacat 99

(1) Swap positions of leftmost letter and rightmost letter

(2) Swap positions of letter `a' and letter `c'

(3) Swap positions of letter `a' and rightmost letter

As in the previous example, the �rst two rules are equally uniform, and both

are more uniform than the third rule.

3. The uniformity of the intrinsic-clause change-descriptors. For example, the

string change abc) bad could be described by each of the three rules shown

below:

(1) Change letter-category of leftmost letter to successor

Change letter-category of middle letter to predecessor

Change letter-category of rightmost letter to successor

(2) Change letter-category of leftmost letter to `b'

Change letter-category of middle letter to `a'

Change letter-category of rightmost letter to `d'

(3) Change letter-category of leftmost letter to successor

Change letter-category of middle letter to `a'

Change letter-category of rightmost letter to `d'

In Rule (1), all of the changes are described in terms of abstract successor or

predecessor relationships; in Rule (2) all changes are described literally. These

two rules are thus equally uniform (although they are not equally abstract).

However, both are more uniform than Rule (3), which describes the changes

using a mixture of abstract and concrete descriptors.

4. The uniformity of the clause types used to describe changes. For example, the

string change eqe) qeq could be described by each of the three rules shown

below:
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(1) Change letter-category of leftmost letter to `q'

Change letter-category of middle letter to `e'

Change letter-category of rightmost letter to `q'

(2) Swap letter-categories of leftmost letter, middle letter, and rightmost letter

(3) Change letter-category of leftmost letter to `q'

Swap letter-categories of middle letter and rightmost letter

Rule (1) describes all of the changes intrinsically, while Rule (2) describes the

changes extrinsically. Both of these rules are more uniform than Rule (3), which

describes the changes using a mixture of intrinsic and extrinsic clauses.

Abstractness

The quality of a rule also depends on the average conceptual depth of its descrip-

tors. In general, abstract descriptions of string changes are preferred over literal

descriptions. The abstractness of a rule is thus a function of:

1. The average conceptual depth of object-description attributes. For example, both

of the rules shown below could describe the string change abc)xxx , but the

�rst rule is more abstract than the second:

(1) Change letter-category of leftmost letter to `x'

Change letter-category of middle letter to `x'

Change letter-category of rightmost letter to `x'

(2) Change letter-category of letter `a' to `x'

Change letter-category of letter `b' to `x'

Change letter-category of letter `c' to `x'

Likewise, both of the rules shown below could describe abc) cba , but the �rst

rule is more abstract than the second one, since the concept of String-Position

is of greater conceptual depth than the concept of Letter-Category :
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(1) Swap positions of leftmost letter and rightmost letter

(2) Swap positions of letter `a' and letter `c'

2. The average conceptual depth of the intrinsic-clause change-descriptors. For

example, both of the rules shown below could describe abc) bad , but the �rst

one is more abstract than the second one:

(1) Change letter-category of leftmost letter to successor

Change letter-category of middle letter to predecessor

Change letter-category of rightmost letter to successor

(2) Change letter-category of leftmost letter to `b'

Change letter-category of middle letter to `a'

Change letter-category of rightmost letter to `d'

3. The average conceptual depth of the extrinsic-clause object-attributes. For ex-

ample, abc) cba could be described by both of the rules shown below (the

�rst rule is based on bridges a{a and c{c, while the second is based on bridges

a{c and c{a):

(1) Swap positions of leftmost letter and rightmost letter

(2) Swap letter-categories of leftmost letter and rightmost letter

Rule (1) is more abstract than Rule (2), since the String-Position concept has

a greater conceptual depth than the Letter-Category concept.3

3On the other hand, however, it could be argued that Rule (2) is actually the more abstract rule,

since Rule (1) is based on mapping a to a and c to c, which is a very concrete and obvious thing to

do, whereas seeing abc)cba as a turning into c and vice versa amounts to a subtler (and hence

more abstract) interpretation. This example shows that, in general, the mappings underlying rules

also need to be taken into account when judging rule quality, as was mentioned earlier on page 97.
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Succinctness

There should be pressure to create shorter, more concise rules whenever possible.

Accordingly, the fewer clauses a rule has, the better. Also, the ability of rules to

describe changes in terms of the components of an object|without having to refer

to each component directly|powerfully assists in the creation of pithy rules. The

succinctness of a rule is thus a function of:

1. The total number of clauses in a rule. For example, both of the rules shown

below could describe abc) cba , but the �rst one is more succinct than the

second:

(1) Swap letter-categories of leftmost letter and rightmost letter

(2) Change letter-category of leftmost letter to `c'

Change letter-category of rightmost letter to `a'

2. The degree to which changes are described in terms of the components of objects.

For example, both of the rules shown below could describe abc)aabbcc, but

the �rst one is more succinct than the second:

(1) Increase lengths of all objects in string by one

(2) Increase length of leftmost letter by one

Increase length of middle letter by one

Increase length of rightmost letter by one

As another example, both of the rules shown below could describe eqe) qeq ,

but the �rst is more succinct than the second, even though both rules consist

of just one extrinsic-clause:
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(1) Swap letter-categories of all objects in string

(2) Swap letter-categories of leftmost letter, middle letter, and rightmost letter

Finally, for completeness, two other special cases should be mentioned. The identity

rule Don't change anything is maximally uniform, maximally abstract, and maximally

succinct. Verbatim rules, such as Change string to \abd", are maximally uniform,

minimally abstract, and maximally succinct.

3.3.6 The rule-abstraction process in detail

Metacat's structure-building processes|in keeping with the idea of the parallel ter-

raced scan|are broken up into sequences of smaller steps carried out by chains of

codelets. Thus the creation of a rule, like that of any other type of Workspace

structure, is accomplished in several stages. First, a Rule-scout codelet examines

the bridges built between the initial string and the modi�ed string. Based on the

slippages underlying these bridges, the codelet tries to \abstract out" a high-level

description of how the initial string changes. If such a description can be found, it

is proposed as a new rule, although at this stage the accuracy of the rule cannot be

guaranteed. There is also some (small) chance that the codelet will simply ignore

the bridges and instead propose a verbatim rule, bypassing the abstraction process

entirely.

In any case, the newly proposed rule is subsequently evaluated by a Rule-evaluator

codelet, which determines (1) whether or not the rule actually works (that is, whether

applying the rule to the initial string really does produce the modi�ed string), and (2)

whether the rule is of high enough quality to actually merit building. If the proposed

rule passes these tests, it then gets built by a Rule-builder codelet.4

4Unlike in Copycat, building a new rule in Metacat does not require that a previously existing

rule be destroyed. Instead, many di�erent rules can coexist in Metacat's Workspace, although only
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Figure 3.5: A possible mapping for abc) cba

The �rst stage in this process|proposing a rule based on the slippages underlying

the horizontal bridges|is fairly intricate, because in general any given set of slippages

can be described in many di�erent ways. Taken individually, every slippage represents

some type of intrinsic change to an object, but it may instead be possible to describe a

change extrinsically, in conjunction with other slippages. For example, the abc) cba

mapping shown in Figure 3.5 involves the slippages a) c (supporting the a{c bridge)

and c) a (supporting the c{a bridge). Each slippage by itself represents an intrinsic

letter-category change (either to the letter-category c or to a) of a single letter, but

taken together they represent an extrinsic letter-category swap involving two letters.

These slippages could therefore give rise either to the rule

Swap letter-categories of leftmost letter and rightmost letter

consisting of a single extrinsic clause, or to the rule

Change letter-category of leftmost letter to `c'

Change letter-category of rightmost letter to `a'

consisting of two intrinsic clauses. In fact, several other variants of these rules are

possible, depending on whether the letters a and c in abc are described in terms

of their string position (e.g., the rightmost letter) or their letter-category (e.g., the

letter `c' ).

one of them will be associated with any given answer at a time.
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Figure 3.6: A possible mapping for eqe) qeq

As another example illustrating a wide range of possibilities, consider the mapping

eqe) qeq , in which bridges e{q , q{e , and e{q are supported by the letter-category

slippages e) q, q) e, and e) q (see Figure 3.6). These slippages could be described

as three separate intrinsic letter-category changes to the leftmost, middle, and right-

most letters of eqe ; as a combination of intrinsic and extrinsic changes (such as

swapping the letter-categories of the leftmost and middle letters, and changing the

letter-category of the rightmost letter to q); or as a single letter-category swap involv-

ing all three letters. In the latter case, the swap could be described either as explicitly

involving the leftmost, middle, and rightmost letters of eqe, or as involving all of the

components of eqe . Furthermore, as in the previous example, the letters e, q, and

e could themselves be described in numerous ways (e.g., q could be described as the

letter `q' instead of the middle letter). All of these possible ways of constructing a

rule from the bridges shown in Figure 3.6 must be potentially discoverable by the

program; none should be excluded in principle. Thus, the rule abstraction process is

necessarily stochastic.

Another factor that complicates the creation of rules is the fact that some slip-

pages may be redundant or \misleading", and should therefore be disregarded when

abstracting a rule. For example, Figure 3.7 shows a mapping for abc)abcd in

which the leftmost and rightmost letters of abc map, respectively, to the leftmost

and rightmost letters of abcd , and the length-three successor group abc maps as a

whole to the length-four successor group abcd . The latter bridge is supported by

the slippage three) four, which serves as the basis for constructing the rule Increase
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Figure 3.7: A possible mapping for abc)abcd

length of string by one. However, the c{d bridge is supported by the slippage c)d,

which is, in a sense, already \implied" by the three) four length slippage. Including

the extra clause Change letter-category of rightmost letter to successor, based on an

intrinsic change arising from the slippage c)d, would result in an incorrect rule, so

this slippage should be ignored.

In general, Rule-scout codelets rely on a set of heuristics to help them avoid

incorporating redundant or spurious changes into a rule. These heuristics increase

the likelihood that a proposed rule correctly describes the di�erences between the

initial string and the modi�ed string|although this is not guaranteed to be the case,

because the heuristics eventually break down if the horizontal mapping becomes too

complicated. However, even if an errant rule manages to slip by the heuristics in

the initial stage of rule creation, it will still be detected|and eliminated|by a Rule-

evaluator codelet at the next stage.

It is important to stress that the heuristics used by Rule-scout codelets are not

essential to the rule-creation process in principle. Rather than relying on heuristics

to eliminate redundant changes, a possible alternative approach might be to simply

eliminate some of the changes on a probabilistic basis. This approach would rely

completely on the subsequent evaluation stage to �lter out spurious rules. Eventually,

if a rule were proposed with just the right combination of changes that enabled it

to correctly describe the transformation of the initial string into the modi�ed string,

it would survive the evaluation stage and actually get built. However, this more
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\bottom-up" approach would signi�cantly slow down the rule-creation process as

mappings between strings became more complex. More and more time would be

spent proposing (and then rejecting) rules that were doomed to failure from the start.

The space of potentially discoverable rules would nevertheless remain the same. Thus

the use of heuristics speeds up the rule-discovery process but does not represent a

fundamental increase in computational power beyond that provided by the parallel

terraced scan.

A step-by-step outline of the abstraction process

To abstract a rule from a set of bridges, a Rule-scout codelet �rst creates a hetero-

geneous mixture of intrinsic and extrinsic changes based on the bridges' supporting

slippages. At the outset, all possible intrinsic changes speci�ed by individual slippages

are included in the mix. Next, if extrinsic changes are possible, they get thrown into

the mix on a probabilistic basis. In addition, if \component" versions of intrinsic or

extrinsic changes are possible (i.e., changes that refer to all of the components of an

object), they also get thrown in probabilistically. Redundant changes are then �ltered

out of the resulting mixture through the application of rule-abstraction heuristics act-

ing as a kind of \sieve", leaving behind a �nal set of intrinsic and extrinsic changes.

These changes are then used to create the actual set of rule clauses making up the

new rule. A more detailed outline of this process is given below, along with examples

illustrating each step.

1. An initial set of intrinsic changes is created from the individual slippages under-

lying all of the horizontal bridges. For example, a total of seven intrinsic changes

would be created from the abc) ccbbaa mapping shown in Figure 3.8: one

describing the string abc as reversing direction (based on the right) left slip-

page underlying the top-level bridge); three describing the letters a, b, and c
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Figure 3.8: A possible mapping for abc) ccbbaa

as each changing from a letter to a group (based on the letter) group slip-

pages underlying the bridges a{aa , b{bb, and c{cc); and three describing the

letters as each changing in length from one to two (based on one) two slip-

pages underlying the bridges a{aa , b{bb, and c{cc). The bridges a{aa and

c{cc are also supported by the string-position slippages leftmost) rightmost

and rightmost) leftmost, but since changes to an object's position cannot be

described intrinsically, these slippages do not contribute anything at this stage.

2. A few randomly-chosen subsets of bridges are examined in order to see whether

any symmetries exist among the underlying slippages. If a symmetry is de-

tected, an extrinsic change describing this symmetry is added to the current

set of changes with some probability. For example, if the bridges a{aa and

c{cc in Figure 3.8 happen to be examined together, the symmetric slippages

leftmost) rightmost and rightmost) leftmost will be noticed. Based on these

slippages, an extrinsic change describing a string-position swap between the

letters a and c in abc may get created. On the other hand, if a di�erent set

of bridges were examined (such as a{aa and b{bb), no such swap would be

detected.

3. An extrinsic change that happens to involve all of the components of some

higher-level object can be described either concretely in terms of the individual
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components themselves, or more abstractly in terms of the higher-level object.

Whenever such an extrinsic change is created, the level of abstraction used to

describe the relevant objects is chosen probabilistically. For example, in Fig-

ure 3.6, an extrinsic letter-category swap involving the letters e, q, and e of eqe

might get created on the basis of symmetric e) q and q) e slippages shared

between all three bridges. The three letters of eqe could either be described in-

dividually (perhaps resulting in the rule Swap letter-categories of leftmost letter,

middle letter, and rightmost letter), or collectively, as the components of the

string eqe (resulting in the rule Swap letter-categories of all objects in string).

4. It is also possible for intrinsic changes to collectively refer to the components

of objects. Sets of bridges that are \anchored" to all of an object's components

are examined to see whether they have any slippage patterns in common. If a

common pattern is found, an intrinsic change describing this pattern is added

to the current set of changes with some probability. For example, in Figure 3.8,

the bridges a{aa , b{bb, and c{cc, which span the components of the string

abc, all share the slippages letter) group and one) two. Accordingly, two

intrinsic changes may get created: one describing all of the components of

abc as changing from letters to groups, and another describing all of abc's

components as changing in length from one to two.

5. Once the mixture of intrinsic and extrinsic changes is complete, rule-abstraction

heuristics (described more fully below) are applied to �lter out the redundant

changes. One example of this type of redundancy has already been discussed for

the abc)abcd mapping of Figure 3.7. As another example, suppose that for

the abc) ccbbaa mapping shown in Figure 3.8, an intrinsic change had been

created specifying that all of abc's components change to groups (as in step 4

above). This would e�ectively render \obsolete" the original three intrinsic
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changes (created in step 1 above) that individually describe the letters a, b,

and c as changing to groups. Consequently, these changes would be suppressed

by the heuristics.

6. The last step in the rule-abstraction process creates the actual rule clauses that

appear in the proposed rule, based on the �nal remaining set of intrinsic and

extrinsic changes. Descriptions of changed objects, and the level of abstraction

used in describing the changes themselves, are chosen probabilistically as a

function of the particular concepts involved. For example, suppose that for

the abc) ccbbaa mapping of Figure 3.8, an extrinsic change is created that

describes a and c in abc as swapping positions. The proposed rule might refer

to these letters in terms of their string positions (Swap positions of leftmost

letter and rightmost letter), or their letter-categories (Swap positions of letter

`a' and letter `c' ), or even both (Swap positions of leftmost letter and letter

`c' ). Similarly, if an intrinsic change is created that describes all of abc's

components as changing in length from one to two, the proposed rule might

describe this either abstractly (Increase lengths of all objects in string by one)

or literally (Change all objects in string to groups of length two). In both cases,

the choices are biased by the conceptual depths of the relevant concepts (i.e.,

String-Position versus Letter-Category in the �rst case; successor versus two in

the second).

Rule-abstraction heuristics

The remainder of this section summarizes the rule-abstraction heuristics used by

Metacat to create new rules. Since horizontal mappings can become arbitrarily com-

plicated, depending on the particular strings involved, the use of these heuristics does

not always result in legitimate rules being proposed, although it does greatly improve

the odds in their favor.
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Figure 3.9: A possible mapping for aa) bb

� If the components of an object are collectively described as all changing in

some way, then these changes do not need to be described on an individual

basis, and are therefore suppressed. An example of this was given earlier for the

abc) ccbbaa mapping shown in Figure 3.8. Describing the components of abc

as all changing to groups and all changing in length from one to two suppresses

the individual letter) group and one) two changes associated with each of

the letters a, b, and c.

� If a group is described as changing its letter-category, then changes to the letter-

categories of its constituent objects do not need to be individually described,

and are therefore suppressed. For example, all three bridges shown in Figure 3.9

for the mapping aa) bb are supported by an a)b letter-category slippage,

and thus give rise to three separate letter-category changes: one to the aa

group itself, and one to each of its letters. However, the latter two changes

are redundant, since changing the letter-category of the group automatically

implies changing the letter-category of each of its letters.

� If an object is described as changing its alphabetic-position (i.e., from �rst to

last, or vice versa), there is no need to describe its letter-category as changing,

since this is implied by the alphabetic-position change. For example, if the aa

group in the aa) zz mapping shown in Figure 3.10 is described as changing its
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Figure 3.10: A possible mapping for aa) zz

alphabetic-position from �rst to last, the group's letter-category change (based

on the a) z letter-category slippage underlying the top-level bridge) will be sup-

pressed, as will the individual letter-category and alphabetic-position changes

associated with the group's constituent letters.

� If a group is described as changing in length, then individual changes to the

letter-categories of its constituent objects may in fact be spurious \side-e�ects"

of the length change, and are therefore suppressed. An example of this was

given earlier for the abc)abcd mapping shown in Figure 3.7. This mapping

gives rise to two intrinsic changes: a three) four length change to the group

abc, and a c)d letter-category change to the letter c. The latter change,

however, is suppressed, since it is really a consequence of the former change.

� If a group is described as changing to a letter, there is no need to describe

the group's length as changing to one, since this is automatically implied by

the group-to-letter change. The length change is therefore suppressed. For

example, an aa)a bridge would give rise to two intrinsic changes to the aa

sameness group: an object-type change based on the slippage group) letter,

and a length change based on the slippage two) one. Only the �rst change,

however, would be included in the �nal set of changes used to create the new

rule.
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� If several intrinsic changes happen to describe a set of objects in a way that is

equivalent to some extrinsic change, then the intrinsic changes are suppressed.

For example, in the eqe) qeq mapping shown in Figure 3.6, an intrinsic letter-

category change is created for each of the letters e, q, and e of eqe. However,

an extrinsic change describing a three-way letter-category swap among these

letters may also get created|in which case the intrinsic changes are redundant,

and are therefore suppressed.

3.4 Nondeterministic Rule Translation

Once a new rule has been built, it is available for Answer-�nder codelets to use in

trying to create new answers. These codelets probabilistically decide whether or not

to attempt answer creation on the basis of the overall strengths of the horizontal and

vertical mappings between strings5 (as long as these mappings are weak, codelets are

unlikely to try).

At any given time in Metacat's Workspace, there may be several di�erent rules

available for codelets to choose from (unlike in Copycat, where only one rule at a

time can exist). Codelets choose rules probabilistically as a function of rule quality

and the degree of support each rule currently has in the Workspace. A rule's degree

of support depends on the strengths (and continued existence) of the original bridges

used in creating the rule. In general, since the horizontal mapping between the initial

and modi�ed strings may change over time, bridges that played a critical role in the

creation of a particular rule may no longer exist at the time the rule is chosen by an

Answer-builder codelet|or if they do still exist, they may be very weak. Additionally,

new bridges or groups may have been built that cause the chosen rule to no longer

work correctly when applied to the initial string. In any case, if the situation has

5The strength of a mapping between two strings is a function of the average mapping-speci�c

happiness values of the objects in the strings. These values were discussed earlier in section 3.3.1.
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changed to the extent that the chosen rule either is no longer supported by strong

bridges or no longer works, the codelet abandons the rule and �zzles. Otherwise, the

codelet translates the rule from the \top" situation represented by the initial string

into the analogous \bottom" situation represented by the target string, using the

slippages underlying the vertical mapping between the initial string and target string

as a guide. The translated rule is then applied to the target string, as in Copycat,

yielding either a new answer or a \snag" condition.

The rule-translation process in Metacat is more complicated than in Copycat,

due to the greater structural complexity of Metacat's rules, but the basic principles

are the same. The slippages supporting the vertical bridges are applied to the con-

cepts making up the rule, causing some of them to \slip" to new concepts. However,

in Metacat this process is nondeterministic, whereas in Copycat it is deterministic.

(Copycat's decision whether or not to translate a rule is made probabilistically, but

the translation process itself is deterministic.) This allows a greater degree of \slop-

piness" on the part of the program when coming up with answers, as illustrated in

the following examples.

One way of interpreting the problem \abc)aabbcc; iijjkk)?" is to regard all

of the letters of abc as increasing their lengths by one. If the sameness groups ii ,

jj , and kk are seen as the \letters" of iijjkk , the answer iiijjjkkk suggests itself.

Likewise, the problem \abc)aabbcc; kkjjii)?" can be viewed in the same way,

suggesting the answer kkkjjjiii . However, here the pressures are somewhat di�erent,

since abc is a successor group but kkjjii is a predecessor group (assuming that the

strings are both seen as going to the right). Perhaps the kk , jj , and ii groups should

instead decrease their lengths by one, in accordance with the successor{predecessor

symmetry, yielding the answer kji . Figures 3.11 and 3.12 show con�gurations of

Metacat's Workspace that represent these two situations. Both con�gurations in-

volve exactly the same string mappings, but exhibit di�erent answers due to the
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Figure 3.11: Applying the successor) predecessor slippage when translating the rule

yields the answer kji.
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Figure 3.12: Ignoring the successor) predecessor slippage when translating the rule

yields the answer kkkjjjiii.

probabilistic nature of rule translation. In the �rst case, the successor)predecessor

slippage supporting the top-level vertical bridge was applied to the rule, resulting in

the translated rule Decrease lengths of all objects in string by one (i.e., change the

lengths of objects to their predecessor instead of successor), while in the second case

this slippage was not applied.

As another example, Figures 3.13 and 3.14 show two essentially identical Work-

space con�gurations for the problem \abc) cba; mrrjjj)?", in which mrrjjj is

seen as a 1{2{3 successor group corresponding to abc, and the letters a and c of abc
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Figure 3.13: Applying the Letter-Category)Length slippage when translating the

rule yields the answer mmmrrj.
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Figure 3.14: Ignoring the Letter-Category)Length slippage when translating the

rule yields the answer jrrmmm.
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are interpreted as swapping their letter-categories (as opposed to their string posi-

tions). In the �rst case, the Letter-Category)Length slippage is taken into account

when translating the rule, resulting in the lengths of group m and group jjj being

swapped. In the second case, this slippage is ignored, resulting in the letter-categories

of m and jjj being swapped.

3.4.1 Coattail slippages

There is another way in which Metacat's rule translation process is nondeterministic,

apart from probabilistically ignoring certain vertical bridge slippages. This has to do

with slippages that get pulled along on the \coattails" of other, related slippages. In

Copycat, no such coattail-slippage mechanism exists, although Mitchell notes that it

would be a desirable extension of the program [Mitchell, 1993, page 192]. A simple

example that illustrates this idea is the problem \a) b; z)?". A natural answer is

y , based on the notion that since a changes to its successor and z is, in an alphabetic

sense, the opposite of a, one should do the \opposite thing" to z and change it to

its predecessor. This answer makes all the more sense given the fact that taking the

successor of z is impossible. Unfortunately, Copycat cannot get this answer, because

using the slippage successor)predecessor in translating the rule can only be done

if that slippage supports some vertical bridge. In this problem, the only potential

slippage between a and z is �rst) last; the concepts successor and predecessor

never come up, so there is no way for the translated rule to specify changing z to its

predecessor instead of its successor.

In Metacat, however, applying a �rst) last slippage to the successor concept in

some rule may occasionally cause the concept to slip to predecessor , even though

the slippage explicitly speci�es slipping only �rst to last. The reason for this is that

the successor concept is linked to predecessor in the Slipnet via a link labled by the

concept opposite, which also characterizes the �rst) last slippage. If opposite is
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Figure 3.15: An example of rule translation in which a �rst) last slippage causes

both the concept �rst and the concept successor to slip to their opposite concepts.

strongly activated, the distance between successor and predecessor shrinks, making a

successor)predecessor slippage more likely in the presence of any type of opposite

slippage. Thus, it is indeed possible for Metacat to get the answer y to the above

problem (see Figure 3.15). In general, a slippage labeled by a highly activated concept

(such as opposite) may cause slippages of a similar type to occur between other

concepts that are not explicitly present in the original slippage (but that are related

in the same way). The probability of such coattail slippages occurring is a function

of the activation of the original slippage's label node.
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Figure 3.16: Another example illustrating the \coattail slippage" e�ect.

As another example, consider the problem \abc)abd; glz)?", discussed by

Mitchell. Even if Copycat notices the alphabetic a{z symmetry in this problem

and consequently maps the rightmost letter c of abc to the leftmost letter g of

glz , it cannot answer 
z , since there is no possibility of seeing glz as a left-going

predecessor group, which would give rise to a successor)predecessor slippage. The

best it can do is to answer hlz . Metacat, on the other hand, can sometimes make the

successor)predecessor slippage on the coattails of the �rst) last slippage, yielding

the answer 
z (see Figure 3.16).
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3.5 Other Re�nements to Copycat

Before closing this chapter, it is worth mentioning one other re�nement that has

been made to the bridge-building mechanisms inherited from Copycat. In Metacat,

as in Copycat, the strength of a bridge depends on both the internal coherence of the

bridge and the mutual support it receives from other existing bridges6 (see [Thagard,

1989] for a discussion of similar ideas that arise in the context of scienti�c theoriz-

ing). The internal coherence and mutual support of bridges re
ect the degree to

which the underlying concept-mappings support each other. Two concept-mappings

support each other if they involve the same relationship (such as opposite) and if

their corresponding descriptors are linked in the Slipnet.

For example, the concept-mappings �rst) last and leftmost) rightmost support

each other, since both concept-mappings are labeled by the opposite relation, and the

corresponding descriptor-pairs �rst and leftmost (as well as last and rightmost) are

linked in the Slipnet. A bridge based on these two concept-mappings would therefore

be internally coherent, such as an a{z bridge in the problem shown below:

abc ) abd

xyz ) ?

Likewise, a symmetric c{x bridge based on rightmost) leftmost would rein-

force the a{z bridge, since rightmost) leftmost supports (and is supported by)

the concept-mappings leftmost) rightmost and �rst) last.

On the other hand, Copycat considers the concept-mapping �rst)�rst to be

incompatible with leftmost) rightmost, which causes problems in certain situations.

For example, consider the problem shown below:

6This is true for both horizontal and vertical bridges in Metacat, but only for vertical bridges in

Copycat. See [Mitchell, 1993, Chapter 3] for a more complete description of bridge strength.
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abc ) abd

cba ) ?

If the a letters get described as alphabetic-�rst letters, then a diagonal a{a bridge

based on the concept-mappings �rst)�rst and leftmost) rightmost is considered

to be internally incoherent, and is therefore very di�cult to build. Furthermore, such

a bridge cannot coexist with a diagonal c{c bridge, since the latter bridge would be

based on rightmost) leftmost, which con
icts with the �rst)�rst concept-mapping

underlying a{a .

In order to remedy this problem in Metacat, the notion of incompatibility be-

tween concept-mappings has been re�ned. Metacat's Slipnet includes labels on four

links that were previously unlabeled in Copycat (see Figure 3.17). These links, la-

beled by either identity or opposite, allow Metacat to make �ner distinctions between

concept-mappings. (This approach, of course, is not completely satisfactory, since the

concepts leftmost and rightmost are clearly neither identical to|nor exactly the oppo-

site of|the concepts left and right, but it nevertheless serves as a reasonable interim

solution to the problem.) In order to be incompatible, two concept-mappings must

not only be based on di�erent relationships, but the way in which their correspond-

ing descriptor-pairs are linked must also di�er. For example, the concept-mappings

leftmost) rightmost and right) right are incompatible, since (1) they are based on

di�erent relationships (i.e., opposite versus identity) and (2) the concepts leftmost

and right are linked in a di�erent way than the concepts rightmost and right (i.e., the

former pair is linked by opposite, while the latter pair is linked by identity). These

concept-mappings are also incompatible in Copycat, but for reason (1) only.

In contrast, leftmost) rightmost and �rst)�rst are not incompatible in Meta-

cat, even though one is based on opposite and the other on identity, since leftmost and

�rst are linked in the same way as rightmost and �rst (i.e., both links are unlabeled).
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rightleft

leftmost rightmost

opp

opp

oppoppiden iden

Figure 3.17: A portion of Metacat's Slipnet showing the links between the concepts

leftmost, rightmost, left, and right. New link labels are shown in grey (compare with

Figure 1.1 on page 19). Aside from these four new labels, Metacat's Slipnet is exactly

the same as Copycat's Slipnet.

For the same reason, �rst) last does not con
ict with either leftmost) leftmost or

rightmost) rightmost, unlike in Copycat. Figure 3.18 shows a situation in which

these latter concept-mappings simultaneously support a set of vertical bridges with-

out con
icting.

Although the above concept-mappings are not incompatible with each other in

Metacat, neither are they mutually supporting. For two concept-mappings to sup-

port each other, they must be based on the same relationship, and their correspond-

ing descriptor-pairs must be linked in the same way. For example, �rst) last and

leftmost) rightmost are mutually supporting (as they are in Copycat), since both

are based on the opposite relation, and the concepts �rst and leftmost are linked

in the same way as last and rightmost (i.e., both links are unlabeled). Likewise,

leftmost) rightmost and right) left support each other, since the link between

leftmost and right is labeled in the same way as the link between rightmost and

left in Metacat's Slipnet (i.e., they are both opposite links).
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Figure 3.18: A possible con�guration of Metacat's Workspace for the prob-

lem \axa) zxz; zxz)?", in which the vertical bridges are supported

by the non-con
icting concept-mappings �rst) last, leftmost) leftmost, and

rightmost) rightmost.



chapter four

An Architecture for Self-Watching

This chapter discusses in detail Metacat's new architectural components for self-

watching, which together provide a common unifying framework in which to address

the various objectives of the Metacat project outlined earlier in Chapter 2. These

objectives|making the program sensitive to patterns in its own processing, giving

the program the ability to remember its answers and to be reminded of answers it

has previously encountered, getting the program to compare and contrast di�erent

answers, and giving the program the ability to work backwards from a given answer to

a coherent justi�cation of that answer|focus on extending the capabilities of Copycat

in di�erent ways, but all share the central, overarching goal of imbuing the program

with a deeper sense of \awareness" of what it is doing (and why) as it deals with

analogy problems in its microworld.

The �rst section describes themes and the Themespace in detail, and discusses the

critical role played by themes in regulating top-down pressures in Metacat. The next

section introduces the general notion of a pattern, another central idea of Metacat.

This is followed by a discussion of how themes (and patterns of themes) enable the

program to work backwards from an answer provided by the user, in an e�ort to

discover why the answer makes sense. The next two sections discuss the Temporal

126
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Trace|the focal point of Metacat's \self-awareness"|and the way in which the pro-

gram uses the information stored there to control its own behavior. Finally, the last

section describes Metacat's long-term Episodic Memory|where abstract characteri-

zations of answers are stored|and the way in which these answers can be compared

and contrasted by the program on the basis of their abstract similarities and di�er-

ences. Detailed sample runs of the program illustrating all of these capabilities will

be presented in the following chapter.

4.1 Themes and the Themespace

As was explained in the overview of the Metacat architecture given in section 2.4 of

Chapter 2, themes are structures that represent key ideas underlying an answer to an

analogy problem. More speci�cally, they represent regularities among the bridges that

make up the mappings between strings. For example, in the problem \abc)abd;

ijk)?", if the strings abc and ijk are mapped onto each other by the vertical

bridges a{i , b{j , and c{k , these bridges will be supported by the concept-mappings

leftmost) leftmost, middle)middle, and rightmost) rightmost (among others).

These three concept-mappings are all based on the idea of string-position identity, and

thus can be represented by a single vertical theme composed of the Slipnet concepts

String-Position and identity . This particular theme would be associated with any

answer that depended on seeing abc and ijk as going in the same direction|such

as ijl or ijd . Likewise, if an answer depended on seeing abc and abd as going in

the same direction, represented by the horizontal bridges a{a , b{b, and c{d (that

is, if the answer's rule depended on this), then a horizontal1 String-Position: identity

theme would also be associated with the answer|again, as in the case of ijl or ijd .

1More precisely, a top theme, since horizontal bridges between the initial string and the modi�ed

string are being described.
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As another example, the answer kkjjii to the problem \abc) ccbbaa; ijk)?"

depends on seeing abc and ijk as going in the same direction|based, as before, on the

vertical bridges a{i , b{j , and c{k|and on seeing abc and ccbbaa as going in op-

posite directions, based on the horizontal bridges a{aa and c{cc (supported by the

slippages leftmost) rightmost and rightmost) leftmost). Consequently, the verti-

cal theme String-Position: identity and the horizontal theme String-Position: opposite

would be associated with this answer. In addition, the one) two slippages support-

ing the horizontal bridges a{aa , b{bb, and c{cc would give rise to the horizontal

theme Length: successor. Other themes are also possible. In the case of \abc)abd;

ijk)?", letter) letter concept-mappings underlie both the vertical and the hor-

izontal bridges, so vertical and horizontal Object-Type: identity themes would also

be associated with the answers ijl or ijd . In the case of \abc) ccbbaa; ijk)?",

letter) letter concept-mappings underlie the vertical bridges, while letter) group

slippages underlie the horizontal bridges, so a vertical Object-Type: identity theme

and a horizontal Object-Type: di�erent theme would be associated with the answer

kkjjii .

In general, vertical themes describe vertical bridges between the initial string and

the target string, top themes describe horizontal bridges between the initial string

and the modi�ed string, and bottom themes describe horizontal bridges between the

target string and the answer string (which get built when Metacat runs in \justify

mode", working backwards from a given answer to an interpretation of the answer).

As will become clearer later, di�erentiating between vertical, top, and bottom themes

enables Metacat to selectively focus top-down pressure on speci�c types of Workspace

structures (for example, on bridges between the initial string and the modi�ed string).

In contrast, top-down forces in Copycat are often too di�use, too lacking in speci�city

to enable the program to build the types of structures it most needs to build at a

particular moment, as Mitchell has pointed out [Mitchell, 1993, Chapter 7].
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For example, if the Slipnet concept successor-group becomes highly activated, it

will exert top-down pressure to build successor groups wherever possible, with no

preference given to any particular string, even if such groups are really only needed in

one string. Codelets may thus waste considerable time and e�ort looking for successor

groups in all the wrong places, making it less likely that they will be built where they

are really needed. Likewise, if the opposite concept is active, it will promote the

creation of bridges anywhere that are based on slippages labeled by the opposite

concept. (Of course, in Copycat only bridges between the initial string and the target

string can be built in general, so the distinction between di�erent mappings does

not arise.) In any case, themes in Metacat are associated with particular mappings

between strings, which makes them more e�ective than individual Slipnet concepts

in channeling top-down pressure in speci�c directions.

Regardless of its type, every theme consists of a category, which can be any Slipnet

category node, such as String-Position, Letter-Category , or Object-Type
2, and a

relation, which can be any Slipnet relation node (i.e., any node that can be used to

label links between concepts in the Slipnet), such as opposite, successor , or identity,

or else the absence of a speci�c concept, which represents the idea of di�erent. The

particular combination of theme-type, category, and relation uniquely identi�es every

theme. All in all, a total of 66 distinct themes are possible.

Whenever a new bridge is built between two Workspace structures, themes based

on the concept-mappings underlying the bridge get created and added to the Theme-

space, if they are not already present. For example, if a vertical bridge is built

between the letters a and z in the problem \abc)abd; xyz)?", based on the

concept-mappings leftmost) rightmost, letter) letter, and �rst) last, then the

2The theme categories Object-Type and Group-Type are alternative names for the concepts

Object-Category and Group-Category.
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vertical themes String-Position: opposite, Object-Type: identity, and Alphabetic-Pos-

ition: opposite get created and added to the Themespace. These themes remain as-

sociated with the bridge for as long as the bridge exists. If a theme happens to

already exist when a bridge based on the theme is built, then the existing theme is

associated with the new bridge, and a new theme is not created. If a vertical b{y

bridge, for instance, had already been built prior to the a{z bridge, the Object-

Type: identity theme would already exist in the Themespace (on account of the

letter) letter concept-mapping underlying the b{y bridge). A duplicate Object-

Type: identity theme would not be added to the Themespace; rather, the existing

theme would simply be associated with the new a{z bridge.

As was mentioned in Chapter 2, each theme in the Themespace has an activation

level ranging between �100 and +100. (There is no e�ective di�erence between a

theme having an activation level of zero and the theme not existing in the Theme-

space.) Themes receive periodic infusions of activation from the Workspace struc-

tures (i.e., the bridges) associated with them, as a function of structure strength,

with stronger structures sending more powerful jolts of activation to their associ-

ated themes. For instance, in the above example, the Object-Type: identity theme

would receive activation periodically from both the a{z bridge and the b{y bridge,

while the String-Position: opposite theme would receive activation from only the a{z

bridge. In the absence of further infusions of activation from the Workspace, theme

activations gradually decay over time, although the rate of decay does not depend

on the particular concepts that make up a theme (unlike concept activations in the

Slipnet, where the rate of decay depends on conceptual depth).

Generally speaking, the activation level of a theme is intended to represent how

explicitly \aware" Metacat is of a particular idea in its current interpretation of

an analogy problem. At any given time, many ideas are implicitly present in the

Workspace structures making up the mappings between strings, but highly activated
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themes represent the explicit recognition, on the part of the program, of the im-

portance of certain ideas. Put another way, the activation of a theme re
ects the

amount of \evidence" that exists in favor of regarding that particular idea as playing

an important role in characterizing the situation at hand. Ideas represented by highly

activated themes are likely to be of central importance, while ideas represented by

weakly-activated themes are likely to be irrelevant.

4.1.1 Organization of the Themespace

Not all themes are compatible with each other. In general, two themes of the same

type having the same category but di�erent relations are incompatible, since each

one re
ects a di�erent kind of relationship among a set of objects (with respect

to some particular aspect of the objects). For example, the top themes Letter-

Category: identity and Letter-Category: successor represent the mutually contradic-

tory ideas of (1) seeing objects in the initial string and modi�ed string as correspond-

ing to one another on the basis of identical letter-categories, and (2) seeing objects

in the strings as corresponding on the basis of letter-category successorship. In the

problem \abc)abcd; ijk)?", for instance, a natural way of viewing abc)abcd

is to regard the letters a, b, and c in abc as corresponding to the letters a, b, and

c in abcd (with d being the \odd letter out"). This idea, represented by a Letter-

Category: identity theme, suggests interpreting abc as a successor group beginning

with the letter a whose length increases by one.

However, an alternative (if somewhat unnatural) possibility is to regard a, b, and

c as corresponding to b, c, and d in abcd on the basis of successorship (where a is

now the odd letter). This idea, represented by a Letter-Category: successor theme,

suggests interpreting abc as a predecessor group beginning with the letter c whose

length increases by one, and whose starting letter also \increases by one" from c
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to d. Like the con
icting interpretations of a Necker cube, these two interpreta-

tions of the abc)abcd change are mutually exclusive. Having both of the themes

Letter-Category: identity and Letter-Category: successor highly active at the same

time therefore makes little sense.

In order to discourage the emergence of inconsistent interpretations of string map-

pings, incompatible themes in the Themespace exert inhibitory e�ects on each other,

in proportion to their levels of activation. More precisely, the Themespace is orga-

nized into mutually-inhibitory clusters of themes all sharing the same theme-type and

category. For instance, the top themes shown below make up one cluster:

Letter-Category: identity

Letter-Category: successor

Letter-Category: predecessor

Letter-Category: di�erent

If more than one theme within a cluster is positively activated, the themes in

the cluster will compete among themselves for dominance, in a manner reminiscent

of a \winner-take-all" network. (Themes in di�erent clusters have no e�ect on each

other.) A theme is dominant if its activation level exceeds that of all other themes in

its cluster by a substantial margin (currently set to 90). The more infusions of acti-

vation a theme receives from Workspace structures that support it, the more likely it

will be to eventually suppress its weaker intra-cluster competitors and become dom-

inant, driving the other theme activations toward zero. The idea is that as more

Workspace structures involving a particular theme are built (and the longer these

structures persist), the more evidence there is that the theme is an important orga-

nizing motif underlying the interpretation emerging in the Workspace. Themes that

accumulate enough evidence of their importance eventually gain the upper hand over

other themes in their cluster, in a kind of \locking-in" process that occurs simultane-

ously for each cluster of themes in the Themespace. The result (it is hoped) is that a
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single, consistent way of viewing an analogy problem gradually emerges from a num-

ber of mutually inconsistent alternatives vying for supremacy. Furthermore, the most

important ideas underlying the resulting interpretation are, in the end, represented

explicitly by a set of highly-activated, dominant themes in the Themespace.

To illustrate these ideas, Figure 4.1 shows a snapshot of Metacat's Themespace

during a run of the problem \abc)abd; kkjjii)?", in which a total of eight themes

have been created and added to the Themespace. The activations of top themes are

shown in the window above the Workspace, while those of vertical themes are shown

to the left. Each Themespace \panel" represents a particular cluster of themes, and is

labeled by the cluster's theme category. For instance, the letter-category top themes

Letter-Category: identity and Letter-Category: successor are shown in the leftmost

panel of the Top Themes window, with the identity theme more strongly activated

than the successor theme. This is because more top bridges have been built between

objects of identical letter-categories (i.e., the bridges a{a and b{b) than between

objects related by letter-category successorship (i.e., the bridge c{d), and thus the

former theme has received more boosts of activation than the latter. However, neither

theme is dominant in its cluster.

In contrast, the top themes String-Position: identity and Object-Type: identity are

dominant (as indicated by the highlighted panels), since each is much more strongly

activated than any competing theme within its cluster (in fact, no competing themes

exist in either cluster). This is because all three top bridges are between objects of

the same type (i.e., letters), all of which share identical positions in their respective

strings. Consequently, all three bridges contribute activation to the sameObject-Type

and String-Position themes.

In the case of the vertical mapping between abc and kkjjii , the vertical themes

Letter-Category: di�erent and String-Position: identity are dominant, re
ecting the

fact that all of the vertical bridges map objects of di�erent letter-categories and
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Figure 4.1: The state of Metacat's Themespace during a run of the problem

\abc)abd; kkjjii)?", showing the activations of various themes. Top themes,

characterizing the horizontal mapping, are shown in the window above the Workspace,

while vertical themes are shown to the left. Dominant themes are highlighted.
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identical string positions onto each other. The Object-Type cluster, however, contains

competing identity and di�erent themes, re
ecting the mixture of letter) letter and

letter) group concept-mappings underlying the vertical bridges. Consequently, no

dominant vertical Object-Type theme exists.

Figure 4.2 shows the same run after Metacat has found the answer kkjjhh . The

�nal set of dominant themes consists of the two top themes String-Position: identity

and Object-Type: identity, and the four vertical themes Letter-Category: di�erent,

String-Position: identity, Group-Type: opposite, and Direction: identity. The latter

two themes re
ect the fact that Metacat has perceived abc and kkjjii as groups of

opposite types (i.e., abc as a predecessor group and kkjjii as a successor group) going

in the same direction (i.e., both to the left). The verticalObject-Type: di�erent theme

remains just below the dominance threshold, however, due to the group) group

concept-mapping underlying the whole-string bridge between abc and kkjjii , which

con
icts with the letter) group slippages underlying the other vertical bridges. In

the case of the top themes, a weakly-activated Alphabetic-Position: identity theme

has appeared, on account of a �rst)�rst concept-mapping that got noticed and

added to the a{a bridge at some point, but this theme is not strong enough to

attain dominance. On the other hand, both Letter-Category top themes are strongly

activated, but neither one is dominant|probably due to the relatively high strength

of the c{d bridge, which prevents the successor theme from fading away or being

suppressed by the competing identity theme.

The themes in this example all exhibit positive levels of activation, represent-

ing varying estimates of the importance or centrality of particular ideas. How-

ever, negative activation levels are also possible for themes, as was mentioned ear-

lier (although negative themes normally arise only under certain special circum-

stances to be discussed fully in section 4.5.2). Unlike positively-activated themes, a

negatively-activated theme represents evidence for the absence or inappropriateness
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Figure 4.2: The state of Metacat's Themespace during a run of the problem

\abc)abd; kkjjii)?" after the program has found the answer kkjjhh.
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of a particular idea in some situation. For example, a negatively-activated Letter-

Category: identity top theme represents the notion that letter-category sameness is

not a key idea underpinning the mapping between the initial string and the modi�ed

string.

Accordingly, positive and negative themes within a single theme cluster exhibit

di�erent dynamics. Unlike a positive theme, which exerts an inhibitory e�ect on

other positively-activated themes in the same cluster, a negative theme exerts an

excitatory e�ect on positive themes within the same cluster. The rationale is that

since the negative theme represents the inappropriateness of viewing a mapping in

some way, and the positive themes represent some degree of direct evidence for al-

ternative interpretations (with respect to the same theme category), the alternative

themes should become more highly activated. For example, a negatively-activated

Letter-Category: identity theme and a positively-activated Letter-Category: successor

theme both, in a sense, \pull in the same direction"|that is, away from the idea of

letter-category sameness and towards the idea of letter-category successorship|and

this tends to reinforce the latter theme.

Likewise, as direct, positive evidence accumulates in support of ideas (i.e., as pos-

itive themes become more strongly activated), the relevance of negatively-activated

themes diminishes. Accordingly, positive themes exert an inhibitory e�ect on their

negative rivals. For example, the building of a new c{d bridge adds a bit of \evidence"

in support of the idea of letter-category successorship, thus boosting the activation of

the Letter-Category: successor theme, which in turn inhibits the negatively-activated

Letter-Category: identity theme. The overall e�ect is that a gradual shift away from

a negative characterization of a situation (e.g., \letter-category sameness is not the

key here") to a positive characterization (e.g., \letter-category successorship is the

key") takes place.

Lastly, in the case of two negatively-activated themes within the same cluster,
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Figure 4.3: The mutual excitatory and inhibitory e�ects of themes within a cluster.

Positively-activated themes inhibit one another, as well as negatively-activated themes.

Negatively-activated themes excite positively-activated themes, but have no e�ect on

one another.

neither theme has any e�ect on the other, the rationale being that the inappropriate-

ness of one idea neither supports nor contradicts the inappropriateness of alternative

ideas. For example, knowing that letter-category sameness isn't the key does not

warrant the conclusion, in the absence of any other positive evidence, that letter-

category successorship may well be. These relationships are shown schematically in

Figure 4.3.

4.1.2 Top-down in
uence of themes

In the early stages of development of the Themespace, a number of di�erent ap-

proaches were tried for integrating top-down pressure from themes with Workspace

processing and other top-down forces in Metacat. Most of these approaches, however,

proved to be unsatisfactory.

One such approach involved letting the amount of top-down pressure exerted by a

theme vary continuously in proportion to the theme's activation, so that all themes in
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the Themespace|even if only slightly activated|would continually in
uence codelet

activity in the Workspace. A similar but more indirect approach involved themes

spreading activation to their constituent Slipnet concepts|again, continuously as

a function of their own activation (a combination of these two approaches was also

tried). In addition, the amount of mutual inhibition and excitation exerted by themes

on each other within theme clusters was varied, in the hope of �nding a good balance

that would enable the kind of \locking-in" e�ect described earlier to occur as a con-

sequence of the mutual interaction between themes and Workspace activity (rather

than only from interactions between themes). Another approach involved letting only

dominant themes in
uence processing, but this did not work very well either.

In all of these cases, the top-down pressure exerted by themes seemed to hin-

der Metacat's progress more often than it helped. The reason for this is that such

pressure, being automatically applied whenever themes attained su�cient activation,

often \distracted" the program by causing it to focus too soon on speci�c ideas|and

usually on too many speci�c ideas at one time. Instead, an additional mechanism

was needed that would allow top-down thematic pressure to be selectively turned on

or o�, according to the situation at hand. Themespace activations by themselves are

not su�cient for achieving the kind of focused and directed behavior that Metacat

needs in order for it to gain insight into what it is doing.

Most of the time, therefore, themes behave as passive representational structures,

in
uenced by activity occurring in the Workspace (and by the activations of other

themes), but having no return e�ect on this activity. However, under certain circum-

stances (which will be explained more fully in subsequent sections), thematic pressure

can be turned on by the program itself, strongly in
uencing subcognitive processing

activity in the Workspace, as outlined earlier in Chapter 2. When thematic pres-

sure is turned on, positively-activated themes encourage the building of Workspace
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structures that are compatible with the ideas represented by the themes. Negatively-

activated themes, on the other hand, discourage the building of such structures; in-

stead, they promote the building of structures that are incompatible with themselves.

A negatively-activated Object-Type: identity theme, for instance, would promote the

creation of bridges between di�erent types of objects (i.e., between a letter and a

group), rather than between objects of the same type, such as two letters or two

groups.

Top-down thematic pressure in Metacat is realized in three ways. The �rst (and

least focused) way is that whenever thematic pressure is turned on, themes spread

activation to their constituent Slipnet concepts (i.e., to the category and relation

nodes making up the themes), which may in turn cause top-down codelets to be

added to the Coderack, as in Copycat.

Secondly, themes directly in
uence the strengths of Workspace structures in a

dynamic, continuous fashion, as a function of the thematic compatibility between

themes and structures. (In the current version of Metacat, only the strengths of

bridges and descriptions can be in
uenced by themes, although in principle other

types of structures, such as bonds or groups, could also be a�ected.) A structure's

thematic compatibility is determined by how well the structure \resonates" with the

ideas represented by the set of currently-active themes in the Themespace. For ex-

ample, in the problem \abc)abd; xyz)?", a vertical bridge between a and z

would be incompatible with a vertical String-Position: identity theme, due to the

leftmost) rightmost slippage underlying the bridge. On the other hand, the vertical

themes String-Position: opposite and String-Position: di�erent would both support

the bridge, as would the theme Alphabetic-Position: opposite. The equivalent top

themes, however, would all be indi�erent to the bridge (since it is not a top bridge).

In general, the thematic compatibility of a bridge with respect to a particular set of
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themes depends on the concept-mappings underlying the bridge. In the case of de-

scriptions, thematic compatibility is determined by the presence or absence of themes

of the same category as the description. For example, String-Position descriptions

are compatible with String-Position themes, but are indi�erent to Alphabetic-Position

themes.

A positively-activated theme that is incompatible with some particular Work-

space structure dynamically reduces the strength of the structure in proportion to

the theme's level of activation. If the theme supports the structure, the structure's

strength is enhanced. If the theme is indi�erent to the structure, the strength is

not a�ected, regardless of the theme's level of activation. Conversely, a negatively-

activated theme that is incompatible with a structure enhances its strength|the

idea being that since the negative theme represents the absence or inappropriate-

ness of some idea, structures incompatible with that idea should be promoted, as

described earlier. Likewise, a theme that is compatible with a structure decreases its

strength when negatively activated. And, like positively-activated themes, negatively-

activated themes have no e�ect on structures to which they are indi�erent.

Thus, themes act like a set of \knobs" that can be used to smoothly vary the

strengths of Workspace structures, \skewing" them away from their \resting strengths"

(i.e., the strengths the structures would normally have in the absence of thematic

pressure) according to the structures' compatibility with the set of currently-active

themes in the Themespace. Through the \twisting of knobs" (i.e., varying the pat-

tern of Themespace activations), Metacat's subcognitive perceptual processing can

be steered in di�erent directions, guided by the ideas explicitly represented by the

themes.

As a simple example, suppose that in the problem \abc)abd; iijjkk)?", a

bridge with a resting strength of 60 exists between the a in abc and the ii group in

iijjkk . Figure 4.4 shows the way in which the bridge's strength would be a�ected in
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Figure 4.4: The e�ect of theme activation on Workspace structure strength. The curve

shows the in
uence of a single theme on a structure of strength 60. (The shape of the

response curve di�ers slightly for negative and positive theme activations.)

the presence of a single String-Position: identity vertical theme with thematic pressure

turned on. This particular theme supports the bridge (on account of the bridge's

leftmost) leftmost concept-mapping), so positively activating the theme causes a

corresponding increase in the bridge's strength. Likewise, negatively activating the

theme drives the bridge's strength toward zero, since in this case the theme represents

the inappropriateness of seeing objects as corresponding on the basis of identical string

positions. As can be seen from the graph, a relatively small amount of negative theme

activation quickly undermines the bridge's strength, while a small amount of positive

theme activation quickly boosts it to near-maximum strength. In the absence of any

theme activation, the bridge's strength reverts back to its original value of 60.

This example illustrates the e�ect of a single theme on structure strength. In

general, however, many themes may be active at any given moment, some of which
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may be compatible with a given structure, and some of which may not be. For ex-

ample, the vertical themes String-Position: identity, Letter-Category: di�erent, and

Object-Type: identity might all be active in the above example. Assuming positive

theme activations, String-Position: identity and Letter-Category: di�erent would both

support the a{ii bridge, while Object-Type: identity would be incompatible with it.

In such a case of mixed thematic compatibility, the incompatible themes will tend to

\drown out" the compatible themes, even if the latter outnumber the former. The

a{ii bridge will therefore remain very weak because of the active and incompatible

Object-Type: identity theme, in spite of the other two compatible themes. This re-


ects the idea that only interpretations consistent with all highly-activated themes

at any given moment should be pursued.

The third way in which themes exert top-down pressure is through Thematic-

bridge-scout codelets. When thematic pressure is turned on, these codelets explicitly

seek to propose bridges that would be compatible with positively-activated themes

in the Themespace. For example, if the top themes Letter-Category: identity and

String-Position: di�erent are both active, thematic-scout codelets will tend to look for

potential bridges between objects in the initial string and the modi�ed string having

the same letter-category but di�erent string positions. On average, the more strongly

activated a theme is, the more urgently thematic-scout codelets will tend to look for

structures compatible with the theme. Thus, in the problem \abc) cab; ijk)?",

with the above two themes strongly activated, the top bridges a{a , b{b, and c{c

will tend to quickly get proposed by thematic-scout codelets (and subsequently built,

since the themes will also strongly boost the strengths of the bridges in the manner

described earlier, thereby increasing the likelihood that Bridge-evaluator codelets will

decide in favor of building the bridges). In the absence of thematic pressure, these

bridges are much less likely to be built.

In contrast to positively-activated themes, negatively-activated themes do not
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exert pressure via thematic-scout codelets|which pay attention only to positively-

activated themes in the Themespace. Rather, negatively-activated themes exert pres-

sure only by strengthening or weakening Workspace structures on the basis of the-

matic compatibility, as described earlier. The reason for this is to prevent thematic-

scout codelets from proposing large numbers of spurious bridges on the basis of neg-

ative themes. For example, with a negative Letter-Category: successor top theme

strongly activated, codelets would end up proposing bridges between any two objects

that were not related by letter-category successorship, which would result in a tangle

of proposed bridges between the initial string and modi�ed string, most of which

would contribute little or nothing to the emergence of a coherent mapping between

the strings.

Finally, Thematic-bridge-scout codelets can also encourage new descriptions of

existing Workspace objects to be built, if such descriptions would subsequently enable

bridges consistent with positively-activated themes to be proposed. For example,

in the problem \abc)abd; xyz)?", suppose that the special alphabetic-position

status of the letters a and z has not yet been noticed|that is, Alphabetic-Position

descriptions have not yet been attached to a or z. If a vertical Alphabetic-Pos-

ition: opposite theme becomes active in the presence of thematic pressure, thematic-

scout codelets will be on the lookout for objects in the initial string or target string

that can be described in terms of their alphabetic-position. If they happen to focus on

an object that lacks such a description, they will try to propose one for the object, if

possible. Thus the active Alphabetic-Position: opposite theme encourages alphabetic-

position descriptions to be attached to a and z, which in turn paves the way for the

creation of an a{z bridge supported by the slippage �rst) last. This re
ects the

idea that situations tend to be perceived in terms of the features that one is actively

paying attention to.

In a similar fashion, new relationships between objects linked by a bridge cre-

ated under thematic pressure can sometimes be noticed \in retrospect". Returning
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to the previous example, if an a{z bridge is created under pressure from a verti-

cal String-Position: opposite theme, supported by the slippage leftmost) rightmost

(but not by �rst) last, due to the absence of an active Alphabetic-Position: opposite

theme), there is still some chance that the alphabetic-position symmetry between

a and z will be noticed as a result of the new bridge, on account of the symmet-

ric leftmost) rightmost slippage having been made under thematic pressure. The

active String-Position: opposite theme spreads activation to the opposite concept in

the Slipnet, which in turn makes other slippages based on this concept more likely.

Furthermore, the concepts leftmost and rightmost are linked to the concepts of �rst

and last in the Slipnet. Thus a thematic-scout codelet may notice the \parallel"

�rst) last relationship between a and z, in which case the new slippage would then

be added to the bridge's concept-mappings. This idea is related to the notion of

\coattail slippages", discussed in Chapter 3.

4.2 Patterns

The foregoing discussion explains the mechanisms through which top-down thematic

pressure is applied in Metacat, but does not address the circumstances under which

this occurs. However, a few examples illustrating the application of thematic pressure

have already been outlined in sections 2.4.4 and 2.4.5 of Chapter 2. As will be recalled,

one situation in which top-down thematic pressure may be turned on arises when

Metacat has \fallen into a rut" by trying to apply the same set of ideas to a problem

over and over, without success. Repeatedly hitting the same snag may eventually

cause Metacat to clamp the themes characterizing the snag with strong negative

activation, which in turn may nudge the program out of its unproductive cycle of

behavior, toward alternative ways of looking at the problem. Another such situation

arises when Metacat runs in justify mode, attempting to make sense of an answer
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provided to it. As a result of comparing di�erent rules for describing string changes,

the program may clamp a particular set of themes with strong positive activation, in

an attempt to discover a globally consistent interpretation of the given problem that

leads to the given answer. In both of these cases, the clamping of theme activations

in the Themespace automatically turns on thematic pressure, and can be thought of

as Metacat's way of explicitly focusing on a particular set of ideas in order to explore

their implications.

The ability of the program to clamp theme activations, however, is actually just

one manifestation of a more general ability, in which various types of patterns can be

clamped by the program in response to di�erent situations. In addition to patterns

of theme activations, patterns of concept activations in the Slipnet and patterns of

codelet urgencies in the Coderack can also be clamped, depending on the circum-

stances.

4.2.1 Theme-patterns

In general, a theme-pattern may consist of any number of themes of a particular

type, along with an optional positive or negative activation value for each theme (in

the absence of a speci�c value, full positive activation is assumed). For example, a

possible vertical theme-pattern is shown below:

(vertical-themes

(String-Position: opposite 100)

(Direction: opposite 100)

(Group-Type: identity 100))

Clamping this theme-pattern automatically turns on thematic pressure, strongly

encouraging the creation of a \crosswise" mapping between the initial string and

target string|especially between groups of the same type within these strings. For

example, Figure 4.5 shows the Workspace and Themespace after Metacat found the
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Figure 4.5: The answer kjj to the problem \abc)abd; kji)?", showing the state

of the Themespace at the time the answer was found.
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answer kjj to the problem \abc)abd; kji)?" (in the absence of thematic pres-

sure). In this particular run, Metacat saw abc and kji as groups of di�erent types

going in the same direction. To demonstrate the e�ect of thematic pressure, the

above theme-pattern was then manually clamped (by me), along with a top theme-

pattern consisting of the themes String-Position: identity and Object-Type: identity,

and the run was continued. Under the in
uence of the clamped patterns, Metacat

quickly reorganized its way of looking at kji (but maintained the same interpreta-

tion of abc)abd), resulting in the answer lji approximately 100 codelets later (see

Figure 4.6). Normally, however, Metacat itself is responsible for clamping and un-

clamping patterns of themes as it sees �t, rather than relying on a human to tell it

speci�cally which ideas to \think about".

Theme-patterns are associated with various types of structures and processing

events in Metacat, including snags (as was mentioned earlier), answer descriptions,

slippages, and rules. These associations will be spelled out more clearly later in this

chapter (and illustrated in sample runs of the program in the next chapter), but

to take just one example here, consider the rule Change letter-category of rightmost

letter to successor from the earlier run shown in Figure 4.5. This rule is based on

seeing abc and abd as going in the same direction, represented by the horizontal

bridges a{a , b{b, and c{d . When this rule gets created, the two top themes String-

Position: identity and Object-Type: identity are dominant, since they are supported

by all three bridges. This pattern of dominant themes can be thought of as ab-

stractly characterizing the \background of similarity" that exists between abc and

abd , against which the di�erences between the strings are perceived.3 Consequently,

this top theme-pattern (shown clamped in the upper window of Figure 4.6) is perma-

nently associated with the newly-created rule.

3The idea of a \background of similarity" between strings and its relationship to rule creation

was discussed in section 3.1 of Chapter 3.
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Figure 4.6: The answer lji, found as the result of manually clamping the theme-

patterns shown. This run is a continuation of the run from Figure 4.5.
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4.2.2 Concept-patterns

A concept-pattern is similar to a theme-pattern, except that it speci�es a set of Slipnet

concepts (along with an activation value for each concept) instead of a set of themes.

Like theme-patterns, concept-patterns can be clamped by the program in various sit-

uations, and are associated with several types of structures, including theme-patterns,

rules, slippages, and Workspace objects. The concept-pattern below, for example, is

associated with the vertical theme-pattern shown earlier:

(concepts

(String-Position 100)

(Direction 100)

(Group-Category 100)

(opposite 100))

Clamping a theme-pattern causes its associated concept-pattern to be clamped in

the Slipnet, further strengthening the e�ects of top-down pressure. Other examples

of concept-patterns are displayed graphically in Figure 4.7. The upper pattern in the

�gure is associated with the rule Change letter-category of rightmost letter to succes-

sor, and consists of the concepts making up the rule. The lower pattern is associated

with the right-directed predecessor group kji created in the example discussed ear-

lier, and consists of the concepts making up the group's descriptions. (The pattern

speci�es an activation of zero for the concept of three because the group's length

description happened not to be relevant at the time the group was created.)

4.2.3 Codelet-patterns

In addition to patterns of themes and concepts, Metacat can also clamp codelet-

patterns, which specify sets of codelet types and urgency values. Clamping a codelet-

pattern dynamically alters the urgencies of codelets in the Coderack according to their

type, e�ectively overriding the urgencies that were individually assigned to codelets

at the time of their creation. Furthermore, any new codelets added to the Coderack
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Figure 4.7: Two examples of concept-patterns. The upper pattern is associated with

the top rule shown in Figure 4.5, while the lower pattern is associated with the kji

predecessor group.
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automatically assume the urgencies speci�ed by the codelet-pattern, for as long as

the pattern remains clamped.

For example, Figure 4.8 shows the e�ect of clamping a pattern that speci�es high

urgencies for Bottom-up-bridge-scout, Important-object-bridge-scout, Bridge-evaluator,

Bridge-builder, Rule-scout, Rule-evaluator, and Rule-builder codelets, and low urgen-

cies for all other types of codelets. (In general, the urgency levels of a clamped codelet-

pattern are indicated by shades of grey in the Coderack.) The left image shows the

probabilities for selecting codelets of each type from the Coderack before clamping

the pattern. The actual frequency of each type of codelet in the current codelet popu-

lation is also shown. As can be seen, clamping the codelet-pattern signi�cantly alters

the selection probabilities of codelets (although not their frequencies). This dramat-

ically speeds up the search for new bridges and rules. Thus, codelet-patterns can be

used to e�ectively \channel" the parallel terraced scan in very speci�c directions.

4.3 Answer Justi�cation

Metacat's ability to clamp various types of patterns plays a crucial role in its ability

to make sense of answers provided to it when running \backwards" in justify mode.

This process, outlined earlier in section 2.4.5, will now be described in detail. (Several

complete sample runs of the program illustrating the ideas described here will be

presented in the next chapter.)

Justifying a given answer involves essentially the same mechanisms used by Meta-

cat when searching for answers on its own, except that four strings exist instead of

just three|the extra one being the answer string provided by the user. Accordingly,

all four strings are examined by codelets looking for potential structures to build (i.e.,

bonds, groups, or descriptions). Furthermore, a third string mapping is created (the

\bottom mapping"), consisting of horizontal bridges between the target string and
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Figure 4.8: The e�ect of clamping a codelet-pattern on the selection probabilities of

codelets in Metacat's Coderack. Clamped urgency levels are indicated by shades of

grey, with lighter shades corresponding to higher urgencies. Codelet frequencies are

also shown. Selection probabilities are a function of both urgencies and frequencies.

(The di�erences between the types of codelets that exist in Metacat and in Copycat

can be seen by comparing this �gure with Figure 1.5 on page 31.)
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the answer string, as well as \bottom rules" based on this mapping that describe how

the target string changes into the answer string.

In order to make sense of an answer, Metacat must discover three things: (1) a way

of describing the change from the initial string to the modi�ed string; (2) an analogous

way of describing the change from the target string to the answer string; and (3) a

way of seeing the target string as being similar to the initial string that is consistent

with (1) and (2). That is, the objects that change in the target string (as described

by the bottom rule) must be seen as playing the same roles in the target string that

the objects described by the top rule as changing play in the initial string. In other

words, vertical bridges linking the target-string objects to their corresponding initial-

string objects must exist, based on concept-mappings (perhaps including slippages)

between the ideas inherent in the top rule and those inherent in the bottom rule.

For example, suppose that in the problem \abc) cba; ppqq) qqpp", a top rule

describing abc) cba as Swap positions of leftmost letter and rightmost letter (based

on horizontal bridges a{a and c{c), and a bottom rule describing ppqq) qqpp as

Swap positions of leftmost group and rightmost group (based on bridges pp{pp and

qq{qq) have been created, along with vertical bridges a{pp and c{qq (supported by

letter) group slippages). Taken together, these structures serve as an explanation for

how the answer qqpp arises: the leftmost and rightmost letters in the top situation are

viewed as swapping their positions; the leftmost and rightmost groups in the bottom

situation are viewed as the counterparts to the top situation's letters; therefore, doing

\the same thing" in the bottom situation amounts to swapping the positions of the

groups, yielding qqpp.

4.3.1 Answer-justi�er codelets

In Metacat, Answer-justi�er codelets are responsible for examining structures in the

Workspace to see if they meet the above three criteria. Justi�er codelets �rst choose



4.3 Answer Justi�cation 155

either a top or bottom rule (as a function of rule strength) and attempt to trans-

late the chosen rule based on the vertical mapping that exists between the initial

string and target string. If the resulting translated rule matches some existing rule,

and if this rule and the chosen rule are both currently supported,4 then a consistent

way of interpreting both the top and bottom string changes has been found that

yields the answer string. The program therefore pauses to report the new interpreta-

tion, displaying the top and bottom rules along with the accompanying bridges and

concept-mappings.

For instance, in the previous example, a justi�er codelet might choose the bottom

rule Swap positions of leftmost group and rightmost group for translation. In the pres-

ence of letter) group slippages underlying the vertical bridges, this rule translates

to Swap positions of leftmost letter and rightmost letter, which matches the existing

top rule, indicating that a consistent interpretation has been found. (As this example

shows, rule translation can occur in either direction when Metacat runs in justify

mode|from top rules to bottom rules, or from bottom rules to top rules.) On the

other hand, if the letter a in abc happened to correspond to the leftmost letter in

ppqq , instead of to the leftmost group (or if c were seen as corresponding to the right-

most letter q), then the resulting translated rule would not match the top rule, since

both letter) group slippages are necessary for the translation to yield a matching

rule, and thus no answer justi�cation could occur.

Another possibility is that the translated version of a rule may not match any

existing rule but may in fact work correctly (i.e., it may correctly describe the way

in which a string changes). For instance, suppose that only the top rule in the

previous example exists at the time the justi�er codelet runs. The codelet would thus

choose the top rule, translating it as Swap positions of leftmost group and rightmost

4As was explained in section 3.4 of Chapter 3, a rule is supported if all of the horizontal bridges

on which the rule was originally based currently exist in the Workspace.
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group (assuming the existence of the vertical letter) group bridges). Although the

translated rule in this case does not match any bottom rule (since no bottom rules

have yet been built), it nevertheless describes the ppqq) qqpp change correctly, and

is therefore added to the Workspace as a new bottom rule. Together with the top

rule and vertical bridges, this new rule provides a coherent justi�cation for the answer

qqpp.5

Justifying answers via top-down pressure

In a sense, the foregoing examples represent the easiest cases of answer justi�cation,

because all of the Workspace structures needed to justify an answer exist (or can be

easily created by translating a rule, as in the last example) at the time the Answer-

justi�er codelet runs. All the codelet needs to do is recognize that, based on the

existing vertical mapping, a pair of existing rules will in fact produce the given an-

swer string. A more interesting situation arises, however, if the current con�guration

of Workspace structures almost provides a consistent interpretation of the answer,

but falls short in some way. This inconsistency may suggest a way of reorganiz-

ing structures under top-down pressure, so that a consistent interpretation can be

achieved. Depending on the type of inconsistency detected, a justi�er codelet may

clamp various types of patterns in order to force this perceptual reorganization to

occur.

There are several di�erent types of inconsistent situations that can trigger the

clamping of patterns by justi�er codelets. In the �rst case, one of the rules may be

unsupported. In other words, the horizontal bridges that exist at the time the justi�er

codelet runs may no longer accurately re
ect the relationship between the strings as

described by the rule. For example, Figure 4.9 shows the problem discussed earlier,

5This example assumes that the newly-created rule is supported|in this case by bridges pp{pp

and qq{qq . The next section explains what happens if this is not the case.



4.3 Answer Justi�cation 157

Figure 4.9: An example of an unsupported bottom rule.

in which both the top and bottom strings are viewed as swapping their leftmost

and rightmost objects (letters in one case and groups in the other). The vertical

bridges support this interpretation, since they map letters to groups; likewise, the

top horizontal bridges are consistent with the notion of the letters a and c swapping

positions. However, the bottom qq{q bridge is inconsistent with the bottom rule. To

be consistent (i.e., for the rule to be supported), the two qq groups must be seen as

corresponding to one another. A similar type of inconsistency may arise if a justi�er

codelet creates from scratch a new rule that works correctly (by translating some

existing rule, as described at the end of the previous section), but which happens not
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Figure 4.10: The theme-pattern associated with the bottom rule of Figure 4.9.

to be supported by the appropriate horizontal bridges.

In both of these cases, the justi�er codelet responds to the inconsistent situa-

tion by clamping a set of patterns that focus top-down pressure on the problematic

horizontal mapping, encouraging its reorganization in a manner consistent with the

unsupported rule. Equally important, these patterns also exert pressure to preserve

those structures that already form part of a consistent interpretation of the answer.

Speci�cally, the following patterns get clamped:

� The theme-patterns associated with the top and bottom rules. The e�ect of

clamping a rule's theme-pattern depends on whether or not the rule is sup-

ported. If it is, then the pressure exerted by the themes will tend to hold

the current set of bridges in place, since the concept-mappings underlying these

bridges are compatible with the clamped themes. However, if the rule is not sup-

ported, the clamped themes will weaken the incompatible bridges, encouraging

the creation of new bridges supporting the rule. For example, the theme-pattern

associated with the bottom rule in Figure 4.9 is shown in Figure 4.10 (the top

rule's theme-pattern is similar, except that it lacks a Group-Type theme, since

the top mapping involves only letters). Under pressure from these themes|

the Object-Type: identity theme in particular|the qq{q bridge is likely to be

replaced by a qq{qq bridge, while the existing pp{pp bridge is likely to be
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preserved, resulting in a mapping consistent with the bottom rule. In contrast,

the top mapping already supports the top rule, so clamping this rule's theme-

pattern just reinforces the existing bridges, locking in the current interpretation

of abc) cba .

� The current dominant vertical theme-pattern. Clamping this pattern reinforces

the existing vertical bridges, so that the concept-mappings relating the top rule

to the bottom rule will be preserved while the inconsistent horizontal mapping

is reorganized. Since the dominant vertical themes represent the ideas that

are most likely to be of central importance to the vertical mapping, clamping

these themes locks in the current way in which the initial and target strings are

viewed as being similar.

� The unsupported rule's concept-pattern. The pattern of Slipnet concepts mak-

ing up the unsupported rule also gets clamped, in addition to the rule's theme-

pattern. The top-down pressure exerted by these concepts (through spreading

activation and the spawning of top-down codelets, as in Copycat) \comple-

ments", in some sense, the pressure exerted by themes, by promoting the cre-

ation of other types of structures besides bridges that may be useful in reorga-

nizing the inconsistent mapping. For example, the concept-pattern associated

with the bottom rule in Figure 4.9 consists of the concepts String-Position,

leftmost, rightmost, and group. If the qq group in qqpp did not exist at the

time of the clamp, this pattern would encourage its creation, which is necessary

in order to create the qq{qq bridge.

� A codelet-pattern accentuating the urgencies of top-down codelets. Whenever a

justi�er codelet clamps a set of theme- and concept-patterns in response to in-

consistencies in the interpretation of an answer, it also clamps a special codelet-

pattern that heightens the e�ect of the other clamped patterns by speeding up
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the processing performed by top-down codelets. In a sense, this serves to further

catalyze the reorganization of structures in the Workspace, in order that a con-

sistent interpretation of the answer might be discovered more quickly, before the

clamp period expires.6 Speci�cally, this codelet-pattern imposes very high ur-

gencies on top-down Bond-scout, Group-scout, and Description-scout codelets,

on their associated Evaluator and Builder codelets, and on Thematic-bridge-

scout codelets. (Other codelet types are not a�ected.)

Justifying answers via rule uni�cation

Another type of inconsistency that can trigger pattern-clamping by justi�er codelets

arises if the vertical mapping does not re
ect the relationship between the initial string

and target string as expressed by the top and bottom rules. One example of this was

outlined earlier in section 2.4.5 of Chapter 2. To take another example, the two rules

in Figure 4.9 require that the leftmost and rightmost letters of abc correspond to

the leftmost and rightmost groups of ppqq . A vertical mapping that does not meet

this requirement makes no sense in conjunction with these two rules. However, faced

with an inconsistent vertical mapping, a justi�er codelet may be able to induce a

reorganization of the mapping by clamping a pattern of vertical themes that can be

derived by comparing the rules to each other. For instance, comparing the rules in

Figure 4.9 implies the need for vertical bridges based on the slippage letter) group,

an idea that can be captured by a vertical Object-Type: di�erent theme. Clamping

this theme would promote the creation of vertical bridges between letters and groups,

leading to a mapping compatible with the rules in question.7

In general, if a justi�er codelet is unable to �nd a pair of top and bottom rules

6As might be expected, patterns do not remain clamped forever. How and when Metacat decides

to unclamp a set of clamped patterns will be described in section 4.5.1.
7In Figure 4.9, of course, the vertical mapping is already consistent with the rules, but suppose

that the bridges mapped letters to letters, rather than letters to groups.
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that match, under translation, with respect to the concept-mappings underlying the

current vertical bridges, it will look for a pair of rules that can potentially match

with respect to some set of concept-mappings. For many rule-pairs, of course, this

is not possible. For instance, in the earlier example, the abc) cba change might

also be described by the top rule Reverse direction of string. This rule cannot be

translated to yield the bottom rule Swap positions of leftmost group and rightmost

group under any circumstances, because the rules are not structurally similar. To

be \inter-translatable", a pair of rules must share the same internal structure and

di�er only by pairs of concepts that are potentially slippable (i.e., the concepts must

be linked in the Slipnet). For example, the rules Change letter-category of rightmost

letter to successor and Change letter-category of rightmost letter to `d', though struc-

turally similar, are not inter-translatable, because no slippage is possible between the

concepts of successor and d.

The process of analyzing a pair of rules in order to determine if there is a set of

slippages that will make the rules match under translation is termed rule uni�cation.

If a justi�er codelet identi�es a pair of existing rules that can be uni�ed, it creates a

vertical theme-pattern based on the set of unifying slippages, which it then clamps

along with the other theme- and concept-patterns associated with the rules. Clamping

the vertical theme-pattern encourages the creation of a vertical mapping that supports

translating the top rule into the bottom rule, while clamping the other patterns has

the e�ect of either maintaining the existing horizontal mappings if they support the

rules, or reorganizing them if they don't (as in the cases described earlier).

4.4 The Temporal Trace

Metacat's ability to revise its perception of a problem by clamping patterns of themes

and concepts in response to various situations a�ords it a very powerful degree of
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Figure 4.11: The three levels of processing that exist in Metacat.

self-control. Patterns|especially patterns of themes in the Themespace|act as a

\medium" through which the program is able to wield control over its own behav-

ior, forming a kind of intermediate level sitting above (and strongly in
uencing) the

subcognitive processing level, while remaining below the cognitive level (see Fig-

ure 4.11). Metacat's cognitive level is represented by the Temporal Trace, which can

be thought of as a short-term memory for storing recent past experiences during a

single run of the program. (In contrast, a set of patterns at the intermediate level can

be thought of as re
ecting the program's immediate experience or \state of mind".)

Structures and patterns representing several di�erent types of subcognitive-level and

intermediate-level processing events (to be described shortly) are stored in the Trace.

As was sketched in Chapter 2, codelets can examine these structures|possibly clamp-

ing new intermediate-level theme-patterns as a result|allowing the program to \see"

what it is doing and to respond accordingly. The cognitive level thus exerts control
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over the intermediate level, which in turn guides processing at the subcognitive level,

establishing a chain of causality that 
ows from a highly-chunked representation of

the program's behavior down to the myriad constituent micro-events out of which

that behavior emerges. From a theoretical standpoint, however, the structures stored

in the Trace are no di�erent from other types of perceptual structures stored in the

Workspace, since they are all subject to processing by codelets, so in an important

sense, the Temporal Trace and the Workspace can be identi�ed with each other|

implying a kind of \level collapse" between Metacat's cognitive and subcognitive

levels (see [Hofstadter, 1979], especially Chapter 20, for an extensive discussion of

multi-leveled hierarchical systems that twist back on themselves in a similar fashion).

Thus, conceptually, the same set of general processing mechanisms is responsible for

perception, for self -perception (i.e., self-monitoring), and for self-control in Metacat.

One way to appreciate the abstract, chunked nature of the information stored in

the Temporal Trace is to consider the number of \steps" that occur during a typical

run of Metacat. At a very �ne-grained level of description, where each step corre-

sponds to an action performed by a single codelet, a run consists of many hundreds

or thousands of steps. At this level of description, no two runs are ever exactly the

same, even if they involve exactly the same letter-strings.8 On the other hand, at the

level of description of the Trace, a typical run consists of a few dozen steps. At this

level of granularity, each step corresponds to a \macroscopic" processing event|each

one of which may itself comprise the actions of many codelets.

For example, Figure 4.12 shows the contents of the Trace after a run of the problem

\abc)abd; xyz)?", in which the program, after trying unsuccessfully a couple

of times to take the successor of z, answers xyd . The events that occur during the

run appear in the Trace in chronological order, from left to right. Although this

8Unless, of course, both runs start out with exactly the same random number seed (in addition

to the same letter-strings).
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Figure 4.12: The temporal record of a run of the problem \abc)abd; xyz)?".

run involves a total of 1,558 codelets, the high-level picture of the run represented

in the Trace consists of just twelve events, which represent the \major milestones"

encountered along the way in the program's search for an answer. Such events include

the activation of abstract concepts in the Slipnet; perceiving entire strings as single,

chunked wholes; creating new rules for describing string changes; hitting a snag; and

discovering a new answer.

For instance, as can be seen from the �gure, the concept of identity gets activated

early on in this particular run (due to the creation of a horizontal b{b bridge between

abc and abd). This is followed by the perception of both abc and xyz as whole-

string predecessor groups going in the same direction (to the left). The next event

records the creation of the rule Change letter-category of rightmost letter to successor

for describing abc)abd , which, given the previous two events, leads inexorably to a

snag. In the aftermath of the snag, another rule is created (Change letter-category of

rightmost letter to `d' ), and abc and xyz are reperceived as successor groups (again

going in the same direction|only this time to the right). However, the program

again attempts to use the �rst rule, resulting in another snag. Finally, after creating

a third rule (Change letter-category of letter `c' to `d' ) and again perceiving xyz as

a successor group, the program �nds the answer xyd .

As another example, Figure 4.13 shows the history of a run of the same problem

in justify mode, in which the answer wyz has been provided to the program. (This

particular run, which involves a total of 953 codelets, was used as the example of
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Figure 4.13: The temporal record of a justi�cation run of the problem \abc)abd;

xyz)?", in which the program was given the answer wyz. (The lower image is a

continuation of the upper image.)

\working backwards" discussed in section 2.4.5 of Chapter 2.) As in the previous

case, this run's \story line" is clearly discernible from the high-level trail of events

in the Trace. After perceiving both xyz and abc as successor groups and creating a

few rules, the program clamps a set of patterns (as a result of unifying one of the top

rules with the bottom rule). This causes the opposite concept to become activated,

followed by the reinterpretation of xyz as a predecessor group. The next two events

record slippages made when a bridge is created between the right-directed successor

group abc and the left-directed predecessor group xyz . This is followed by three

more slippages that subsequently arise from the bridges a{z and c{x (including

�rst) last), which leads to a coherent interpretation of the answer wyz .

These two runs illustrate all of the di�erent types of events that can be recorded in

the Temporal Trace during a run. Each event, whether occurring in the Workspace,

the Themespace, or the Slipnet, has an importance value associated with it, and only

those events with an importance value above some threshold get explicitly represented

in the Trace, allowing Metacat to e�ectively �lter out the \background noise" of a

run. Speci�cally, builder codelets responsible for creating new Workspace structures

monitor the importance of the structures they create, adding a new event to the Trace
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whenever a su�ciently important group, slippage, or rule is built. Likewise, codelets

that clamp patterns or attempt unsuccessfully to apply a rule (thus hitting a snag)

also note these events in the Trace. In addition, nodes in the Slipnet monitor their

own levels of activation, adding new concept-activation events to the Trace whenever

su�ciently large changes occur in the activations of deep concepts. Furthermore, all

events stored in the Trace, regardless of their type, record the time of occurrence of

the event (as measured by the number of codelets run), along with the Workspace

structures and Themespace patterns that exist at the time of the event. This auxiliary

information can then be referred to later by codelets monitoring the progress of a run.

The list below summarizes the various types of Temporal Trace events that are

possible:

� Concept-activation events record changes in the activation levels of Slipnet

nodes. The importance of this type of event is a function of a node's conceptual

depth and of the magnitude of its activation change, with larger changes to

deeper concepts being more important.

� Group events record the creation of important groups in the Workspace. The

importance of this type of event is a function of a group's strength and size,

with single-letter groups and whole-string groups being particularly important.

� Slippage events record important slippages that occur in support of bridges

built between objects in the Workspace. The importance of this type of event

is normally a function of the conceptual depths of a slippage's concepts, and

of the size of the Workspace objects involved. As a special case, however, if

a slippage is made under the in
uence of thematic pressure and is compatible

with the set of clamped themes, it is deemed to be of very high importance,

regardless of the concepts or objects involved.

� Rule events record the creation of important rules in the Workspace. The
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importance of this type of event is a function of the relative quality of a rule

with respect to all other rules that already exist, with comparatively higher-

quality rules being more important.

� Answer events record the discovery of new answers, and are always included in

the Temporal Trace whenever they occur (i.e., this type of event is deemed to

be of maximal importance).

� Snag events record the occurrence of snags in the Workspace, and are always

included in the Temporal Trace.

� Pattern-clamp events record the clamping of theme-patterns, concept-patterns,

or codelet-patterns in response to various situations, and are always included

in the Temporal Trace.

4.5 Self-Watching

This section explains in detail how Metacat uses the information in the Temporal

Trace to monitor its own behavior, and how it can alter its behavior by clamping

(or unclamping) various types of patterns in response to this information. Two types

of codelets in Metacat are responsible for examining and responding to the events

unfolding in the Temporal Trace.

4.5.1 Progress-watcher codelets

The �rst type of codelet, called a Progress-watcher, has two principal functions. First,

it is responsible for deciding whether or not to unclamp a set of clamped patterns. If

a Progress-watcher codelet runs during a clamp period, it examines the most recent

event in the Trace (which may or may not be the most recent clamp event) in order to

determine how much time has elapsed since the event occurred. Generally speaking,
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the purpose of clamping a set of patterns is to precipitate a series of events that

reorganize the perceptual con�guration of the Workspace in some way (i.e., by causing

the creation of new structures). It is therefore better to wait until the structure-

building activity occurring in the wake of a clamp has settled down a bit before

concluding that the clamp has \run its course". Accordingly, if the amount of elapsed

time since the most recent event in the Trace is less than some minimal \settling

period", then the codelet simply �zzles, leaving the clamped patterns still in e�ect.

On the other hand, if enough time has passed without any new important events

having transpired, the codelet unclamps the patterns and then determines the amount

of progress that was made since the clamp occurred. Depending on the amount of

progress achieved, the codelet may decide to post a follow-up Answer-�nder codelet

(or an Answer-justi�er codelet if the program is running in justify mode) in order to

see whether a new answer can be made based on the newly-created structures.

The criteria for judging the \success" of a clamp depend on the nature of the

clamp itself. Sometimes, the purpose of clamping a set of patterns is to promote

the creation of speci�c types of Workspace structures (rules, for example). Most

of the time, however, the purpose is to encourage the creation of structures of any

type, so long as they are compatible with the clamped patterns. For example, the

pattern-clamping that occurs during the answer-justi�cation process described in the

preceding section is intended to force the creation of mutually-consistent horizontal

and vertical mappings, which may depend on building new bridges and groups, mak-

ing new slippages, and creating new rules. The progress achieved by such a clamp

can thus be measured by observing the strengths of the most important Workspace

structures that get built in the aftermath of the clamp (since in general the strength

of a structure re
ects its compatibility with the set of clamped patterns). This in-

formation is recorded in the Temporal Trace, in the form of group events, slippage

events, and rule events. The progress achieved by the clamp shown in Figure 4.13,
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for example, can be determined by examining the subsequent group and slippage

events. Since these events all represent the creation of structures compatible with the

clamped patterns, the degree of progress achieved by this particular clamp is quite

high.

In general, associated with every clamp event is a progress-evaluator function,

which Progress-watcher codelets use to evaluate the events in the Trace following the

clamp event in order to determine the overall progress achieved by the clamp. Since

the progress is evaluated at the end of the ensuing clamp period, only events that

occur during this period are considered. In the case of an answer-justi�cation clamp,

the evaluator function pays attention to subsequent group events, slippage events,

and rule events (in particular to the strengths of the new structures created), but

other types of clamps may involve di�erent measures of progress, through the use of

di�erent evaluator functions.

In fact, the second principal task performed by Progress-watcher codelets involves

clamping patterns that focus on the creation of a single type of Workspace structure,

rather than on a number of di�erent types, as in the answer-justi�cation process.

If no patterns are clamped when a Progress-watcher codelet runs, then instead of

checking on the progression of events in the Trace, the codelet checks on the current

rate of structure-building activity taking place in the Workspace.

The Workspace activity, like temperature, is a simple numerical measure ranging

from 0 to 100. However, rather than re
ecting structure quality, the activity level

provides a quick estimate of the \freshness" of the current Workspace structure con-

�guration. More precisely, it is an inverse function of the average age of the most

recently created structures. Thus, the activity level tends to remain high as long as

new structures are being built, but eventually drops to zero in the absence of new

structures.

If the activity level is zero, indicating that nothing much is happening in the
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Workspace, then Metacat may have arrived at an impasse in its search for answers to

the current problem. This is not quite as bad as hitting a snag, but it still ought to

prod the program into trying something di�erent. However, in the case of an impasse,

there is usually no clear set of \o�ending" structures or themes on which to pin the

blame, unlike in the case of a snag. Indeed, the impasse may well arise from a lack

of appropriate structures, rather than from the existence of the \wrong" structures.

Therefore, in the absence of Workspace activity, Progress-watcher codelets check

to see whether particular types of new structures are needed. In the current version

of Metacat, these codelets only check to see if new rules are needed, but in principle,

they could also assess the need for other types of structures, so long as a way of

estimating this need could be de�ned. In the case of rules, the codelets examine the

quality of all of the top rules and bottom rules that have been built so far.9 If either

the best top rule or the best bottom rule is still of poor quality, the codelet may

try to encourage the creation of better rules by clamping a special codelet-pattern

that heightens the urgencies of Rule-scout, Rule-evaluator, and Rule-builder codelets,

while simultaneously lowering the urgencies of all other codelet types. Since this

type of clamp is only \interested" in the creation of new rules, its progress-evaluator

function pays attention only to subsequent rule events in the Trace. The amount of

progress achieved is judged solely according to the quality of the rules that get created

in the wake of the clamp. Eventually, other Progress-watcher codelets will turn o�

the clamp once enough time has passed without any more events (of any type) being

added to the Trace.

4.5.2 Jootser codelets

The second type of codelet in Metacat that \watches the action" from the high-level

vantage point of the Temporal Trace is called a Jootser. These codelets are responsible

9If the program is not running in justify mode, then only the top rules are considered.
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for noticing|and breaking out of|repetitive patterns of behavior that the program

has fallen into. (See [Hofstadter, 1985b] for a discussion of the notion of jootsing, or

\jumping out of the system", especially as it relates to the idea of a self-watching

computer program.) One example of such behavior, discussed earlier in Chapter 2,

involves the program hitting the same snag over and over again. As was sketched in

section 2.4.4, a series of identical (or very similar) snag events in the Trace may cause

patterns to be clamped in response, which may lead to a new way of looking at things

that avoids the snag. However, in addition to snags, Jootser codelets are sensitive to

other types of repetitive behavior as well. In particular, it is possible for Metacat to

become \�xated" on some set of ideas, such that it ends up clamping the same set of

patterns over and over again, without making any signi�cant progress. In this case,

too, Jootser codelets may notice the series of recurring events in the Trace and take

action.

Jootsing from repeated snags

As was mentioned earlier, every time an event is recorded in the Temporal Trace,

a set of theme-patterns characterizing the event gets recorded along with it. This

thematic information can be used as the basis for judging similarity between di�erent

events of the same type, such as snags. In the case of snags, however, similarity also

depends on whether the snag events involve the same set of Workspace structures

(for example, the letter z and the rule Change letter-category of rightmost letter to

successor in the problem \abc)abd; xyz)?").

In order to detect repetitive behavior arising from snags, Jootser codelets con-

tinually scan the Temporal Trace looking for snag events that share the same set

of snag structures and have thematic characterizations that overlap to a signi�cant

degree. The presence of several such events indicates that the program has run into

the same problematic situation several times. To be more precise, the same rule has
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been translated and then applied unsuccessfully to the target string each time. Since

the rule-translation process depends on the way in which the initial string and the

target string are perceived as being similar, a new way of looking at these strings (i.e.,

a new vertical mapping) may be needed in order for Metacat to break out of its rut.

Accordingly, if enough similar snag events are detected, a Jootser codelet may try

to force a reorganization of the vertical mapping by clamping an appropriate vertical

theme-pattern. This decision is made probabilistically, depending on the number of

snag events and the degree of overlap of their accompanying themes. Unfortunately,

how to reorganize the vertical mapping so that further snags can be avoided is not

clear, unlike in the case of answer-justi�cation, where comparing a pair of rules can

provide clues as to which ideas might be useful to try. The best that can be done is

to focus on ideas other than those that currently characterize the initial{target string

similarity.

Consequently, once a Jootser codelet has decided to respond to a recurring snag,

it creates a vertical theme-pattern consisting of negatively-activated themes, based

on the themes associated with the snag events, which it then clamps in the Theme-

space. In general, however, not all of these associated themes are necessarily \bad

themes". For example, the snag in the problem \abc)abd; xyz)?" arises mainly

from viewing the z in xyz as corresponding to the c in abc. This idea is character-

ized by the vertical themes String-Position: identity (based on the concept-mapping

rightmost) rightmost) and Object-Type: identity (based on the concept-mapping

letter) letter). Both of these themes are associated with the ensuing snag events, but

the source of the problem lies in seeing the components of abc and xyz (in particular,

c and z ) as occupying identical positions in their strings, not in seeing them as being

identical types of objects. Negatively clamping the String-Position: identity theme

is thus more likely to remedy the situation than negatively clamping the Object-

Type: identity theme. In fact, negatively clamping the latter theme may actually in-
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terfere with the creation of a new mapping, since any new vertical bridges are likely to

be between objects of the same type (i.e., letters), and will thus be severely weakened

by the negative Object-Type: identity theme. In general, therefore, Jootser codelets

decide probabilistically which themes to include in the negative theme-pattern that

gets clamped in response to a recurring snag.10

Once clamped, this theme-pattern exerts negative thematic pressure on codelet

processing, encouraging the creation of new Workspace structures incompatible with

the themes involved in the snag. In order to expedite this process, a special \bottom-

up" codelet-pattern is also clamped along with the theme-pattern. This codelet-

pattern speci�es very high urgencies for all types of bottom-up scout codelets, as well

as for their associated evaluator and builder codelets. The e�ect of this pattern is to

accelerate bottom-up exploratory processes, in the hope that a viable alternative to

the initial snag-prone interpretation of the problem can be discovered.

Jootsing from repeated clamps

Repeatedly hitting a snag is not the only type of \loopy" behavior to which Metacat

is susceptible. Under certain circumstances, it is also possible for the program to

fall into a repetitive cycle of pattern-clamping. For example, this can occur during

answer-justi�cation if clamping a set of patterns in response to unifying a pair of rules

fails to produce a vertical mapping supporting the rules. The same set of patterns

may end up getting clamped over and over again in a futile attempt to �nd a coherent

10For each theme, this decision is a function of the number of snag events involving the theme

(since the more often a theme is associated with hitting a snag, the more likely it is to re
ect the

source of the problem), and of the conceptual depths of the descriptions related to the theme that

are attached to objects directly involved in the snag (since themes that re
ect deeper aspects of the

snag objects are more likely to be important in characterizing the snag). For example, the snag

object in the \abc)abd; xyz)?" problem (i.e., the letter z ) may be described both in terms

of its string position (i.e., rightmost) and its object type (i.e., letter). Since the conceptual depth

of rightmost is greater than that of letter, the String-Position theme has a greater chance of being

negatively clamped than does the Object-Type theme.
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interpretation of the problem based on these rules. Likewise, if an analogy problem

happens to involve a string that changes in some di�cult-to-describe way, the program

may end up repeatedly clamping codelet-patterns in a futile e�ort to spur the creation

of new (or better) rules for describing the change. Repetitive clamping behavior can

even arise from unsuccessful attempts to break out of a cycle of snag events. That is,

negatively clamping theme-patterns in response to a recurring snag may prove to be

ine�ective, leading only to further snags and more theme clamping, rather than to a

new interpretation of the problem.

Thus, in addition to watching for snag events, Jootser codelets also look for re-

curring clamp events in the Temporal Trace. If enough similar clamp events are

noticed, the codelet may decide to respond in a way that depends on the type of

clamp involved. Essentially three types of clamps are possible in Metacat:

� Justify clamps arise from clamping theme-patterns in response to unifying pairs

of rules in justify mode.

� Rule-codelet clamps arise from clamping codelet-patterns in an e�ort to stimu-

late the creation of new rules.

� Snag-response clamps arise from clamping negative theme-patterns in response

to a series of recurring snag events.

In the current version of the program, the similarity of clamp events is judged only

according to whether or not clamps are of the same type, and whether, in the case

of justify clamps, they involve the same pair of rules. The similarity of the patterns

involved is not taken into account, although it probably should be, at least in the

case of snag-response clamps, since responding to the same snag in di�erent ways

by clamping di�erent negative theme-patterns should not be seen as doing the same

thing over and over again.11

11Taking the clamped patterns into account is not really necessary for rule-codelet clamps, since
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In any case, faced with several similar clamp events, a Jootser codelet decides

probabilistically whether or not to \joots" based on the number of clamp events

and the average amount of progress that has been achieved by the clamps. (As

will be recalled, the progress resulting from a clamp is determined at the end of

the ensuing clamp period by Progress-watcher codelets, using the progress-evaluator

function associated with the clamp.) Generally speaking, the more clamp events there

are, the more likely jootsing is to occur, especially if the average amount of progress

resulting from the clamps is low. However, in judging the average progress made by

a series of similar clamps, the amount of time since each clamp occurred is also taken

into account. Thus, if recent clamps seem to be making more progress than earlier

clamps, then jootsing is less likely to happen. Conversely, if the clamps appear to be

making less and less progress as time goes on, indicating that the ideas represented

by the clamped patterns may have exhausted their potential, then the likelihood of

jootsing increases.

Unlike jootsing from snags, jootsing from a series of recurring clamp events does

not involve the clamping of any new patterns in response. Instead, in the case of re-

curring rule-codelet or snag-response clamps, Metacat simply \gives up" in a graceful

manner and stops.12 In the case of justify clamps, however, the program's unsuccess-

ful attempts to �nd a coherent justi�cation for an answer may be due to an inability

to make the necessary slippages, even in principle, that are required in order to justify

the answer.

For example, if the program is given the problem \xqc)xqd; mrrjjj)?" and

asked to justify the answer mrrjjjj , it may end up repeatedly clamping patterns in

a futile attempt to make a Letter-Category)Length slippage, which is required in

these clamps always involve exactly the same codelet-pattern.
12Upon quitting, the program politely excuses itself with the message \Excuse me|I think I'll go

get some more punch", as any tactful person might do in order to escape from an interminable bore

at a party. See [Hofstadter, 1985b].
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order to relate the rule describing xqc)xqd (i.e., Change letter-category of rightmost

letter to successor) to the rule describing mrrjjj )mrrjjjj (i.e., Increase length

of rightmost group by one13). Unfortunately, no such slippage is possible because

xqc cannot be seen as a single group based on letter-categories, and thus no bridge

can be made between xqc and mrrjjj as a whole. The other required slippage,

letter) group, presents no problem, however, since a bridge can easily be made

between the letter c of xqc and the jjj group of mrrjjj . Thus, in translating the

top rule, the closest Metacat can come to matching the bottom rule is Change letter-

category of rightmost group to successor|just one slippage away from a successful

justi�cation of mrrjjjj .

In general, once the program has recognized that it has fallen into a repetitive

cycle of justify clamping, it may decide to settle for an unjusti�ed interpretation of

an answer, depending on how close it can come to justifying it legitimately. Thus,

if rules supported by the appropriate horizontal mappings exist for describing both

the top and bottom string changes, and if these rules are almost the same under

translation, di�ering by at most a few concepts, then the program will \throw in

the towel", reporting its repeated failure to understand how the unjusti�ed slippages

arise. The more unjusti�ed slippages that remain, however, the less likely jootsing

is to occur. Furthermore, there is always the possibility that the program will give

up on an answer too easily, reporting it as unjusti�ed when in fact it could be fully

justi�ed with further e�ort, but in practice this does not happen very often. On the

other hand, of course, it is impossible for Metacat to know which answers in principle

are beyond its ability to justify (such as the answer mrrjjjj in the earlier problem),

since this would require a type of self-knowledge far beyond the capability of the

present program (for example, Metacat would have to know that it is not capable of

13Another way of expressing this rule in English is Change length of rightmost group to successor,

which brings out the di�erences between the rules a little more clearly.
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seeing xqc as a group based on letter-categories). In any case, the program is at least

aware of the fact that it has settled for an unjusti�ed answer, and notes this fact,

along with the slippages that it failed to justify, in its memory.

One last point is worth mentioning. Metacat's ability to eventually give up in

response to recurring justify clamps or to recurring rule-codelet clamps in a sense

represents �rst-order jootsing, because in both cases the recurring clamp events arise

from circumstances in the Workspace|in the former case, from pairs of rules that

can be uni�ed, and in the latter case, from a lack of su�ciently high-quality rules.

In other words, these types of clamp events arise from patterns of activity at the

subcognitive processing level. Likewise, snag events also arise from subcognitive pro-

cessing activity. Accordingly, Metacat's ability to respond to recurring snag events

(by clamping a negative theme-pattern, rather than just giving up) also represents

�rst-order jootsing|or at least attempted �rst-order jootsing, since clamping the

pattern may not in fact help to avoid further snags.

In contrast, the program's ability to respond to a recurring sequence of inef-

fective snag-response clamps (by giving up) represents higher-order or meta-level

jootsing (i.e., jootsing from repeated unsuccessful jootsing), because the recurring

snag-response clamps arise from activity in the Temporal Trace|that is, from se-

quences of recurring snag events. In other words, snag-response clamps arise from

patterns of activity at the cognitive processing level, or, said another way, from view-

ing subcognitive processing activity at an appropriately abstract level of description.

The important point is that the same general mechanisms (i.e., Jootser codelets and

the explicit representation of processing events in the Trace) are responsible for both

�rst-order and meta-level jootsing in Metacat. This re
ects the belief that no fun-

damental distinction should be made between the di�erent levels of a self-watching

system. That is, all levels of such a system should be fused, rather than being or-

ganized into a rigid hierarchy, with each level distinct from the rest and responsible
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only for watching and responding to activity occurring at the level immediately below.

(See [Hofstadter, 1985b] for a full discussion of these ideas.)

4.6 The Comment Window

As Metacat works on an analogy problem, watching its own behavior in the process,

it displays a running commentary in English of its ideas and observations about the

problem and about its own \train of thought". This narrative, which appears in

Metacat's Comment Window, is not an event-by-event transcription of the informa-

tion appearing in the Temporal Trace, although it does, of course, correspond closely

to the chain of events recorded there. Rather, it simply consists of messages generated

by codelets under a variety of di�erent circumstances as they go about their business.

Essentially, this amounts to the program \thinking out loud" while it works on a

problem. When Metacat encounters a snag, for instance, it reports this fact in the

Comment Window and brie
y explains why the snag has occurred. Upon discovering

a new answer, it states its opinion of the answer's quality, and mentions any other

answers that happen to \come to mind" as a result.14 The program also mentions

when it is getting \frustrated" by a lack of progress. Furthermore, if it hits on some

new idea to try, it gives a brief assessment of the progress achieved, in retrospect, as a

result of focusing on the idea. As will be explained in section 4.7.3, the program can

also comment on the similarities and di�erences between various answers, if asked to

do so by the user.

Figure 4.14 illustrates the type of commentary typically generated by the program

during a run. The �rst example shows a run of the problem \abc)abd; xyz)?"

in which the program hits the usual z snag a couple of times and then answers xyd .

(In fact, this same run was shown earlier in Temporal Trace form in Figure 4.12.) As

14Metacat's ability to be reminded of other answers will be discussed in section 4.7.5.
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Figure 4.14: Metacat's running commentary for a run of the problem \abc)abd;

xyz)?" in which it found the answers xyd and xyz (left), and for a justi�cation

run of the same problem in which the program was given the answer dyz (right).
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it happens, the answer xyd reminds the program of a similar answer to a di�erent

problem that it has already encountered. Continuing on, the program then �nds the

\do-nothing" answer xyz (based on the rule Change letter-category of letter `c' to

`d' ). At this point, prompted by the user15, the program compares the answer xyz

to the answer xyd , expressing a preference for the latter answer.

The second example shows Metacat justifying the answer dyz for the same prob-

lem. In this run, the program encounters some di�culty at �rst in building a rule

for describing how xyz changes to dyz . Its comment about \trying harder" arises

from clamping a codelet-pattern in order to stimulate the creation of new rules. As

it turns out, three new rules get created in the wake of this clamp. The program

therefore regards the amount of progress made by the clamp as satisfactory. In fact,

this enables the program to subsequently unify a pair of rules, which leads to a sec-

ond round of \brainstorming" (i.e., a justify clamp). This clamp spurs the creation

of many new structures, leading to the re-interpretation of abc and xyz as \mirror

images" of each other, which in turn leads to a successful justi�cation of dyz . The

program thus considers the progress achieved by the clamp to be very high, even

though it considers dyz itself to be a pretty mediocre answer. Finally, the program

is asked to compare this answer to the answer xyd , which it judges in the end to be

of higher quality than dyz .

From these examples, it may appear that Metacat possesses a sophisticated lin-

guistic ability. However, it must be stressed that this is not the case. In fact, the

program possesses no genuine linguistic ability whatsoever ; its ability to \speak" is

purely an illusion arising from a 
exible set of phrase-templates, rather than from

a 
exible command of English. These phrase-templates get �lled in and combined

in complicated but purely mechanical ways, according to the circumstances at hand.

For example, in the �rst run shown in Figure 4.14, the explanation of the snag is

15The program prints the phrase \Let's see . . . " whenever it is prompted to compare two answers.
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generated on the basis of the concepts and Workspace structures involved in the

snag|namely, the Slipnet concept Letter-Category , the letter z, the Slipnet concept

successor , and the Workspace string xyz . As an added touch, the second time the

program hits the snag, it inserts the word \again", on account of the fact that a

previous snag event exists in the Temporal Trace. In addition, the program uses

prefabricated phrases to describe various numerical measures|such as the progress

achieved by a clamp|which are chosen from lists of possible alternatives on the basis

of the numerical values involved. For instance, in the second run shown, the phrases

\some", \an okay", \a lot of", and \a pretty good" are all chosen on the basis of the

underlying numerical progress values associated with the clamps that occur during

the run. Other sentences are completely canned, such as \I'm getting frustrated" and

\I'll just have to try a little harder . . . ", which the program prints out whenever it

clamps a codelet-pattern in search of better rules, or \Aha! I have another idea . . . ",

which it prints out whenever a justify clamp occurs. The commentary generated by

the program when comparing di�erent answers is produced in a similarly mechanical

fashion. (The particular way in which the program generated its commentary about

the similarities and di�erences between dyz and xyd shown in Figure 4.14 will be

discussed in detail in section 4.7.4.) Furthermore, no type of linguistic interaction

with the program|in any form|is possible. For instance, \asking" the program to

compare two answers is accomplished simply by clicking on graphical icons associated

with the answers.

Metacat's English-language veneer, although deceptive in a certain sense, is not

intended to deceive. Rather, it is intended simply to show the various things that hap-

pen during the course of a run, in a somewhat whimsical but also very user-friendly

fashion. In the case of comparing two answers, it is intended to show, in an easily-

understandable way, the various parallels and distinctions between the answers that

are recognized by the program. As will be discussed in the following sections, answers
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are compared on the basis of their underlying conceptual representations, which con-

sist mainly of themes and Slipnet concepts. Metacat's ability to compare answers at

this representational level is what counts, not its ability to generate English-language

summaries of these comparisons.

That said, it is worth adding that not all of the words used by the program verge

on being completely devoid of semantic content. To be sure, most of them do (e.g.,

\okay", \frustrated", \try", \mediocre", \I", \me", and so on). However, a few of

them, such as \successor", \opposite", \direction", \alphabetic-position", \groups",

and \letter", re
ect concepts that the program does understand|in a more genuine,

and quite defensible, sense|about its letter-string microworld.

In any case, as was indicated above, the chatty, colloquial tone of Metacat's com-

mentary is meant to be humorous more than anything else. However, it is also

important at this point to acknowledge the potential dangers of the so-called \Eliza

e�ect"|which refers to the widespread tendency of people to read far more meaning

than is warranted into text generated by a computer program. (For a discussion of

Joseph Weizenbaum's Eliza program, from which the Eliza e�ect takes its name,

see [Weizenbaum, 1976].) Clearly, the output generated by Metacat might easily lead

(or mislead) a casual observer into falling for this e�ect. Therefore, in the interest of

transparency, the current version of the program can be run in two di�erent linguistic

output modes.

When running in \Eliza mode", Metacat generates the type of informal commen-

tary shown earlier. With this mode turned o�, however, the program uses more

neutral language to describe the events that occur during a run. Figure 4.15 shows

the earlier output from the two runs of Figure 4.14, together with the more neutral

output generated during the same two runs with Eliza mode turned o�.16 As can be

16Turning o� Eliza mode, however, does not a�ect the commentary generated by the program

when comparing di�erent answers. Thus the program's descriptions of the similarities and di�erences

between xyd , xyz , and dyz are the same in each case.
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Figure 4.15: Metacat's commentary for the same two runs shown in Figure 4.14,

but with \Eliza mode" turned o� for comparison. Comments on the right correspond

to comments on the left on a one-to-one basis. The program's explanations of the

di�erences between answers are the same as before, and thus are not shown.
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seen from the �gure, Metacat generates exactly the same number of paragraphs in ei-

ther mode, which emphasizes the fact that the commentary produced by the program

when running in one mode is isomorphic to the commentary produced in the other

mode. In fact, a side-by-side comparison of the output generated in di�erent modes

on a particular run is quite revealing in a way, because it brings out more clearly

which aspects of the program's commentary are mere \window-dressing", and which

aspects actually convey meaningful information about the run.

4.7 The Episodic Memory

The preceding examples convey the 
avor of Metacat's ability to \talk" about its

answers, and about its own behavior, in various ways. Clearly, much is going on

beneath the surface here. In particular, the program's capacity to recall previously-

encountered answers, and to explain the similarities and di�erences that exist between

answers, relies on storing abstract representations of answers in long-term memory.

The remainder of this chapter describes these representations and how they allow

Metacat to compare and contrast its answers in an insightful manner.

4.7.1 Answer descriptions

When Metacat discovers a new answer, a considerable amount of information typically

exists|in the form of various types of structures|in the Workspace, the Themespace,

and the Temporal Trace. Usually, though, not all of this information is relevant to

the newly-created answer. For instance, extraneous groups, bridges, or rules, which

play no role in the creation of the answer, may exist in the Workspace. Likewise,

a number of partially-activated|or even dominant|themes characterizing ideas of

merely peripheral importance to the answer may exist in the Themespace. Further-

more, many of the processing events appearing in the Trace may have nothing to do
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with the answer, or may refer to structures that no longer exist.

Therefore, in order to create a representation of the answer suitable for storing in

long-term memory, Metacat must \distill" from this welter of information an abstract

answer description that captures the essence of the answer without including all of the

information that is available. This description must summarize the key factors that

led to the answer's creation|namely, the ways in which the various strings involved

in the problem were perceived as being similar (and di�erent). These factors can be

represented by a set of theme-patterns and rules. Speci�cally, an answer description

is composed of the following structures:

� The Workspace structures directly involved in creating the answer. This in-

cludes groups, bridges, and concept-mappings, as well as the letter-strings them-

selves.

� A vertical theme-pattern representing the similarity perceived between the top

situation and the bottom situation (i.e., between the initial string and the target

string).

� A top theme-pattern representing the similarity perceived between the initial

string and the modi�ed string.

� A top rule representing the way in which the initial string is perceived as chang-

ing to the modi�ed string.

� A bottom theme-pattern representing the similarity perceived between the target

string and the answer string (when running in justify mode).

� A bottom rule representing the way in which the target string is perceived as

changing to the answer string (when running in justify mode).

� An unjusti�ed theme-pattern representing any unjusti�ed slippages that the
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program failed to come to terms with in trying to make sense of an answer

provided to it (when running in justify mode).

The top and bottom theme-patterns of an answer description are just the theme-

patterns associated with the top and bottom rules, which were created at the time

the rules were built. To create the vertical theme-pattern, Metacat examines the ac-

tivations of vertical themes in the Themespace, along with recent group and slippage

events appearing in the Temporal Trace. If slippages have recently been made|

especially slippages involving whole-string groups|the themes associated with these

slippage events will be included in the answer description, since the ideas they repre-

sent are likely to have played a central role in creating the answer.17 (Slippages that

do not appear in the Trace may also have occurred, but they can be safely ignored,

since they were not considered to be of su�cient importance in the �rst place to de-

serve explicit representation in the Trace.) Furthermore, identity concept-mappings

involving whole-string groups are also likely to be important, since they characterize

similarities between highly-chunked situations, so themes associated with any such

concept-mappings are included as well.18

As an example, Figure 4.16 shows the full answer description created for the answer

wyz to the problem \abc)abd; xyz)?". This particular example arises from the

answer-justi�cation run described earlier in section 2.4.5 of Chapter 2. The �nal

Workspace con�guration of the run appears in Figure 2.5, and the sequence of events

recorded in the Temporal Trace during the run is shown in Figure 4.13. In particular,

17In general, associated with every slippage event in the Trace is a theme consisting of the concepts

involved in the slippage. For instance, a vertical Alphabetic-Position: opposite theme would be

associated with a vertical �rst) last slippage.
18However, a few caveats are in order here. In the current version of the program, only certain

types of vertical themes are allowed to appear in answer descriptions. Speci�cally, only vertical

themes of the category String-Position, Alphabetic-Position, Direction, Group-Type, or Bond-Facet

are permitted. Furthermore, in the case of Bond-Facet, no identity themes are allowed (i.e., only

Bond-Facet: di�erent themes are permitted). These constraints make it easier for the program to

compare and contrast its answers, but they are essentially arti�cial and thus unsatisfactory. This

point will be discussed further in Chapter 6.
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Figure 4.16: The full answer description created for the answer wyz to the problem

\abc)abd; xyz)?", showing the themes, rules, and other structures involved.



188 An Architecture for Self-Watching

the vertical theme-pattern appearing in the answer description is abstracted from the

series of slippage events recorded in the Trace.

Finally, in the case of an unjusti�ed answer, an additional theme-pattern is created

from the answer's unjusti�ed slippages representing those aspects of the answer that

remain \unsupported by the evidence". For example, the answer description for the

unjusti�ed answer mrrjjjj to the problem \xqc)xqd; mrrjjj)?" (discussed ear-

lier in section 4.5.2) would include an unjusti�ed vertical Bond-Facet: di�erent theme,

re
ecting the failure of the program to make the required Letter-Category)Length

slippage between the top string xqc and the bottom string mrrjjj . This theme-

pattern, like the other patterns of an answer description, serves as a basis for judging

the relative quality of an answer as compared with other answers the program has

encountered.

4.7.2 Snag descriptions

In addition to remembering its answers, Metacat also remembers the snags that it

encounters while solving problems on its own. On hitting a new snag for the �rst time,

the program creates an abstract snag description that characterizes the situation (in

addition to creating a new snag event in the Temporal Trace), which it then stores in

memory. Like answer descriptions, snag descriptions consist of themes and Workspace

structures (i.e., those directly responsible for causing the snag), and are used by the

program in comparing and contrasting answers with one another. Speci�cally, a snag

description consists of the following structures:

� TheWorkspace structures directly involved in the snag, including groups, bridges,

and concept-mappings, as well as the letter-strings themselves.

� A vertical theme-pattern characterizing the way in which the objects directly

responsible for the snag in the bottom situation are perceived as being similar to
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their counterpart objects in the top situation. This theme-pattern is based on

the concept-mappings underlying the bridges associated with the snag objects.

� A top rule representing the way in which the initial string is perceived as chang-

ing to the modi�ed string.

� The translated rule leading to the snag itself.

Unlike answer descriptions, snag descriptions do not include any top or bottom theme-

patterns.

Storing snag descriptions in long-term memory gives Metacat the ability to \ap-

preciate" certain answers in ways that otherwise would not be possible. For example,

consider the problem \eqe) qeq; abbbc)?" [Hofstadter and FARG, 1995, pp. 305{

306]. In this problem, eqe gets, in a sense, turned inside-out, an idea that can be

captured|at least approximately|by the rule Swap letter-categories of all objects in

string. However, it is not so easy to do \the same thing" to abbbc, since three di�er-

ent letter-categories are involved, instead of just two. One particularly elegant way

out of this quandary is to reperceive abbbc as 1{3{1 and then swap the group-lengths

rather than the letter-categories, yielding the answer aaabccc. Unfortunately, Meta-

cat is unable to get this answer on its own, because it cannot see eqe and abbbc as

single chunks based, respectively, on the ideas of letter-category and group-length,

and is thus unable to make the required Letter-Category)Length slippage. Instead,

it ends up repeatedly hitting a snag in trying to \swap" the letter-categories of a,

bbb, and c. On the other hand, if given this answer at the outset, it can almost make

sense of it|save for the unjusti�ed Letter-Category)Length slippage.

The same goes for the answer aaabaaa to the problem \eqe) qeq; abbba)?".

Metacat can (almost) justify this answer, but cannot get it on its own. However, there

is a crucial di�erence between aaabaaa and aaabccc. In the problem \eqe) qeq;
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abbba)?", no good reason exists to see abbba as 1{3{1, since swapping letter-

categories is perfectly feasible. That is, no snag arises in this problem. In a sense,

then, the answer aaabccc is \justi�ed" after all (since seeing abbbc as 1{3{1 avoids

a snag), while aaabaaa is not (since seeing abbba as 1{3{1 is unnecessary). As will

be seen in the next chapter, Metacat can make this observation, but it can only do

so if it knows that the problem \eqe) qeq; abbbc)?" normally leads to a snag.

If it has tried this problem on its own, it will know this, because the appropriate

snag description will exist in memory. (Conversely, if it is asked to justify the answer

aaabccc without having �rst attempted the problem itself, it will remain unaware of

the possibility of a snag arising, since snags never arise during answer-justi�cation.)

In this way, snag descriptions enrich the program's capacity for understanding its

answers.

4.7.3 Comparing and contrasting answers

When Metacat is asked to compare two answers it has encountered, it retrieves the ab-

stract descriptions of the answers from its Episodic Memory and analyzes the themes

and rules contained in these descriptions. In general, two answers may have identical

themes in common (called common themes), they may have themes which share the

same category but di�er by relation (called di�ering themes), or one or both an-

swers may have themes that are not shared by the other answer at all (called unique

themes). Furthermore, some of these themes may be unjusti�ed for one of the answers

but not for the other. Of course, various combinations of these types of themes are

also possible for an answer.

For example, referring back to the answer descriptions shown in Table 2.1 on

page 67, it can be seen that the answers xyd and xyu share a common String-

Position: identity vertical theme. On the other hand, xyu and uyz are based on the

di�ering themes of String-Position: identity and String-Position: opposite. Finally,
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in the case of the two wyz answers, the �rst answer involves a unique Alphabetic-

Position: opposite theme.

Another possibility, discussed at the end of the preceding section, is that an unjus-

ti�ed theme underpinning an answer may in fact turn out to be \justi�ed" in a certain

sense, if the theme represents an idea that enables a snag to be avoided. Some of an

answer description's unjusti�ed themes may therefore be reclassi�ed as snag-justi�ed

themes. For example, when Metacat gives up on justifying the answer aaabccc to

the problem \eqe) qeq; abbbc)?", it includes an unjusti�ed Bond-Facet: di�erent

theme19 in its description of aaabccc, on account of its failure to make the necessary

Letter-Category)Length slippage. Likewise, it includes the same unjusti�ed theme

in its description of the answer aaabaaa to the problem \eqe) qeq; abbba)?",

for the same reasons. However, upon comparing these two answers, it considers the

Bond-Facet: di�erent theme to be justi�ed by the possibility of a snag in the case of

the former answer|provided that it has encountered this snag on its own before|but

to be unjusti�ed in the case of the latter answer.

To be more precise, the presence of a snag description in memory involving exactly

the same letter-strings and rule as some answer description indicates that the program

has tried this problem on its own before|using exactly the same rule|and run

into a snag. Thus the di�erences between the themes involved in the snag and the

themes involved in the answer provide a strong clue as to how, in the case of the

answer, the snag is avoided, since everything else about the two descriptions is the

same. To bring this out more clearly, Table 4.1 shows the answer descriptions for

aaabaaa and aaabccc, as well as the snag description that arises from trying to

swap the letter-categories of abbbc in the problem \eqe) qeq; abbbc)?".20 In

19A Bond-Facet: di�erent theme represents the idea of viewing the components of two strings

(or groups) as being bonded together di�erently|on the basis of letter-categories in one case and

group-lengths in the other.
20A few themes unnecessary for the purposes of the example have been omitted from this table

for the sake of clarity.
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Problem/Answer Vertical Theme Unjusti�ed Theme

eqe) qeq; abbba)aaabaaa String-Position: identity Bond-Facet: di�erent

eqe) qeq; abbbc)aaabccc String-Position: identity Bond-Facet: di�erent

eqe) qeq; abbbc)SNAG String-Position: identity

Rule: Swap letter-categories of all objects in string

Table 4.1: Two answer descriptions and one snag description for the problems

\eqe) qeq; abbba)?" and \eqe) qeq; abbbc)?", showing the various themes

involved. The same rule is included in all three descriptions.

each case, the vertical String-Position: identity theme arises from aligning the target

string with eqe in a straightforward way. Likewise, the same \swapping" rule is

involved in each case. By comparing the answer description for aaabccc with the

snag description, the key to avoiding the snag in this problem becomes clear: it is

the idea of seeing eqe and abbbc as being \glued together" in di�erent ways (i.e.,

according to letter-categories in one case and group-lengths in the other), represented

by the Bond-Facet: di�erent theme. Therefore, instead of considering this theme to

be unjusti�ed, Metacat considers it to be \snag-justi�ed". In contrast, this theme

remains unjusti�ed for the answer aaabaaa, since no corresponding snag description

exists for the problem \eqe) qeq; abbba)?". In this way, Metacat can perceive the

critical di�erence between aaabaaa and aaabccc, even though the themes associated

with each answer are identical.

In addition to comparing the themes associated with answers, the program also

compares the accompanying rules, both structurally and in terms of their overall levels

of abstractness.21 Essentially, comparing two rules involves \aligning" them in order

to highlight any di�erences that may exist in their internal structure, or between

the various concepts making up the rules. (This is similar to the process of rule

uni�cation described in section 4.3.1.) Furthermore, the coherence of an answer can

21Rule abstractness is discussed in section 3.3.5 of Chapter 3.
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Problem/Answer Vertical Themes

abc)abd; xyz)dyz String-Position: opposite Direction: opposite

Group-Type: opposite Alphabetic-Position: opposite

abc)abd; xyz)xyd String-Position: identity Direction: identity

Group-Type: identity

Table 4.2: The vertical themes associated with the answers dyz and xyd to the problem

\abc)abd; xyz)?".

be checked by comparing the abstractness of the answer's rule with the abstractness

of the themes associated with the answer, as determined by the average abstractness

of the themes' constituent concepts. For example, the answer dyz to the problem

\abc)abd; xyz)?" involves themes based on the abstract concept of opposite, but

depends on a literal-minded interpretation of abc)abd . This \dissonance" is the

reason that Metacat considers dyz to be incoherent, as the program itself explained

(in a somewhat convoluted manner) in Figure 4.14.

4.7.4 Generating commentary in English: An example

The precise way in which Metacat generated its commentary about the similarities

and di�erences between dyz and xyd shown in Figure 4.14 will now be described in

detail. The starting point for comparing dyz to xyd is the set of vertical themes as-

sociated with each answer (see Table 4.2).22 The answer description for dyz includes

the three di�ering themes String-Position: opposite, Direction: opposite, and Group-

Type: opposite, while that of xyd includes the di�ering themes String-Position: iden-

tity, Direction: identity, and Group-Type: identity. In addition, a unique Alphabetic-

Position: opposite theme is also included in dyz 's answer description. These themes,

22In the current version of Metacat, neither top themes nor bottom themes are used to compare

answers. Ideally, of course, answers should be compared on the basis of all of their associated themes.

Nevertheless, as will be seen in the next chapter, many answers can be insightfully contrasted on

the basis of their vertical themes alone.
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together with the rules associated with each answer, are used by the program in de-

ciding which phrase-templates to include in its commentary, and how to �ll them in.

The �rst such template is shown below:

The answer 1 is based 2 3 , while the answer 4 is based 5 6 .

This particular template is chosen because di�erences exist between the themes. Both

dyz and xyd include themes that are not present in the other answer, so the general

form \The answer . . . , while the answer . . . " is used, in order to contrast their

di�erences. In general, the �rst time an answer is mentioned, its full description

is used, so slot 1 gets �lled in with \dyz to the problem `abc)abd , xyz )? ' ".

Furthermore, if common themes exist for an answer (in addition to the themes being

described), then the phrase \in part" is added in slot 2. However, in dyz 's case, no

such themes exist, so this slot is left blank. Slot 3 is more complicated. This slot gets

�lled in with a phrase describing all of dyz 's di�ering and unique themes. In general,

since an answer may have more than one such theme (as in dyz 's case), any number

of subphrases may appear here, separated by commas. These subphrases are in turn

constructed from various templates, which are chosen on the basis of the themes being

described. In the present case, two such templates are involved|one for describing

the themes String-Position: opposite, Direction: opposite, and Group-Type: opposite,

and one for describing the theme Alphabetic-Position: opposite. The �rst of these

templates is shown below:

1 see 2 3 as 4 5 6

In general, slots 1 and 2 take various prepositions and verb endings, chosen accord-

ing to circumstances, in order to yield grammatical English. In the present example,

these slots are used to construct the phrase \on seeing". Next, the phrase \abc and

xyz" appears in slot 3, which describes the initial string and target string associated

with dyz . The Group-Type: opposite theme itself is described using the stock phrase
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\symmetric predecessor and successor groups", which appears in slot 4. Likewise, the

Direction: opposite theme is described with the phrase \going in opposite directions"

in slot 5, which makes explicitly mentioning the String-Position: opposite theme un-

necessary. The last slot is reserved for various caveats that may need to be included

as well. For example, in the case of unjusti�ed themes, the phrase \(although there

is no good reason for doing so)" would be added. In the case of snag-justi�ed themes,

the phrase \(which avoids a snag that would otherwise arise from the fact that . . . )"

would be added, with an explanation of why the snag occurred inserted in place of

the ellipsis, such as \changing the letter-category of the letter z to its successor is not

possible in xyz". In dyz 's case, however, no unjusti�ed themes exist, so no caveats

are necessary.

The template used to describe dyz 's Alphabetic-Position: opposite theme is sim-

ilar to the above template, and is shown below:

1 see 2 alphabetic-position 3 between 4 5

As before, the �rst two slots are used to create the phrase \on seeing". Since the

theme is based on the concept of opposite, the word \symmetry" is inserted in slot 3.

(The word \sameness" would be used for an identity theme.) Slot 4 describes the

initial string and target string, but in this case, the phrase used is simply \the strings",

since abc and xyz have already been explicitly mentioned in the earlier template.

The last slot, as before, is reserved for caveats.

This completes the description of the themes associated with dyz . Let us now shift

back to the original top-level template, whose slots 4, 5, and 6 get �lled in according

to xyd 's themes in a similar fashion. The phrases \groups of the same type" and

\going in the same direction", however, are used here, on account of the identity

themes involved. Furthermore, the answer xyd itself is described in an abbreviated

form, since the full problem has already been mentioned in the description of the rival

answer dyz .



196 An Architecture for Self-Watching

The next sentence appearing in the commentary points out the uniqueness of dyz 's

Alphabetic-Position: opposite theme. In general, if an answer has unique themes, a

sentence of the form shown below is included:

In 1 , the idea 2 does not arise.

In this example, the phrase \xyd 's case" appears in slot 1, followed by the description

of the theme in slot 2. The latter phrase is constructed in the same manner as before,

except that here \of seeing" is used instead of \on seeing". (If several unique themes

exist, descriptions for all of them are constructed and included in slot 2, separated

by commas.)

As was explained earlier, Metacat considers the answer dyz to be incoherent. To

express this fact, another sentence is added to the commentary, based on the following

template:

The answer 1 , however, seems incoherent to me, since it involves seeing 2

between 3 ( 4 ), while at the same time viewing 5 in a more literal way.

Phrases for the names of the strings involved go in slots 1 and 3 (\dyz" and \abc and

xyz", respectively). The phrase appearing in slot 2 is either \an abstract similarity"

or \abstract similarities", depending on the number of themes associated with the

incoherent answer. In dyz 's case, the plural phrase is used. Slot 4 contains essentially

the same phrases used earlier to describe dyz 's themes, although here the word

\on" is omitted. This phrase makes clear which types of abstract similarities are

being referred to, although this may make the English sound slightly redundant and

unnatural. The phrase appearing in the last slot refers to the initial string and the

modi�ed string, and is constructed by inserting the names of these strings (\abc"

and \abd") into the template \the change from . . . to . . . ".

Finally, the program states its overall \preference" for xyd by �lling in the fol-

lowing template:
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All in all, I'd say 1 is the better answer, 2 .

In general, the name of the preferred answer appears in the �rst slot, followed by a

phrase describing the program's reason for preferring this answer. In this case, the

phrase is \since it is more coherent". Other phrases, however, are possible under

di�erent circumstances. For example, if one answer involves unjusti�ed themes while

the other does not, the program will express a preference for the latter answer with

the phrase \since it involves no unjusti�ed ideas" in slot 2. On the other hand, if

no unjusti�ed themes exist, but one answer involves more themes than the other,

the program will prefer the latter answer, expressing this preference with the phrase

\since it is based on a richer set of ideas".

And so on. In short, many phrase-templates exist, not all of which are described

here (as can be seen from the program's commentary on xyz and xyd shown in the

�rst run of Figure 4.14). These templates can be combined in many intricate ways

to yield quite plausible-sounding English commentary. From a theoretical stand-

point, however, this surface-level expressive capacity of the program is fundamentally

uninteresting. What is interesting is Metacat's deeper capacity to recognize subtle

similarities and di�erences between answers on the basis of the common themes, the

di�ering themes, the unique themes, the unjusti�ed themes, the snag-justi�ed themes,

and the rules that constitute answer descriptions. This analysis is carried out at an

abstract representational level, not at a linguistic level|a distinction that must be

kept in mind when judging the output of the program.

4.7.5 Reminding

Closely related to the issue of answer comparison is the phenomenon of reminding,

in which one answer may trigger the spontaneous retrieval from long-term memory

of other answers that are in some way similar to the current answer. In Metacat, this

may happen whenever a new answer is discovered (or justi�ed) by the program.
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Every answer description stored in memory has an associated activation level

ranging from 0 to 100. Whenever a new answer event occurs in the Temporal Trace,

each answer description computes the distance between itself and the new answer

description created from the information in the Trace, updating its level of activation

according to the distance. If the activation level exceeds some threshold, Metacat

will be reminded of the answer, to the extent that the threshold is exceeded. In other

words, the activation level of an answer re
ects how strongly the program is reminded

of it.23

For example, Figure 4.17 shows Metacat's memory upon discovering the answer

wyz to the problem \rst) rsu; xyz)?", after having encountered several other

answers to this problem and to the problem \abc)abd; xyz)?" (in addition, a

snag description for the latter problem also exists). The activation levels of answers

are indicated by shades of grey, ranging from white for the most strongly-activated

answers to dark grey for dormant answers|so that more weakly-activated answers

appear to \fade into the background" of Metacat's memory. In the present case, the

wyz answer just found is the most strongly activated answer (not surprisingly). As

can be seen, this answer reminds the program somewhat of the other wyz answer. In

addition, it also reminds the program of uyz , although to a lesser extent. The other

answers, however, lie \too far away" from wyz to be recalled.24

Determining the distances between answers involves essentially the same issues

discussed earlier in the context of answer comparison. Distance is a numerical mea-

sure computed on the basis of the rules and various types of themes (i.e., common,

23Unlike the activations of Slipnet concepts, however, the activations of answer descriptions do

not decay over time in the current version of the program. They change only when the program

discovers a new answer. This shortcoming should eventually be remedied.
24In the current version of the program, it is not possible for snag descriptions to become activated.

However, there is no reason in principle why this should be the case. Hitting a snag in one problem

could remind the program of similar snags it has encountered in other problems in the same way

that it is reminded of other answers|by comparing the description of the just-encountered snag

with other snag descriptions in memory.
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Figure 4.17: Six answer descriptions (and one snag description) stored in Meta-

cat's Episodic Memory. The answer wyz to the problem \rst) rsu; xyz)?" has

just been found, which reminded the program of the same answer to the problem

\abc)abd; xyz)?". The program was also reminded, to a lesser extent, of the

answer uyz.

di�ering, unique, unjusti�ed, or snag-justi�ed) that exist for a pair of answer descrip-

tions. Speci�cally, distance is a function of:

1. The number of di�ering themes and unique themes that exist (the more such

themes, the greater the distance between the answers).

2. The number of structural and conceptual di�erences that exist between the

rules involved (the more such di�erences, the greater the distance).

3. The di�erence in abstractness of the rules involved (with distance increasing

with the degree of disparity).
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4. The number of themes that are justi�ed|in one way or another|for one answer

but unjusti�ed for the other (the more such themes, the greater the distance).

5. The coherence of the answers (the distance between a coherent and an incoher-

ent answer being greater than the distance between two coherent answers, or

two incoherent answers).

One �nal point deserves to be emphasized. Like Copycat's Slipnet, Metacat's

Slipnet serves as the program's ultimate repository for its knowledge of concepts per-

taining to the letter-string microworld. These concepts acquire their meanings (i.e.,

their semantics) solely by virtue of the ways in which they can become activated

in response to certain situations arising in this world.25 Accordingly, they represent

the \stu�" out of which the program's understanding of its answers|in any genuine

sense|arises. Therefore, it is important to emphasize the fact that answer descrip-

tions, which serve as the basis for Metacat's ability to talk about its answers in an

insightful manner, are ultimately just organized patterns of Slipnet concepts, since

they are composed of themes and rules (which in turn are composed of Slipnet con-

cepts). Thus the English-language commentary generated by the program about its

answers, although just a surface-level \gloss" in many ways, nevertheless rests on a

deeper foundation of conceptual representation.

25See [Hofstadter and FARG, 1995], particularly Chapter 6, for a fuller discussion of this point.



chapter five

Performance of the Model

The previous chapter explained in some detail Metacat's mechanisms that allow it to

observe and control its own behavior, and to compare and contrast its answers. This

chapter shows these mechanisms in action by presenting a series of annotated runs of

the program on a number of di�erent analogy problems. These problems, and their

answers, are grouped into several related families for the purposes of comparison,

and they serve to illustrate, in various ways, Metacat's ability to perceive abstract

similarities between answers that, on the surface, would appear to be quite di�erent.

The �rst section discusses these analogy problems, although most of them have

already been discussed to some extent in earlier chapters. This is followed by com-

plete runs of the program, illustrated by screen dumps, showing its behavior on these

problems in detail. In a sense, the runs presented here represent Metacat \acting on

its best behavior", because they demonstrate the kinds of things that the program is

able to do successfully. In contrast, the \darker side" of Metacat is presented in the

concluding section|namely, examples that point out a number of serious shortcom-

ings that remain in the current version of the program.

201
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5.1 Three Families of Analogy Problems

5.1.1 The xyz family

The �rst family of analogies involves the pair of problems \abc)abd; xyz)?"

and \rst) rsu; xyz)?" (see the top of Figure 5.1). These problems have been

discussed at length already, particularly in section 2.4.6 of Chapter 2. To recap brie
y,

the answers xyd and xyu represent fundamentally identical ways of doing \the same

thing" to xyz as was done to abc or rst , and are both based on a literal-minded

interpretation of the problem. In contrast, a more abstract approach, in which xyz

is viewed as the mirror image of abc or rst , yields wyz in each case. However, this

really makes sense only for abc, given the lack of a{z symmetry between xyz and

rst . These two analogies, therefore, are quite di�erent in character, even though

they both involve exactly the same answer. Finally, a blend of abstract and literal-

minded approaches is responsible for the answers dyz and uyz , making both of these

answers seem a bit incoherent. However, it could be argued that since abc and xyz

are symmetric in every way, while rst and xyz are not, changing the x to d seems

even sillier in the former case than changing it to u seems in the latter, making dyz

more incoherent than uyz . In other words, a subtle but key di�erence exists between

these analogies, on account of the additional alphabetic-position symmetry in the �rst

problem, just as in the case of the two wyz analogies.

5.1.2 The mrrjjj family

The second family of analogies consists of the answers mrrkkk and mrrjjjj to the

pair of problems \abc)abd; mrrjjj)?" and \xqc)xqd; mrrjjj)?" (see the

middle of Figure 5.1). Each of these analogies relies on seeing the target string

mrrjjj in terms of the three components m, rr , and jjj|which correspond to the

three letters of the initial string|and on viewing the rightmost letter of the initial
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The xyz family

abc ) abd

xyz ) xyd

abc ) abd

xyz ) wyz

abc ) abd

xyz ) dyz

rst ) rsu

xyz ) xyu

rst ) rsu

xyz ) wyz

rst ) rsu

xyz ) uyz

The mrrjjj family

abc ) abd

mrrjjj ) mrrkkk

abc ) abd

mrrjjj ) mrrjjjj

xqc ) xqd

mrrjjj ) mrrkkk

xqc ) xqd

mrrjjj ) mrrjjjj

The eqe family

eqe ) qeq

abbba ) baaab

eqe ) qeq

abbba ) aaabaaa

eqe ) qeq

abbbc ) qeeeq

eqe ) qeq

abbbc ) aaabccc

Figure 5.1: Three families of letter-string analogies.
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string as changing to its successor. Accordingly, the rightmost component of mrrjjj

(i.e., the jjj group) also changes to its successor, yielding either the answermrrkkk if

mrrjjj is viewed in terms of letter-categories (i.e., as m{r{j), or the answer mrrjjjj

if it is viewed in terms of group-lengths (i.e., as 1{2{3).

In the case of the problem \abc)abd; mrrjjj)?", the answer mrrjjjj rep-

resents a stronger analogy than mrrkkk , because viewing mrrjjj as 1{2{3 reveals

an abstract similarity between this string's structure and the parallel a{b{c structure

of the initial string. On the other hand, the answer mrrkkk makes for the stronger

analogy in the case of \xqc) xqd; mrrjjj)?", for similar reasons. That is, un-

like abc, the string xqc possesses no internal structure, so viewing mrrjjj in an

unstructured way, as m{r{j, more closely parallels xqc than does seeing it as 1{2{3.

In a sense then, paying attention to group-lengths in this problem amounts to \being

too clever". (Likewise, not paying attention to group-lengths in the other problem

amounts to \being too obtuse".) The two mrrkkk answers, therefore, are actually

quite di�erent in character, as are the two mrrjjjj answers.

5.1.3 The eqe family

The third family of analogies involves the pair of problems \eqe) qeq; abbba)?"

and \eqe) qeq; abbbc)?" (see the bottom of Figure 5.1). In these two problems

(which were discussed earlier in section 4.7.2 of Chapter 4), eqe can be viewed as

turning itself \inside-out" by swapping the letter-categories of its constituent letters

to yield qeq . If abbba is viewed as consisting of the three components a, bbb, and

a|corresponding to the three letters of eqe|then a natural way of doing \the same

thing" to abbba is simply to swap the letter-categories of the components, yielding

baaab. In contrast, this approach won't work for abbbc, because here there are three

distinct letter-categories involved, hence \swapping" them makes no sense. One way

around this di�culty is simply to abandon the idea of swapping altogether, seeing
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the letters of eqe as instead changing individually to q, e, and q. Changing abbbc

in the analogous way thus amounts to changing its three components, one by one, to

q, eee, and q, yielding the answer qeeeq .

A more elegant approach, however, is to reperceive abbbc as 1{3{1 and then

swap the lengths of the components instead of the letter-categories, yielding aaabccc.

This is reminiscent of the answer mrrjjjj to the problem \abc)abd; mrrjjj)?"

(although in the latter problem, no snag is involved). On the other hand, it is

possible to take this approach with abbba as well, swapping lengths instead of letter-

categories to yield aaabaaa . However, as with the earlier answer mrrjjjj to the

problem \xqc)xqd; mrrjjj)?", this amounts to \overkill". That is, there is

no good reason to view abbba as 1{3{1, since swapping letter-categories works just

�ne. Thus the di�erence between the answers baaab and aaabaaa to the problem

\eqe) qeq; abbba)?" is just like the di�erence between the answers mrrkkk and

mrrjjjj to the problem \xqc)xqd; mrrjjj)?", because in both cases viewing

the target string in terms of group-lengths|although perhaps seeming like a clever

thing to do|actually makes for a weaker analogy.

In contrast, viewing the target string in terms of group-lengths in the problems

\eqe) qeq; abbbc)?" and \abc)abd; mrrjjj)?" makes for a stronger analogy

than would otherwise be possible in each case|although not for precisely the same

reasons, since doing so in the former problem enables a snag to be avoided, while in

the latter problem no snag arises. In other words, the answer aaabccc to the �rst

problem is a strong answer for both \pragmatic" and aesthetic reasons, while the

answer mrrjjjj to the second problem is a strong answer for aesthetic reasons only.

Likewise, the answer aaabccc to the �rst problem represents a stronger analogy than

the answer aaabaaa to the problem \eqe) qeq; abbba)?", even though both

analogies involve seeing the target string as 1{3{1, precisely because of the fact that

paying attention to group-lengths is warranted in the former case (due to the potential
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for a snag) but not in the latter.

5.2 Sample Runs of the Program

This section presents a selection of sample runs of Metacat on several of the above

problems, in order to illustrate more clearly the mechanisms discussed in Chapter 4.

For each of these runs, a series of \snapshots" of the Temporal Trace and Workspace

is shown, giving a sense of how the run evolves over time. These snapshots, taken

directly from the screen, are intended to highlight the most interesting aspects of a

run. Unfortunately, though, they do not show the many di�erent colors that are used

to color-code various structures for clarity, especially in the Workspace. However, one

particular feature of the program can be used to compensate for this, at least to some

degree. In general, every event appearing in the Temporal Trace can be displayed

by clicking on its graphical icon with the mouse. When this is done, the structures

associated with the event are highlighted against a faded grey background consisting

of the Workspace structures that existed at the time the event occurred. (In addition,

the event's icon is also highlighted in the Trace.) This method of displaying events

helps to improve the clarity of the examples, and is thus used whenever possible in

the following runs.

5.2.1 Examples of answer justi�cation

Run 1: abc) abd; mrrjjj)mrrjjjj

The �rst run demonstrates Metacat's ability to justify the answer mrrjjjj to the

problem \abc)abd; mrrjjj)?" through the application of top-down pressure gen-

erated by clamping patterns. The run begins in the usual way, with codelets building

bonds, groups, bridges, and other Workspace structures among the letter-strings. By
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about 500 codelets1, sameness groups have been built in both mrrjjj and mrrjjjj ,

but their lengths have not yet been noticed by the program. (A Length description

has been attached to the rr group in mrrjjjj , but this description is irrelevant,

because the Length concept in the Slipnet is not activated.) In addition, the acti-

vation of the concept of identity has been recorded in the Trace, as a result of the

creation of bridges involving identity concept-mappings such as leftmost) leftmost

and letter) letter (see Panel 1-a).

Soon after this, the top rule Change letter-category of rightmost letter to successor

is built, based on the horizontal bridges between abc and abd . The next important

event occurs when the program perceives the letterm inmrrjjj as a sameness group

of length one, due to the top-down pressure exerted by the sameness-group concept

in the Slipnet, which has become activated by the presence of the other sameness

groups in mrrjjj and mrrjjjj (see Panel 1-b).

Over the course of the next 500 or so time steps, the m inmrrjjjj is likewise per-

ceived as a single-letter group, the entire initial string is perceived as a successor group,

and another top rule is created for describing abc)abd (Change letter-category of

letter `c' to `d' ). At time step 1187, the bottom rule Increase length of rightmost group

by one2 gets built, paving the way for uni�cation to occur with the original top rule

Change letter-category of rightmost letter to successor (see Panel 1-c). Accordingly,

when an Answer-justi�er codelet runs a few time steps later, it picks the bottom

rule and translates it as Increase length of rightmost letter by one, a rule which nei-

ther exists nor works for abc. Upon examining the existing top rules, however, the

codelet discovers that the bottom rule can be uni�ed with the �rst top rule on the

1Generally speaking, more codelets are required for a typical run of Metacat than for a typical

run of Copycat, since in Metacat, bonds and groups can be built in all of the strings, and horizontal

bridges can be built between the top strings (as well as between the bottom strings when running

in justify mode).
2Or, equivalently, Change length of rightmost group to successor.
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1-c

basis of the slippages Length)Letter-Category and group) letter.3 (The codelet

discovers this by probabilistically picking a top rule of roughly the same strength as

the bottom rule, and then comparing its internal structure to that of the bottom

rule.) Consequently, it creates a vertical theme-pattern based on these slippages (and

on the identity concept-mappings rightmost) rightmost and successor) successor),

which it then clamps in the Themespace, along with the theme-patterns associated

with each of the rules. In addition, it clamps a concept-pattern in the Slipnet con-

sisting of concepts associated with the rules and themes.4 These patterns are shown

in Panel 1-d. In the case of the vertical theme-pattern, the three identity themes

arise from the concept-mappings rightmost) rightmost and successor) successor ,

3As this example shows, slippages that move upwards from the bottom situation to the top

situation are possible when Metacat runs in justify mode, contrary to the usual top-to-bottom

slippages that arise when the program looks for answers on its own.
4This pattern is actually a composite of the individual concept-patterns associated with each of

the rules and each of the theme-patterns.
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1-d
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while the Object-Type: di�erent and Bond-Facet: di�erent themes arise from the slip-

pages group) letter and Length)Letter-Category . The top and bottom theme-

patterns re
ect the identity concept-mappings underlying the top and bottom hori-

zontal bridges. Additionally, a codelet-pattern is clamped that enhances the urgencies

of top-down bond, group, and description codelets. This codelet-pattern (not shown

in the �gure) works in tandem with the clamped concept-pattern to promote the

creation of other types of Workspace structures besides bridges.

The e�ect of the resulting top-down pressure is twofold. First, the clamped theme-

patterns essentially hold the existing string mappings in place, since none of the

bridges are incompatible with the clamped themes. Second, the clamped concept- and

codelet-patterns increase the likelihood that a Length description will get attached to

the rr group inmrrjjj , on account of the clamped Length concept and the enhanced

urgencies of Description-scout codelets. In fact, this occurs approximately 250 time

steps later|still well within the clamp period. Furthermore, once this description has

been attached to rr , mrrjjj is more likely to get chunked into a high-level successor

group on account of the clamped successor and Length concepts in the Slipnet and

the enhanced urgencies of Bond-scout and Group-scout codelets.

As it turns out, the clamp period ends before this happens. Approximately 200

codelets later, at time step 1826, the program again tries to unify the same pair of

rules as before. This e�ort again results in a justify clamp, because no bridge yet exists

between abc and mrrjjj as a whole. By the end of the second clamp period at time

step 2371, the program has perceived mrr as a 1{2 successor group in both mrrjjj

and mrrjjjj , but as yet no whole-string group exists (see Panel 1-e). By time step

2506, the program has managed only to create another bottom rule, Change length of

rightmost group to four, which doesn't help the situation very much. A third justify

clamp thus ensues, based on the same pair of rules as before. This time, however, the

1{2{3 successor group gets created approximately 130 codelets into the clamp period.
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Soon afterwards, still under pressure from the vertical theme-pattern, a bridge is built

between the two whole-string successor groups abc and mrrjjj at time step 2688,

based in part on the slippage Letter-Category)Length. Because this slippage is

compatible with the clamped Bond-Facet: di�erent theme, it is considered important

enough to be recorded in the Trace (see Panel 1-f ).

Finally, just a few time steps later, an Answer-justi�er codelet runs, this time suc-

cessfully unifying the rules on the basis of the existing vertical mapping. A coherent

interpretation of the problem yielding the answer mrrjjjj has thus been discovered.

At this point, the codelet creates an abstract description of the answer (shown in

Figure 5.2) from the themes associated with the slippage event in the Trace, the

Figure 5.2: The answer description for mrrjjjj created at the end of Run 1.
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whole-string bridge in the Workspace, and the top and bottom rules, which it then

stores in the Episodic Memory.

Run 2: xqc) xqd; mrrjjj)mrrkkk

In Run 1, the clamped theme-patterns serve to lock in the existing string mappings

so that they will not be inadvertently destroyed while the program is waiting for

other types of structures to be built, such as descriptions and groups. By contrast,

Run 2 illustrates the use of thematic pressure to reorganize a mapping in support

of a particular rule. In this run, the program is given the answer mrrkkk to the

problem \xqc) xqd; mrrjjj)?" and asked to justify it. Because this answer does

not require seeing mrrjjj as a single group, it is easier for the program to justify

than the answer mrrjjjj in Run 1.

The beginning of the run is similar to that of Run 1. At time step 743, the

program builds the top rule Change letter-category of rightmost letter to successor

(see Panel 2-a). By time step 1525, the program has built up strong top and vertical

string mappings, but the bottom mapping is not quite uniform, since the jjj group of

mrrjjj is seen as corresponding to the rightmost letter k ofmrrkkk (see Panel 2-b).

Shortly thereafter, at time step 1550, an Answer-justi�er codelet runs, picking the

top rule and translating it as Change letter-category of rightmost group to successor.

As it turns out, this translated rule works correctly formrrjjj , so the codelet adds it

to the Workspace as a new bottom rule, since no such rule yet exists. Unfortunately,

however, this new rule is not currently supported by the mapping between mrrjjj

and mrrkkk , on account of the jjj {k bridge (see Panel 2-c).5 Consequently, the

codelet clamps the theme-patterns associated with each of the rules, together with

5The darker jjj{kkk bridge shown in the panel does not yet exist in the Workspace. Existing

Workspace structures are shown in grey. In general, whenever a rule event is displayed by the user,

the bridges required to support the rule are also shown, whether or not they currently exist. This

brings out more clearly any inconsistencies with the current set of Workspace bridges.
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2-c

the current pattern of dominant vertical themes in the Themespace (see Panel 2-d).

Clamping the bottom theme-pattern greatly weakens the existing jjj {k bridge, due

to the incompatible Object-Type: identity theme, and strongly promotes the creation

of a bridge between the two groups jjj and kkk . All other existing bridges are

compatible with the clamped themes, so their strengths get reinforced by the clamp.

The net e�ect is that the bottom mapping gets \cleaned up" while the other two

mappings are held in place. By time step 1665, approximately 100 codelets into the

clamp period, the bottom mapping is consistent with the bottom rule (see Panel 2-e).

The two j) k slippage events appearing in the Trace are associated with the newly-

created bridges jjj {kkk and j {k , each of which is compatible with the clamped

bottom themes. This new mapping supports the bottom rule, which in turn paves

the way for a successful justi�cation of mrrkkk at time step 1747 (see Panel 2-f ).
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Run 3: rst) rsu; xyz) uyz

The next example demonstrates the program's ability to spur the creation of new

rules by clamping codelet-patterns. For this run, the program is asked to justify the

answer uyz to the problem \rst) rsu; xyz)?". This answer hinges on mapping

rst and xyz onto each other in a crosswise fashion, and on viewing both t and

x as changing literally to u. Initially, however, the program sees rst and xyz as

going in the same direction. By time step 850, it has built a strong same-direction

mapping between these strings, and has created the top rule Change letter-category

of rightmost letter to successor to describe the rst) rsu change. The two bottom

rules Change letter-category of leftmost letter to `u' and Change letter-category of

letter `x' to `u', describing the xyz )uyz change, are created at time steps 949 and

1101 (see Panel 3-a).

3-a
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After this, however, the program \runs out of steam", because the existing rules

and string mappings do not support the answer uyz , and neither bottom rule can

be uni�ed with the top rule. Almost 400 time steps later, the situation has not

changed, prompting the program to comment that it is \frustrated" (since by now

the Workspace activity has dropped to zero). More precisely, at time step 1495,

a Progress-watcher codelet notices the lack of Workspace activity and consequently

examines the quality of the rules that have been created so far. As it happens, both

bottom rules are of low quality, since they both describe the xyz )uyz change in a

literal rather than an abstract way.6 The codelet therefore decides to accelerate the

process of rule discovery by clamping the codelet-pattern shown in Panel 3-b (the

left image shows the Coderack just before the Progress-watcher codelet runs). In a

sense, however, the codelet makes the right decision for the wrong reason, because the

current impasse is due not to a lack of good bottom rules, but rather to the absence

of a top rule that can be uni�ed with one of the existing bottom rules.

As it turns out, the clamp period ends before any new rules are created, resulting

in zero progress achieved by the clamp. At time step 2000, however, the program

tries again. This time, the top rule Change letter-category of rightmost letter to `u'

gets built just 60 codelets into the clamp period (see Panel 3-c), paving the way for

uni�cation to occur with the bottom rule Change letter-category of leftmost letter

to `u'. The latter event happens at time 2656, and results in the clamping of the

vertical themes String-Position: opposite and Direction: opposite, on account of the

rightmost) leftmost slippage arising from uni�cation, which immediately activates

the concept of opposite in the Slipnet (see Panel 3-d). The reinterpretation of rst as

a left-directed predecessor group quickly follows, leading to a successful justi�cation

of the answer uyz at time 3163 (see Panels 3-e and 3-f ).

6Of course, the program is incapable of describing this change in a more abstract way, but it does

not know this about itself.
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5.2.2 Examples of jootsing

Run 4: abc) abd; xyz) dyz

As Run 3 demonstrated, clamping the rule-codelet pattern shown in Panel 3-b can

facilitate the creation of new rules, but it is not guaranteed to do so every time.

The next run is similar to the previous run, except that here the program is unable

to justify the given answer, even after repeated clamping. Eventually, after three

unsuccessful clamps, the program gives up.

In this run, the program attempts to justify the answer dyz to the problem

\abc)abd; xyz)?". It begins, as before, by building a same-direction mapping

between the initial string and target string. By time step 1150, the two top rules

Change letter-category of rightmost letter to successor and Change letter-category of

letter `c' to `d' have been created to describe abc)abd , and the two bottom rules

Change letter-category of letter `x' to `d' and Change letter-category of leftmost letter

to `d' have been created to describe xyz )dyz (see Panel 4-a).

None of these rules, however, can be uni�ed. Consequently, the program is un-

able to make any more progress. The situation remains essentially unchanged until

time step 1882, when a Progress-watcher codelet notices the lack of Workspace ac-

tivity and, in response, clamps the rule-codelet pattern shown earlier (see Panel 4-b).

Unfortunately, as before, no new rules are discovered, so the program tries again at

time step 2354 (see Panel 4-c). This second clamp again results in no progress, so

a third clamp ensues at time step 2892 (see Panel 4-d). This time, the new bottom

rule Change string to \dyz" is discovered (see Panel 4-e), but this does not help the

situation very much. The top rule required for uni�cation to occur remains elusive

(i.e., Change letter-category of rightmost letter to `d' ).

By time step 3228|approximately 300 codelets later|the program has still not
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discovered this rule. At this point, a Jootser codelet notices that the three rule-

codelet clamp events in the Temporal Trace have all achieved little or no progress, so

it decides to end the apparently futile cycle of clamping, at which point the program

stops. Panel 4-f shows the program's commentary from the time of the third clamp

to the end of the run. As in the previous example, the clamps in this run actually

arise from a lack of high-quality (i.e., abstract) bottom rules, even though the real

reason for the program's impasse is the lack of a top rule that can be uni�ed with

one of the existing bottom rules.

4-e
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4-f

Run 5: xqc) xqd; mrrjjj)mrrjjjj

The next example illustrates jootsing from repeated justify clamping. In this run,

the program is asked to justify the answer mrrjjjj to the problem \xqc)xqd;

mrrjjj)?". At the outset, the run proceeds in much the same way as Run 1

discussed earlier. The sameness groups rr , jjj , and jjjj are quickly created inmrrjjj

and mrrjjjj , leading to the perception of m as a single-letter group in both strings.

Strong vertical and horizontal same-direction mappings are created between all of

the strings, giving rise to the top rules Change letter-category of rightmost letter to

successor and Change letter-category of letter `c' to `d', and the bottom rule Change

length of rightmost group to four. Moreover, by time step 2245, Length descriptions

have been attached to most of the groups in mrrjjj and mrrjjjj (see Panel 5-a).

Soon afterwards, the bottom rule Increase length of rightmost group by one is

built, which leads almost immediately to a justify clamp involving this rule and the

�rst top rule (see Panel 5-b). By the end of the clamp period at time step 2506,

a Length description has been attached to the rr group in mrrjjj , but the 1{2{3

structure of the string as a whole has not yet been noticed. The program thus tries

again at time step 2637, clamping the same pair of rules as before in an e�ort to

induce a Letter-Category)Length slippage, which is needed in order to make the

rules inter-translatable (see Panel 5-c).



228 Performance of the Model

5-a

5-b



5.2 Sample Runs of the Program 229

5-c

The program perceives mrrjjj as a successor group during this second clamp pe-

riod, at time step 2975 (see Panel 5-d). However, as was discussed in Chapter 4, no

Letter-Category)Length slippage is possible between xqc and mrrjjj , since xqc

cannot be seen as a successor group under any circumstances. Nevertheless, the pro-

gram keeps trying. It continues to clamp the same pair of rules until, after two more

unsuccessful clamps, it notices its own pattern of repetitive behavior. Consequently,

at time step 4493, it decides to give up on trying to make sense of the answer (see

Panel 5-e). At this point, it creates an unjusti�ed answer description formrrjjjj con-

taining an unjusti�ed Bond-Facet: di�erent vertical theme (in addition to a justi�ed

String-Position: identity theme), which it then stores in memory in the usual way.7

7The unjusti�ed vertical themes Group-Type: identity and Direction: identity are also included,

since the Bond-Facet: di�erent theme implies that xqc and mrrjjj are both groups. This facilitates

the generation of English-language commentary when comparing the unjusti�ed answer mrrjjjj to

other answers in memory.
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5-f

Panel 5-f shows the program's commentary regarding its �nal two clamp attempts

(both of which achieved no progress) and its subsequent failure to justify mrrjjjj .

Run 6: eqe) qeq; abbbc) aaabccc

The next example is similar in 
avor to Run 5. In this run, the program tries to

justify the answer aaabccc to the problem \eqe) qeq; abbbc)?" in two di�erent

ways, but eventually gives up after trying unsuccessfully several times to make a

Letter-Category)Length slippage between eqe and abbbc.

By time step 1650, the program has perceived the letters a and c in abbbc, and

the letter b in aaabccc, as single-letter groups, and has attached Length descriptions

to all of the groups in the strings, including the sameness groups bbb, aaa , and ccc.

The program's �rst attempt at describing the abbbc)aaabccc change, however,

results in a somewhat odd bottom rule (see Panel 6-a).

During the next 1100 time steps, abbbc and aaabccc are both perceived as suc-

cessor groups (on the basis of letter-categories rather than group-lengths), and several

other top and bottom rules are created (see Panels 6-b through 6-e). Eventually, at

time step 2740, the bottom rule Swap lengths of leftmost group, middle group, and

rightmost group is created, which can be uni�ed with the top rule shown in Panel 6-b.

Accordingly, at time step 2874, the program clamps a set of patterns based on these

rules in an attempt to induce a Letter-Category)Length slippage between eqe and
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6-e

abbbc (see Panel 6-f ). This attempt is unsuccessful, so the program tries again at

time steps 3379 and 3889. In the meantime, however, another rule for describing

abbbc)aaabccc gets created in between clamp periods (see Panel 6-g). This rule,

which can be uni�ed with the top rule shown in Panel 6-e, o�ers the program a poten-

tial alternative route to justifying the answer aaabccc. Therefore, it tries a few more

clamps based on this pair of rules (see Panel 6-h). Unfortunately, however, this e�ort

fails too, leading the program to �nally give up at time step 6196 (see Panel 6-i).

Consequently, the answer description created for aaabccc includes the same set of

unjusti�ed vertical themes as the answer description formrrjjjj in Run 5 (i.e., Bond-

Facet: di�erent, Group-Type: identity, and Direction: identity), as well as the same

justi�ed String-Position: identity theme. These two answers are thus quite similar at

an abstract level of description.
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6-h

6-i
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Run 7: abc) abd; xyz) ?

The next run demonstrates Metacat's ability to recognize when it is hitting the same

snag over and over again, and to then try something di�erent instead. In this run, the

program is asked to come up with an answer on its own to the problem \abc)abd;

xyz)?". Initially, the program perceives both abc and xyz as predecessor groups,

and views the abc)abd change abstractly, according to the rule Change letter-

category of rightmost letter to successor, which quickly leads to the usual snag involv-

ing the letter z (see Panel 7-a).

7-a

In the aftermath of the snag, the temperature shoots up to 100, various Workspace

structures get broken, and the new rule Change letter-category of rightmost letter to

`d' is created. However, the program soon rebuilds the same structures as before,

clinging to the view that the letter z in xyz corresponds to the letter c in abc, and
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ignores the newly-created rule. Consequently, it hits the snag again at time step

904|and then again at time step 1031 (see Panel 7-b).

7-b

In general, associated with each snag event in the Temporal Trace is a verti-

cal theme-pattern that characterizes the way in which the target-string objects di-

rectly responsible for the snag are seen as corresponding to their counterpart objects

in the initial string. In the present example, this pattern consists of the themes

String-Position: identity and Object-Type: identity, based on the concept-mappings

rightmost) rightmost and letter) letter underlying the c{z bridge. Thus all three

snag events in the Trace involve exactly the same set of vertical themes|as well as

the same rule|which eventually draws the attention of a Jootser codelet at time step

1197. In response to these identical snag events, the codelet probabilistically decides

to negatively clamp the recurring String-Position: identity theme, in an e�ort to elicit
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7-c

a reinterpretation of the problem that does not involve this idea (see Panel 7-c).8

As a consequence, the a{x and c{z bridges are soon replaced by the new bridges

a{z and c{x , causing the concept of opposite in the Slipnet to become highly acti-

vated (see Panel 7-d). Thus a new interpretation of abc and xyz begins to crystallize

around the idea of oppositeness. However, even though a and z are now seen as corre-

sponding to each other, their alphabetic symmetry remains unnoticed by the program,

because Alphabetic-Position descriptions have not yet been attached to both of these

letters.

As it turns out, the clamp period ends at time 1718 without much further progress

having been achieved. In fact, the c{x bridge is broken shortly thereafter, threatening

8Negatively-clamped themes appear in red on the screen, although this is hard to see from the

�gure.
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7-d

to undo the progress made so far. Fortunately, however, at time step 2001, another

Jootser codelet clamps the same negative theme-pattern as before, giving the program

another push in the right direction|that is, away from the ideas associated with the

snag (see Panel 7-e).

This time, the program notices the alphabetic symmetry between a and z, because

by now Alphabetic-Position descriptions exist for both letters (the most recent such

description having been attached to the letter a at time step 1982). Accordingly,

the program adds a �rst) last slippage to the a{z bridge at time step 2031. Soon

afterwards, it perceives xyz as a successor group, paving the way for the creation of

a fully symmetric mapping between abc and xyz based on the slippages left) right

and predecessor-group) successor-group, which leads in turn to the discovery of the

answer wyz at time step 2170 (see Panel 7-f ).
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7-e

7-f
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Run 8: eqe) qeq; abbbc) ?

The next example demonstrates the idea of \meta-jootsing". In this run, Metacat is

asked to come up with an answer on its own to the problem \eqe) qeq; abbbc)?".

The program begins by perceiving the string abbbc as a successor group composed of

the letter a, the group bbb, and the letter c. It also creates the two top rules shown

below to describe the eqe) qeq change:

� Swap letter-categories of all objects in string

� Change letter-category of leftmost letter to `q'

Change letter-category of middle letter to `e'

Change letter-category of rightmost letter to `q'

At time step 1104, it attempts to apply the �rst rule to abbbc, which results in

a snag, since the idea of \swapping" the letter-categories of a, bbb, and c makes no

sense (see Panel 8-a). Of course, if it had chosen to use the second rule instead of

the �rst, then it would have found the answer qeeeq , but it strongly prefers the �rst

rule, since this rule is considerably more abstract (and succinct).

Over the next 3000 time steps, the program tries again and again to swap the

letter-categories of abbbc, often breaking various structures in the process, but al-

ways rebuilding them in the same way as before (see Panel 8-b). Eventually, at time

step 4280, a Jootser codelet notices the pattern of repeated snag events in the Tem-

poral Trace, all of which involve the vertical themes String-Position: identity, Object-

Type: identity, and Object-Type: di�erent. These themes arise from the concept-

mappings underlying the vertical bridges associated with the three snag objects

a, bbb, and c (i.e., leftmost) leftmost, middle)middle, rightmost) rightmost,

letter) letter and letter) group). As it happens, the codelet probabilistically de-

cides to negatively clamp just the Object-Type: identity theme (see Panel 8-c).

In the aftermath of the clamp, abbbc is reperceived as a predecessor group, and

a new top rule, Swap letter-categories of leftmost letter, middle letter, and rightmost
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8-a

8-b
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letter, is created. However, these new structures do not really change the basic

situation. In any case, at time step 5040, another Jootser codelet decides to negatively

clamp both Object-Type themes (see Panel 8-d), which essentially \paralyzes" the

program for the duration of the clamp, since any new vertical bridges created would

be incompatible with one of the clamped themes.9

At time step 5487, the program hits the snag again. This is followed shortly

thereafter by another snag-response clamp, this time involving the negative themes

String-Position: identity and Object-Type: identity (see Panel 8-e).

This clamp, like the one before it, achieves no new progress, since no new struc-

tures are created in its wake. Therefore, after hitting the snag yet again at time step

5904, the program �nally decides to give up. More precisely, at time step 5933, a

Jootser codelet notices the three clamp events in the Trace, all of which have theme-

patterns that overlap to some degree. Furthermore, neither of the two most recent

clamp events have resulted in any discernible progress. Consequently, the codelet

prints a �nal parting message and then ends the run. Panel 8-f shows the program's

�nal commentary regarding its last unsuccessful clamp attempt.

9Negatively clamping more than one theme of the same category may sometimes be useful,

however, if several di�erent theme relations are possible for the category.
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8-c

8-d
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8-e

8-f
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5.2.3 Examples of answer comparison and reminding

This section presents a sampler of Metacat's explanations of the similarities and

di�erences between several of the analogies from section 5.1. To generate these ex-

planations, the program was �rst run (in justify mode) on each of the problems and

answers shown in Figure 5.3. (Some of these runs were discussed in detail in the

previous section.) In the �gure, the lines connecting various pairs of answers indicate

which answers reminded the program of other answers during this process. A faint

dotted line indicates that Metacat was \vaguely" reminded of one answer by another,

a darker dashed line indicates that it was \somewhat" reminded of an answer, and

a heavy solid line indicates that it was \strongly" reminded of an answer.10 For ex-

ample, the answer wyz to the problem \rst) rsu; xyz)?" reminded the program

\vaguely" of the answer uyz to the same problem, and \somewhat" of the answer

wyz to the problem \abc)abd; xyz)?" (as was shown earlier in Figure 4.17 of

Chapter 4).

In the case of the answer aaabccc to the problem \eqe) qeq; abbbc)?", how-

ever, the degree of activation of other answers depends on whether or not Metacat

has tried this problem on its own before, and therefore knows that it leads to a

snag (as was discussed in sections 4.7.2 and 4.7.3 of Chapter 4). The program was

thus run twice on this answer. The �rst time around, it was given aaabccc to jus-

tify before it had ever tried to swap the letter-categories of abbbc on its own. In

this case, the program was strongly reminded of the answer aaabaaa to the prob-

lem \eqe) qeq; abbba)?", and somewhat reminded of the answer mrrjjjj to

the problem \xqc) xqd; mrrjjj)?" (both of which it had seen before). These

remindings are marked with an asterisk (*) in Figure 5.3.

Next, the just-found answer aaabccc was manually deleted from memory, and

10These terms, which re
ect the activation levels of answer descriptions, correspond respectively

to the numerical ranges 1{30, 31{70, and 71{100. No reminding occurs in the case of zero activation.
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abc  =>  abd
xyz  =>  wyz

abc  =>  abd
xyz  =>  xyd

abc  =>  abd
xyz  =>  dyz

rst  =>  rsu
xyz  =>  xyu

rst  =>  rsu
xyz  =>  wyz

rst  =>  rsu
xyz  =>  uyz

abc  =>  abd
mrrjjj  =>  mrrkkk

abc  =>  abd
mrrjjj  =>  mrrjjjj

xqc  =>  xqd
mrrjjj  =>  mrrkkk

xqc  =>  xqd
mrrjjj  =>  mrrjjjj

eqe  =>  qeq
abbba  =>  baaab

eqe  =>  qeq
abbba  =>  aaabaaa

eqe  =>  qeq
abbbc  =>  qeeeq

eqe  =>  qeq
abbbc  =>  aaabccc

**+ +

Figure 5.3: Schematic diagram showing the di�erent degrees to which various answers

reminded Metacat of other answers it had encountered before. Heavy solid lines indi-

cate strong reminding, dashed lines indicate a somewhat weaker degree of reminding,

and dotted lines represent the weakest degree. Lines marked with * show remindings

that occurred in the absence of a snag description, while those marked with + show

remindings that occurred after the program had encountered a snag on its own.
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the program was given the problem \eqe) qeq; abbbc)?" to work on its own.

In this particular run, it hit the snag a couple of times and then answered qeeeq .

The program was then given aaabccc again. This time, on account of the existing

snag description, it was reminded only vaguely of aaabaaa, and not at all of the

answer mrrjjjj to the problem \xqc)xqd; mrrjjj)?". Instead, it was reminded

of the answer mrrjjjj to the problem \abc)abd; mrrjjj)?", since seeing abbbc

as 1{3{1 and mrrjjj as 1{2{3 both lead to stronger analogies in their respective

problems, while seeing abbba as 1{3{1 does not. These remindings are marked with

a plus sign (+) in the �gure.

Once descriptions of all of these answers had accumulated in memory, the program

was asked to compare selected pairs of answers in the manner described in section 4.7.3

of Chapter 4.11 The following selection of commentary by the program, generated on

the basis of the abstract answer descriptions stored in its memory, gives a sense of the

kinds of parallels and distinctions between answers that Metacat is able to recognize.

Comparing answers to the same problem

In the following examples, Metacat compares di�erent answers with respect to a single

problem. This amounts to comparing answers \horizontally" in Figure 5.3.

abc/mrrkkk vs. abc/mrrjjjj

11\Asking" Metacat to compare two answers simply involves clicking the mouse on the appropriate

answer description icons in the program's Episodic Memory window.
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xqc/mrrkkk vs. xqc/mrrjjjj

abc/xyd vs. abc/wyz

rst/wyz vs. rst/uyz

eqe/aaabaaa vs. eqe/baaab
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eqe/qeeeq vs. eqe/aaabccc (having encountered the snag before)

Comparing answers to di�erent problems within a single family

In the next set of examples, Metacat compares di�erent answers to di�erent problems

within the same family. This amounts to comparing answers \vertically" in Figure 5.3.

abc/mrrkkk vs. xqc/mrrkkk

abc/mrrjjjj vs. xqc/mrrjjjj



252 Performance of the Model

abc/xyd vs. rst/xyu

abc/wyz vs. rst/wyz

abc/dyz vs. rst/uyz
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eqe/qeeeq vs. eqe/baaab

eqe/aaabaaa vs. eqe/aaabccc (not having encountered the snag)

eqe/aaabaaa vs. eqe/aaabccc (having encountered the snag before)
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Comparing answers to problems in di�erent families

In the last set of examples, Metacat compares answers to problems from di�erent

families. As before, this amounts to comparing answers \vertically" in Figure 5.3.

abc/mrrkkk vs. eqe/baaab

xqc/mrrkkk vs. eqe/baaab

xqc/mrrjjjj vs. eqe/aaabaaa
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abc/mrrjjjj vs. eqe/aaabccc (having encountered the snag before)

xqc/mrrjjjj vs. eqe/aaabccc (not having encountered the snag)

abc/wyz vs. abc/mrrjjjj
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5.3 Problems with the Model

The sample runs presented in the last section demonstrated most of the capabilities of

Metacat's self-watching mechanisms, and were chosen because they serve to illustrate

the current strengths of the program. In contrast, this section discusses some of the

weaknesses that remain in the current version of Metacat. The weaknesses to be

discussed here all pertain to various shortcomings of currently existing mechanisms,

rather than to the absence of mechanisms that would be desirable for the program

to have. (The next chapter outlines various capabilities that would be desirable to

incorporate into the program in any future work on the project.)

5.3.1 Implausible rules

One lingering problem with the program is its tendency to create overly complicated

and cumbersome rules for describing string changes. Although almost all of the

rules appearing in the earlier sample runs are quite reasonable (the exception being

perhaps the rule appearing in Panel 6-a), Metacat all too often comes up with rules

that describe string changes in very bizarre ways. Although these rules technically

\work", they are quite implausible, in the sense that it is very unlikely that a human

would even think of describing the strings in question in such a convoluted fashion

(except perhaps as a joke).

As an example, consider the problem \eeqee) qeeq; xxixx)?". A natural

way to describe the eeqee) qeeq change is with the rule Swap letter-categories and

lengths of all objects in string (assuming that the ee groups are perceived as single

units). Metacat can discover this rule without too much di�culty, but it also typically

comes up with a large number of other, quite outlandish rules for the eeqee) qeeq

change when given this problem. A few such rules are shown in Figures 5.4 and 5.5,

along with the answers they yield. (For clarity, the corresponding bottom rules are
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Figure 5.4: Two convoluted rules created by the program for describing the

eeqee) qeeq change during runs of the problem \eeqee) qeeq; xxixx)?". In

both cases, the translated rule (not shown) is identical to the top rule.
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Figure 5.5: Another pair of convoluted rules created by the program for describing the

eeqee) qeeq change in the problem \eeqee) qeeq; xxixx)?".
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not shown, since they are identical to the top rules in each case, due to the absence

of any vertical slippages between eeqee and xxixx .)

The �rst rule shown in Figure 5.4 speci�es a rather haphazard mishmash of

changes to individual components of the string eeqee. According to this rule, the left-

most ee group and the middle q group independently change their letter-categories to

q and e, respectively. Changes to their lengths, however, are described using di�erent

levels of abstraction: as decreasing by one in the case of ee , and as changing literally

to two in the case of q . In contrast, the rightmost ee group is described as simply

changing into the letter q. The second rule spells out each individual letter-category

and length change explicitly, but does so in an inconsistent manner in the case of the

length changes, since the rightmost ee group's length is described literally as chang-

ing to one, while the lengths of the other groups are described as either increasing or

decreasing.

The rules shown in Figure 5.5 are even more incongruous, since each one describes

the change to eeqee partially in terms of swapping attributes of string components,

and partially in terms of individual changes to components. In the case of the second

rule, the changes to the letter-categories of the middle q group and the rightmost ee

group are not even described in the same way as the changes to the groups' lengths

(i.e., the letter-category changes are described individually, while the length changes

are described as a swap).

Several other \monster rules" typically created by the program during runs of the

problem \eeqee) qeeq; xxixx)?" are shown below:

� Change letter-category of leftmost group to `q'

Change length of leftmost group to one

Change letter-category of middle group to `e'

Change length of middle group to two

Change rightmost group to the letter `q'
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� Change leftmost group to the letter `q'

Change letter-category of middle group to `e'

Increase length of middle group by one

Change letter-category of rightmost group to `q'

Decrease length of rightmost group by one

� Change letter-category of leftmost group to `q'

Decrease length of leftmost group by one

Change letter-category of middle group to `e'

Increase length of middle group by one

Change letter-category of rightmost group to `q'

Decrease length of rightmost group by one

� Change letter-category of leftmost group to `q'

Change letter-category of middle group to `e'

Change letter-category of rightmost group to `q'

Swap lengths of all objects in string

� Change letter-category of leftmost group to `q'

Change letter-category of middle group to `e'

Change letter-category of rightmost group to `q'

Decrease length of rightmost group by one

Swap lengths of leftmost group and middle group

� Decrease length of leftmost group by one

Increase length of middle group by one

Decrease length of rightmost group by one

Swap letter-categories of all objects in string

� Change letter-category of leftmost group to `q'

Decrease length of leftmost group by one

Increase length of middle group by one

Decrease length of rightmost group by one

Swap letter-categories of middle group and rightmost group
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From a purely technical standpoint, each of these rules represents a valid way

of describing the eeqee) qeeq change, since each one produces the string qeeq as

required, when applied to eeqee . People, however, are not likely to perceive eeqee as

changing in such disjointed and convoluted ways. Indeed, any tendency for a person

to perceive situations in the world in a comparably disconnected and inconsistent

manner would probably constitute grounds for some concern. Unfortunately, the

tendency for Metacat to do so is uncomfortably strong, and consequently represents

a serious shortcoming of the model. Although the program|to its credit|judges

most of these rules to be of low quality, its propensity for creating such unwieldy

rules in the �rst place is not very psychologically realistic, since most of these rules

would not even occur to people.

In a way, the fact that seemingly simple string changes such as eeqee) qeeq can

potentially be described in so many di�erent ways attests to the inherent subtlety

and complexity of the letter-string microworld. (In fact, the rules shown above for

eeqee) qeeq represent only a small fraction of the myriad possible ways in which

this particular string change can be described.) Furthermore, the fact that the more

\exotic" ways of describing changes to strings rarely occur to people attests to the

strong tendency of human perception to automatically �lter out incoherent ways of

perceiving situations. On the other hand, the potential for perceiving situations in

unorthodox ways plays a critical role in human creativity. Accordingly, for Metacat

to be a more faithful model of human cognition, its \perceptual �lters" need to be

strengthened so that it will be less inclined to describe string changes in bizarre ways,

while still retaining the potential for doing so.

Another problem with Metacat's rule mechanisms is that sometimes two rules

that should really be considered to be equivalent are regarded as distinct by the

program. In particular, this tends to happen in the case of rules that involve letter-

to-group or group-to-letter changes. For example, Figure 5.6 shows two rules that the
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Increase length of leftmost letter by one

Increase length of middle letter by one

Increase length of rightmost letter by one

((intrinsic ((letter String-Position leftmost))

((object Length successor)

(object Object-Category group)))

(intrinsic ((letter String-Position middle))

((object Length successor)

(object Object-Category group)))

(intrinsic ((letter String-Position rightmost))

((object Length successor)

(object Object-Category group))))

Increase length of leftmost letter by one

Increase length of middle letter by one

Increase length of rightmost letter by one

Change all objects in whole group to groups

((intrinsic ((letter String-Position leftmost))

((object Length successor)))

(intrinsic ((letter String-Position middle))

((object Length successor)))

(intrinsic ((letter String-Position rightmost))

((object Length successor)))

(intrinsic ((group String-Position whole))

((components Object-Category group))))

Figure 5.6: Two structurally-distinct but essentially equivalent rules created by Meta-

cat for describing the change abc)aabbcc. As far as the program is concerned,

these rules represent utterly di�erent ways of looking at abc)aabbcc.
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program created to describe the string change abc)aabbcc. (The internal structure

of each rule appears beneath its English rendition.) The only di�erence between these

rules is that the �rst rule describes the letters a, b, and c as changing on a purely

individual basis, while the second involves a mixture of individual changes (in the

case of Length) and collective changes (in the case of Object-Category). However,

the Object-Category changes are essentially redundant, since increasing the length

of a letter automatically implies changing it to a group. In other words, both of

these rules convey essentially the same information, and should thus be regarded

as equivalent. Unfortunately, Metacat's rule mechanisms are not clever enough to

recognize this type of rule equivalence. As a consequence, the program may end

up generating a slew of identical answers for a problem, all based on structurally

distinct|but essentially equivalent|rules. This problem is further compounded by

the tendency of the program to create many di�erent variations of a single rule,

based on minor permutations of its constituent concepts, as was illustrated by the

proliferation of the eeqee) qeeq rules shown earlier.

5.3.2 Poor thematic characterizations of answers

Another weakness of the program has to do with its mechanisms for creating descrip-

tions of answers in terms of themes. Sometimes the resulting thematic characteriza-

tions do not accurately re
ect the answers they are intended to describe. This may

in turn lead the program to rather peculiar conclusions about the similarities and

di�erences between various answers.

For instance, consider the problem \aabc)aabd; ijkk)?". One possible an-

swer is ijll , based on seeing aabc and ijkk as going in the same direction, with the

rightmost kk group of ijkk corresponding to the rightmost letter c of aabc. This way

of looking at the problem ignores the fact that since aabc and ijkk contain doubled

letters, they share a strong underlying similarity. Taking this similarity into account
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Figure 5.7: The result of a justi�cation run for the answer ijll.

suggests the answer hjkk , which arises from viewing aabc and ijkk as \anchored" at

opposite ends by doubled letters, with the letter at the other end changing \by one"

(the c to its successor, and, symmetrically, the i to its predecessor). This answer is

considerably more elegant than ijll .

Unfortunately, Metacat may fail to recognize the very di�erent character of these

two answers, even after successfully making sense of each one individually. As an illus-

tration of this, Figure 5.7 shows the �nal state of Metacat's Workspace after a justi�-

cation run for the answer ijll . The �nal activations of vertical themes in the Theme-

space are also shown. The program includes the vertical String-Position: identity

theme in its answer description for ijll , due to the strong activation of this theme by
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the vertical bridges aa{i and c{kk .12

On the other hand, Figure 5.8 shows a justi�cation run for the answer hjkk . The

top of the �gure shows the Workspace after 520 codelets have run. Up to this point,

the program has not yet noticed the similarity between aa and kk (although it is


irting with this idea). The vertical String-Position: identity theme is thus highly

active, on account of the a{i and c{k bridges. Soon afterwards, however, at time

step 541, these bridges are broken and replaced by a diagonal aa{kk bridge, depriving

the String-Position: identity theme of its support. Consequently, the activation of this

theme begins to diminish, while that of the competing String-Position: opposite theme

begins to rise. Less than 200 codelets later, at time step 730, a symmetric c{i bridge

is built, leading quickly to a successful justi�cation of hjkk at time step 733 (see the

bottom of Figure 5.8).

As can be seen from the �gure, however, the run ended before the vertical String-

Position: opposite theme could attain dominance over the String-Position: identity

theme. Furthermore, neither the aa{kk bridge's leftmost) rightmost slippage nor

the c{i bridge's rightmost) leftmost slippage appears in the Temporal Trace, be-

cause neither slippage was made under thematic pressure, and neither one involves

an important group (as judged by the program). In general, in the absence of a domi-

nant String-Position theme in the Themespace or an explicit String-Position slippage

in the Trace, Metacat assumes (incorrectly, in this case) that the initial and target

strings map onto each other in a straightforward, parallel fashion. It therefore includes

a String-Position: identity theme in its answer description for hjkk . Consequently,

after justifying hjkk , the program reports being \strongly reminded" of the earlier

answer ijll , since ijll 's answer description also includes a String-Position: identity

theme (as well as exactly the same rule). Indeed, when asked to compare these two

answers, the program judges hjkk to be \essentially the same" as ijll (see Figure 5.9).

12See section 4.7.1 of Chapter 4 for a discussion of how Metacat creates answer descriptions.
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Figure 5.8: A justi�cation run for hjkk resulting in a misleading answer description.
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Figure 5.9: Metacat's assessment of the answers hjkk and ijll.

Needless to say, this is a rather odd claim to make.

Another amusing case in which Metacat arrives at questionable conclusions about

the relative merits of two answers it has discovered involves the problem \abc)abd;

xyz)?". Figure 5.10 shows the Temporal Trace for the �nal portion of a run in

which the program discovered the answer wyz . The answer description created for

wyz is also shown, including the answer's associated vertical themes. In this run,

Metacat hit the usual z -snag several times and then negatively clamped the vertical

theme String-Position: identity, which resulted in the creation of a symmetric mapping

between abc and xyz . This subsequently led to the discovery of the answer wyz .

However, the program failed to notice the alphabetic-position symmetry between a

and z (as can be seen from the absence of a corresponding �rst) last slippage in the

Trace). Thus, no Alphabetic-Position: opposite theme was included in wyz 's answer

description.

In contrast, Figure 5.11 shows the �nal portion of a di�erent run of the same

problem, in which the answer yyz was found. (This run is actually a continuation

of the run shown in Figure 4.12 of Chapter 4.) In this run, after hitting the snag

several times, the program negatively clamped the vertical String-Position: identity

theme, which, as before, led to the creation of a crosswise mapping between abc and

xyz . However, in this run, the program happened to make the �rst) last slippage

between a and z, unlike in the previous run. (In fact, this slippage was made twice,

because the a{z bridge got broken and then rebuilt.) Thus the program included an
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Figure 5.10: The answer description created for wyz.

Alphabetic-Position: opposite theme in its answer description for yyz , on account of

the �rst) last slippages appearing in the Trace.

Figure 5.12 shows Metacat's resulting commentary on the two answers yyz and

wyz . In this case, as can be seen, the program prefers the answer yyz , on account of

the extra Alphabetic-Position: opposite theme included in yyz 's answer description.

However, this is somewhat ironic, considering that even Copycat strongly prefers the

answer wyz (to which it assigns, on average, a �nal temperature of 14, as opposed

to 44 for yyz [Mitchell, 1993]), as do many people. Of course, on other runs of

this problem, Metacat, too, may express the opposite preference|as long as the

�rst) last slippage is made for wyz but not for yyz . (On the other hand, if this
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Figure 5.11: The answer description created for yyz.

slippage happens to be made for both answers, then the program proclaims wyz and

yyz to be \essentially the same".)

In any case, this example underscores both the fragility and the shallowness of

Metacat's insight into its answers. To be sure, Metacat has more insight into its

answers than does Copycat, because it can at least explicitly point to certain ideas

as being of particular importance, such as the idea of alphabetic-position symmetry

in the present example. But this insight depends critically on the program's having

included the appropriate themes in its descriptions of its answers. Furthermore, even

if the appropriate themes are included, the program may still fail to recognize many

important aspects of an answer. (For instance, nowhere in its commentary on yyz
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Figure 5.12: Metacat's assessment of the answers yyz and wyz.

does Metacat point out the fundamental inconsistency of seeing abc and xyz as

alphabetically-symmetric opposites while still changing the letter x to its successor,

instead of to its predecessor.)

Nevertheless, the fact that the program can|at least some of the time|perceive

quite subtle parallels and distinctions between di�erent analogies represents a sig-

ni�cant step beyond the perceptual abilities of Copycat, even though, clearly, much

room for improvement still exists. All in all, I'd say Metacat is the better program,

since it is based on a richer set of mechanisms.



chapter six

Conclusion

This chapter summarizes the work on the Metacat project presented in this disser-

tation, and discusses possible directions in which future work on the project might

proceed. The �rst section reviews the major ideas presented in each chapter.

6.1 Summary

Chapter 1 provided background on the Copycat model of analogy-making and high-

level perception, out of which the Metacat project grew. Since Metacat is an extension

of Copycat, this background was needed in order to understand the subsequent work

on Metacat presented in later chapters. The chapter began with a general discus-

sion of the central ideas motivating the development of Copycat, including the notion

of high-level perception (i.e., the ability to perceive situations in terms of abstract

concepts), and the notion of conceptual 
uidity (i.e., the highly 
exible and context-

sensitive nature of these concepts), which gives rise automatically to an ability to

perceive analogies through the mechanism of conceptual slippage. Copycat's idealized

letter-string microdomain was then described, and the crucial idea of the domain's

universality was stressed|that is, the fact that the program treats letter-strings sim-

ply as abstract con�gurations of objects and relationships, without knowing anything

about letters per se.
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This was followed by a discussion of the principal components of Copycat's archi-

tecture, including the Workspace (where the letter-strings reside and where perceptual

activity consequently takes place), the Slipnet (where the program's repertoire of con-

cepts about its letter-string microworld are stored), and the Coderack (where codelets

wait to be chosen to run). The important role played by temperature in guiding

the program's stochastic processing mechanisms was also discussed. Together, these

mechanisms give rise to the parallel terraced scan, which allows Copycat to simulta-

neously explore many potential pathways through its search space at di�erent speeds,

according to each pathway's estimated degree of promise.

Chapter 2 put the work on Copycat into perspective by �rst describing several

other projects closely related to Copycat, all of which use the same general stochastic

codelet architecture. This was followed by a discussion of Copycat's principal weak-

nesses as a realistic model of human cognition. Several weaknesses were identi�ed,

most of which stem from the program's lack of insight into what it is doing when it

solves analogy problems|on account of its inability to explicitly remember anything

that happens during a run.

The discussion of Copycat's weaknesses was followed by an outline of the objectives

of the Metacat project, most of which are concerned with remedying the weaknesses

just described. These objectives include making the program sensitive to patterns

in its own processing (especially to repetitive patterns of behavior) by developing

mechanisms to support an in-depth capacity for self-watching ; giving the program

the ability to remember its answers and to be reminded of other answers that it

has encountered before; enriching the information associated with answers so that

they can be compared and contrasted in an insightful manner; giving the program

the ability to make sense of an answer provided to it by \working backwards"; and

relaxing Copycat's rigid constraints on rules so that a wider class of analogy problems

can be handled.
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The main architectural components of Metacat were described next. The three

new components of the architecture (not present in Copycat) are summarized below:

� The Themespace contains structures that explicitly represent ideas that play a

key role in the program's current interpretation of an analogy problem. These

structures, called themes, are composed of Slipnet concepts, and have time-

varying activation levels that change as the program explores di�erent ways of

looking at its letter-strings. Under certain conditions, themes can exert strong

top-down pressure on Metacat's stochastic processing mechanisms, forcing the

program to look at the strings in a particular way. Furthermore, themes serve

as the basis for comparing and contrasting di�erent answers, since they are the

principal constituents of Metacat's abstract descriptions of its answers.

� The Temporal Trace contains structures that explicitly represent important pro-

cessing events that occur during a run. Such events include the creation of

important Workspace structures, the activation of deep Slipnet concepts, the

occurrence of slippages, the discovery of new answers, running into snags, and

explicitly focusing on particular ideas.

� The Episodic Memory stores abstract descriptions of answers, and consequently

serves as the program's long-term repository for its problem-solving experience.

Three extended examples were then presented, in order to more clearly illustrate

the ways in which these architectural components enable Metacat to watch (and

to respond to) its own behavior, to \work backwards" from a given answer to an

interpretation that makes sense for the answer, and to compare and contrast di�erent

answers on the basis of themes. Finally, Metacat's relation to other work in AI and

cognitive science was discussed.

Chapter 3 presented an in-depth discussion of Metacat's generalized rule-building

mechanisms, and gave many examples of rules that the program is now able to build
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(but which were not possible in Copycat). The internal structure of rules was also

described, as well as the three rule-quality measures of uniformity, abstractness, and

succinctness. This was followed by a detailed description of the program's method

for creating new rules from the bridges between strings, in which regularities among

the concept-mappings underlying the bridges are transformed into a set of \intrinsic"

and \extrinsic" rule clauses that describe the di�erences between the strings. The

nondeterministic nature of Metacat's rule-translation process was described next, to-

gether with the notion of coattail slippages|whereby a slippage involving a particular

relationship between one pair of concepts may occasionally induce slippages involving

the same relationship between other pairs of concepts. A few other re�nements to

mechanisms inherited from Copycat were also discussed.

Chapter 4|the heart of the dissertation|began by describing the Themespace in

detail, and the ways in which themes can control the high-level behavior of Metacat

by exerting strong top-down pressure on the program's stochastic processing mecha-

nisms. Various examples of patterns were presented next, including theme-patterns,

concept-patterns, and codelet-patterns. The following section illustrated how top-down

pressure exerted by clamping di�erent types of patterns enables the program to size

up answers provided to it, by \working backwards" in justify mode. This was followed

by a description of the Temporal Trace and the types of processing events that can

be recorded therein.

The next section tied together themes, pattern-clamping, and the Temporal Trace

by explaining how these mechanisms make it possible for Metacat to monitor its own

behavior|at a highly chunked level of description|and to respond to this behavior

in appropriate ways, such as by breaking out of unproductive, mindlessly repetitive

patterns of behavior via jootsing. Next, examples of the program's ability to describe

its answers and its behavior in English were presented. At the same time, however,

the canned nature of much of the program's linguistic output was carefully stressed.
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The last section discussed Metacat's Episodic Memory. The nature of the de-

scriptions created by the program to characterize its answers|as well as the snags

that it encounters in searching for answers|was �rst described. These descriptions,

stored in memory, enable the program to recognize subtle parallels and distinctions

between di�erent answers on the basis of the themes included in the descriptions. A

detailed example showing how Metacat constructs English-language summaries of the

similarities and di�erences between answers was then presented. Finally, the ability

of the program to be reminded of one answer by another according to the similarity

of the themes associated with the answers was discussed.

Chapter 5 presented in detail a number of complete sample runs of Metacat on

several families of analogy problems, in order to demonstrate more clearly the mech-

anisms discussed in Chapters 3 and 4. In addition, many examples were given of the

output generated by the program when comparing di�erent analogies from these fam-

ilies. In contrast, the last section of the chapter presented examples that illustrated

a number of weaknesses of the current version of the program. These weaknesses

include the tendency of Metacat to create overly-complicated and implausible rules

for describing string changes, as well as its failure from time to time to characterize

answers in terms of the appropriate themes, which may lead the program to unwar-

ranted conclusions about the similarities or di�erences between answers.

6.2 Contributions and Future Work

The research presented in this dissertation represents another small step down a very

long road leading toward a deeper understanding of the nature of concepts, and of

the pivotal role they play in human cognition. As with Metacat's forerunners along

this road, the bedrock assumption underlying this work is that only by understanding

the nature of concepts in a genuine and deep way will other aspects of cognition|

including analogy, memory organization, reminding, and self-awareness|come within
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reach of understanding. Indeed, it is fair to say that understanding concepts is the

central problem of cognitive science and arti�cial intelligence.

In particular, this focus on concepts is what most clearly distinguishes the ap-

proach to analogy taken by Metacat and Copycat from approaches developed by

other researchers|such as the ACME model of Holyoak and Thagard [Holyoak and

Thagard, 1989], the SME model of Falkenhainer, Forbus, and Gentner [Falkenhainer

et al., 1990], or the derivational analogy approach of Carbonell [Carbonell, 1986].

Likewise, Metacat's approach to the issues of memory organization and reminding

di�ers from other approaches|such as the ARCS model of Holyoak and Thagard

[Thagard et al., 1990], the MAC/FAC model of Forbus and Gentner [Forbus et al.,

1995], or the many CBR models of memory and learning descended from Schank's

theories of memory organization [Leake, 1996; Schank, 1982]|on account of the for-

mer's commitment to taking concepts seriously.

Copycat, too, takes concepts seriously, but whereas Copycat is concerned with

elucidating the ways in which concepts interact with the perception of similarity be-

tween potentially disparate situations, Metacat is concerned with the ways in which

concepts interact with self-perception. Both types of perception are crucial to cog-

nition, but the goal of a full accounting of them both remains a very distant goal

indeed. This goal, however, cannot be reached without �rst coming to grips with

concepts.

Another crucial di�erence between Metacat and the other approaches mentioned

above (and, for that matter, the majority of approaches being pursued in cogni-

tive modeling today) is Metacat's commitment to modeling concepts within a mi-

crodomain. Accordingly, a second bedrock assumption of Metacat (and of Metacat's

predecessors) is the belief that only by \starting small" will it be possible to penetrate

the deep mysteries surrounding the notion of reference and the meaning of symbols
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within computational systems|and, in particular, the notion of self-reference. Grap-

pling with these issues is best done in the context of an idealized, \frictionless" world

free of the confusing and obscuring clutter of complicated \real-world" domains. In

this regard, work on Metacat can be viewed as following in the tradition of earlier AI

projects (mostly from the 1970s) that took the idea of microdomains to heart, such

as Terry Winograd's SHRDLU program, which conversed with a human interlocutor

in impressively sophisticated English about a simulated world of toy blocks [Wino-

grad, 1972], and Anthony Davey's Proteus program, which generated commentaries

on Tic-Tac-Toe games played against a human opponent in equally impressive and

sophisticated English [Davey, 1978].

As far as possible future work on Metacat is concerned, there are quite a number

of directions in which research on this project could conceivably proceed. A few

examples of extensions to the program that could be made are discussed below, in

roughly increasing order of complexity:1

� A right-hand side vertical mapping could be constructed between the modi�ed

string and the answer string when the program runs in justify mode, in ad-

dition to the usual left-hand side mapping between the initial string and the

target string. This would re
ect more closely how people make sense of answers

provided to them. For example, when people are shown the answers below,

abc ) abd

xyz ) dyz

rst ) rsu

xyz ) uyz

they instantly notice, in the case of the �rst problem, the two salient d 's in

abd and dyz , or, in the case of the second problem, the two salient u 's in rsu

and uyz . This immediately \gives away the game" by suggesting a crosswise

1Some of these extensions were suggested in [Mitchell, 1990], but bear repeating here.
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mapping between these strings|and, likewise, between abc and xyz (or rst

and xyz ). In fact, the ability to make a right-hand side vertical mapping was

�rst suggested in the original Copycat proposal [Hofstadter, 1984a], long before

Copycat had been implemented. Even now, this particular idea still awaits

implementation.

� Groups of arbitrary letters could be constructed on the basis of spatial prox-

imity (e.g., the group xem in the string aaaxemttt , or the three mxb groups

in mxbmxbmxb), or on the basis of symmetry (e.g., the whole-string group

axxgggxxa). In a similar fashion, groups could be based on more complex

types of bonds between letters, such as simultaneous letter-category and group-

length bonds in rssttt ; bonds between spatially non-adjacent letters that to-

gether form a �gure/ground pattern (e.g., the letters p, q, and r in pxqxrx ); or

bonds based on new concepts formed from the composition of existing concepts

(e.g., \double successorship" bonds within ace).

� More complex descriptions of objects within strings could be made, such as \the

rightmost letter of the leftmost group" (e.g., the rightmost a of aaabbbccc),

\the rightmost letters of all objects in the string" (e.g., the letters n, h, and q

in lmnfghopq), \the third letter from the leftmost letter of the string" (e.g.,

the c in abcdef ), \the next-to-leftmost letter" (e.g., the j in ijklm), or \the

next-to-last letter (in the alphabet)" (e.g., the y in wxy).

� The information stored in answer descriptions could be expanded to include

temporal information about the overall structure of a run. In other words,

in addition to storing themes characterizing the essential ideas underlying an

answer, answer descriptions could include information about the pathway taken

in discovering the answer. For example, the answer description for wyz to the

problem \abc)abd; xyz)?" might include information to the e�ect that \I
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�rst hit a snag, but then restructured my view and saw a far deeper similarity

between abc and xyz", or, for the answersmrrkkk andmrrjjjj to the problem

\abc)abd; mrrjjj)?", \I �rst found an answer based on little structure,

but then noticed a pattern, explored it more deeply, and discovered a hidden

layer of structure that revealed a much stronger degree of similarity between abc

and mrrjjj ". This type of extension would make Metacat's Episodic Memory

much more episodic than it currently is. Accordingly, extending the program

in this way should be given high priority in any future work on this project.

� Another important way in which answer descriptions could be enriched would

be to relax the restrictions currently imposed on the types of themes that can

be included in them. As was mentioned in section 4.7.1 of Chapter 4, the cur-

rent version of the program allows only themes of the category String-Position,

Alphabetic-Position, Direction, Group-Type, or Bond-Facet to be included in

answer descriptions (and only non-identity themes in the case of Bond-Facet).

These restrictions were imposed in order to improve Metacat's ability to sensibly

characterize its answers. (For example, in the problem \abc)abd; ijk)?",

allowing Letter-Category themes to be included in answer descriptions would

likely mislead the program into regarding the letter-category di�erences be-

tween abc and ijk as being a key idea behind the answer ijl .) In a way, the

restrictions currently placed on Metacat's answer descriptions are akin to the

restrictions that were placed on rules in Copycat, and should thus be viewed as

a temporary interim solution, which should eventually be generalized.

� More cognitively plausible mechanisms for memory indexing and retrieval are

needed. In the current version of the program, when a new answer is discovered,

the newly-created answer description is compared with all other answer descrip-

tions stored in memory, in order to determine the new activation levels of the
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stored descriptions|and hence which answers will be recalled by the program

as a result of having found the new answer. This approach is adequate if only a

few answer descriptions exist in memory, but very quickly breaks down if many

descriptions exist. In other words, the current mechanisms for memory retrieval

and reminding in Metacat do not scale up, and are thus unsatisfactory. Accord-

ingly, for Metacat to develop into a psychologically realistic model of memory

and reminding, this issue must be squarely addressed, and should thus be given

high priority in any future work on the project.

� Concepts about analogy-making in general in the letter-string microworld could

be given to the program. This would signi�cantly increase Metacat's degree of

\meta-ness", since such concepts would provide the program with a much richer

conceptual vocabulary for describing and comparing analogies. For example,

such concepts might include the idea of bridge, mapping, rule, theme, slippage,

snag, pressure, answer, pattern, and the concept of concept itself, to name but

a few.

In particular, including meta-level concepts about the process of analogy-making

itself would allow Metacat to characterize entire analogy problems (not just individual

answers to problems) in terms of \the issues that they are about", and would thereby

allow the program to notice connections and distinctions between analogy problems

as a whole. For example, the problem \abc)abd; xyz)?", in its essence, is about

being forced to reinterpret a situation in response to an unexpected snag, which may

then lead to a kind of paradigm shift that results in the discovery of a far more elegant

way of interpreting the situation. Likewise, the problem \eqe) qeq; abbbc)?" can

also be viewed in a very similar way. Giving Metacat the ability to appreciate such

abstract similarities between analogy problems as a whole would be an excellent topic

for future research.
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Once Metacat is capable of looking at a particular problem and identifying the

issues that lie at its core (i.e., the ideas that motivated the invention of the problem

in the �rst place), the next major step would be to imbue the program with the

ability to take an interesting idea for a problem (perhaps supplied by a human), and

proceed to invent one or more problems on its own that are \about" that idea. Of

course, it would also be crucial to give the program itself the ability to come up with

its own \interesting ideas". To do this, Metacat would need to have even-more-meta-

level types of concepts, such as the notion of \decoy answer" (i.e., an answer that

catches the eye quickly but that has little depth) versus \elegant hidden answer"

(i.e., an answer whose qualities are good in many ways, but that does not jump

to the eye at once). These two concepts actually are intertwined, in that one may

construct a problem deliberately to have both a decoy answer and an elegant hidden

answer, as in the problem \apc)abc; opc)?" discussed in Chapter 2 on page 50.

Explicit representation of these kinds of very meta-level concepts would be needed

in a program that could make up high-quality analogy problems on its own. These

kinds of concepts are also deeply related to the issue of humor.

Finally, in conclusion, it is interesting to note that concurrent work by John

Rehling and Douglas Hofstadter on the Letter Spirit project, described brie
y in

section 2.1.4 of Chapter 2, seems to be converging, in many ways, on the same set of

fundamental issues at the heart of the Metacat project.

As will be recalled, Letter Spirit is concerned with creative artistic design and

the perception of visual style in an idealized microworld of letterforms (called gridlet-

ters). Recent development of the program has involved incorporating architectural

components that, in particular, share much of the 
avor of Metacat's Themespace

[Rehling, 1997; Rehling, 1999]. Brie
y, the main components of Letter Spirit include

the Examiner, which classi�es a given letterform as one of the 26 possible lowercase

letters of the alphabet; the Adjudicator, which uses the output of the Examiner|

together with the letterform itself|both to judge how well the letterform �ts into the
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particular letter-category assigned by the Examiner, and to determine which stylistic

aspects of the letterform are the most salient; and the Drafter, which uses the stylis-

tic information extracted by the Adjudicator to create new letterforms representing

di�erent letters of the alphabet drawn in the same style as the original letter. In turn,

the new letterforms created by the program are themselves subject to examination

and evaluation, in terms of letter-category quality and style, by the program itself.

The abstract stylistic information about letterforms, extracted by the Adjudica-

tor, is explicitly represented by structures called stylistic properties, which are stored

in Letter Spirit's Thematic Focus. In general, these structures exert strong top-down

pressure on processing, guiding the program in its creation of new letterforms of a

particular style, which may in turn cause new stylistic properties to be noticed and

explicitly represented in the Thematic Focus. Stylistic properties are thus, in some

sense, analogous to Metacat's themes, since they characterize gridletters (i.e., the

program's concrete perceptual data) at an abstract level of description, and can in

turn in
uence the behavior of the program as it watches and responds to its own

activity. Furthermore, the ongoing development of Letter Spirit has brought out, in

very clear ways, the central and indispensable role played by self-watching in creativ-

ity. It will be interesting to see whether (or to what extent) future FARG work on

Letter Spirit and Metacat continues to converge on a common set of fundamental

ideas.

In summary, the work on Metacat described in this dissertation has attempted

to address the long-term goals set forth in [Hofstadter and FARG, 1995, Chapter 7]

for the further development of the Copycat project. To some extent, this e�ort has

succeeded, although|to be sure|in a far-from-complete way. A great deal of work

remains to be done. It is my hope that the work presented here will serve as another

stepping stone along the path toward a deeper understanding of human cognition in

all of its profound subtlety and complexity.
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This appendix lists the random number seeds used in creating the �gures and sample

runs of Metacat presented in Chapter 5. In each case, the actual expression that

begins the run is given.

Sample runs (section 5.2)

Run 1: (mcat abc abd mrrjjj mrrjjjj 1092119323)

Run 2: (mcat xqc xqd mrrjjj mrrkkk 1248075611)

Run 3: (mcat rst rsu xyz uyz 2330176791)

Run 4: (mcat abc abd xyz dyz 2836825623)

Run 5: (mcat xqc xqd mrrjjj mrrjjjj 3729474543)

Run 6: (mcat eqe qeq abbbc aaabccc 789090523)

Run 7: (mcat abc abd xyz 3852097033)

Run 8: (mcat eqe qeq abbbc 3557912874)

Answer comparison and reminding (section 5.2.3)

abc/xyd : (mcat abc abd xyz xyd 1760747975)

abc/wyz : (mcat abc abd xyz wyz 3100511611)

abc/dyz : (mcat abc abd xyz dyz 2107869027)

rst/xyu : (mcat rst rsu xyz xyu 939480183)

rst/wyz : (mcat rst rsu xyz wyz 720286361)

rst/uyz : (mcat rst rsu xyz uyz 2330176791)
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abc/mrrkkk : (mcat abc abd mrrjjj mrrkkk 4211806334)

abc/mrrjjjj : (mcat abc abd mrrjjj mrrjjjj 1092119323)

xqc/mrrkkk : (mcat xqc xqd mrrjjj mrrkkk 1248075611)

xqc/mrrjjjj : (mcat xqc xqd mrrjjj mrrjjjj 3729474543)

eqe/baaab: (mcat eqe qeq abbba baaab 3635369418)

eqe/aaabaaa: (mcat eqe qeq abbba aaabaaa 4209674874)

eqe/qeeeq : (mcat eqe qeq abbbc 2302461154)

eqe/aaabccc: (mcat eqe qeq abbbc aaabccc 789090523)

Implausible rules (section 5.3.1)

Figure 5.4 (top): (mcat eeqee qeeq xxixx 698282038)

Figure 5.4 (bottom): (mcat eeqee qeeq xxixx 175910650)

Figure 5.5 (top): (mcat eeqee qeeq xxixx 698282038)

Figure 5.5 (bottom): (mcat eeqee qeeq xxixx 4109591222)

Poor thematic characterizations (section 5.3.2)

Figure 5.7: (mcat aabc aabd ijkk ijll 2351730219)

Figure 5.8: (mcat aabc aabd ijkk hjkk 1810079903)

Figure 5.10: (mcat abc abd xyz 3009318743)

Figure 5.11: (mcat abc abd xyz 2006188493)
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