METACAT:

A SELF-WATCHING COGNITIVE ARCHITECTURE FOR
ANALOGY-MAKING AND HIGH-LEVEL PERCEPTION

James B. Marshall

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements
for the degree
Doctor of Philosophy
in the Department of Computer Science
and the Cognitive Science Program

Indiana University

November 1999

(© Copyright 1999
James B. Marshall
All rights reserved.

i

Accepted by the Graduate Faculty, Indiana University, in partial ful-

fillment of the requirements of the degree of Doctor of Philosophy.

Bloomington, Indiana
September 1999

Dr. Douglas R. Hofstadter
(Principal Adviser)

Dr. Daniel P. Friedman

Dr. David B. Leake

Dr. Robert F. Port

il

For the three women in my life:

my mother, my sister, and Francesca.

v

ABSTRACT

This dissertation describes Metacat, an extension of the Copycat computer model
of analogy-making and high-level perception developed by Douglas Hofstadter and
Melanie Mitchell as part of a research program aimed at computationally modeling
the fundamental mechanisms underlying human cognition. Central to the philosophy
of Copycat is the belief that the ability of the human mind to perceive analogies

between situations lies at the core of intelligence.

Copycat operates in an idealized microworld of analogy problems involving short
strings of letters. The program understands only a limited set of concepts relating
to its letter-string world, but its “fluid” conceptual processing mechanisms give it
considerable flexibility in recognizing and applying these concepts in many diverse

situations.

The present work builds on these achievements by focusing on the issue of self-
watching—namely, the ability of a system not only to perceive situations, but also to
observe and to explicitly characterize its own perceptual processes. Copycat focuses
exclusively on perceiving patterns within its input data, while ignoring patterns that
occur in its processing of those data. Consequently, Copycat lacks insight into how
it arrives at its answers. It is thus unable to explain why it considers one analogy to

be better or worse than another.

The Metacat project is concerned with extending the model in a way that allows it
to create much richer representations of the analogies it makes, enabling it to compare

and contrast answers in an insightful way. This involves incorporating an episodic

memory into the architecture, along with an ability for the program to monitor itself,
so that it can recognize, remember, and recall important patterns that occur in its own
“train of thought” as it makes analogies. By monitoring its own processing, Metacat
can recognize when it has fallen into a repetitive pattern of behavior, enabling the
program to subsequently break out of the pattern. Furthermore, based on the “meta-
level” information gleaned from self-watching, Metacat can come to understand and

explain the answers that it finds in a way that Copycat cannot.

vi

ACKNOWLEDGMENTS

What a long and winding road this project has been.

I would like to thank, first of all, my advisor Doug Hofstadter for providing years
of generous support and encouragement, as well as constant intellectual inspiration,
along the way. It was his book Gddel, Escher, Bach that first set me on this path so
many years ago, even before I was fully aware of being on it. GEB changed my outlook
on the world, and had I known, at the time, that I would eventually end up working
on the development of a self-watching computer program under the supervision of
its author for my PhD, I would have been truly dumbfounded. As it stands, it has
been a great pleasure to know him as a friend and mentor throughout my years in
graduate school. In addition, I would also like to thank him for making it possible
for me to spend a year at the Istituto per la Ricerca Scientifica e Tecnologica (IRST)

in Trento, Italy from 1993 to 1994.

The other members of my committee, Dan Friedman, David Leake, and Bob Port,
have each had their own unique influence on my intellectual development. Dan has
been a true friend from almost the first moment that I arrived in Bloomington, and
his exuberant teaching style in C311 taught me much about what it means to be a
great teacher. The time I spent as his associate instructor for C311 remains, without a
doubt, and for many reasons, one of the most important and rewarding experiences of
my graduate school career. I have learned much from David about Al and case-based
reasoning. In addition, he was always willing to make himself available whenever I

needed to discuss my thesis, or to just vent my frustrations. Bob introduced me to

Vil

cognitive science through his Q500 intro course back in the early days of my grad

school career.

Doug Blank, Gary McGraw, Lisa Meeden, and Jon Rossie have been my closest
friends throughout practically my entire time in Bloomington. It is amazing how
many times just talking about Metacat with Doug (or drawing illegible diagrams on
paper napkins with him over lunch) helped me to figure out what exactly it was that I
was trying to do. Gary made life at CRCC fun. Actually, he made life in Bloomington
fun. In many ways, the parties that he and Amy had out in their rustic Bean Blossom
hideaway remain for me the essence of grad school. Lisa has been such a constant
source of intellectual companionship, good humor, and moral support through the
years that it is hard for me to imagine what I would have done without her. Being
her faculty colleague in the CS program at Swarthmore for the past two years has been
truly wonderful. Jon, in addition to being a great friend and erstwhile housemate, has
been my link to the programming languages world—the other great interest of mine
in CS. Also, hanging out with Jon, Naz, Maddy, and Caleb has provided much-needed
fun and relaxation over the years.

Heartfelt thanks go to Melanie Mitchell for writing Copycat in such a remarkably
clean and well-organized way that [could actually figure out how it all worked—
without having to pester her incessantly with questions (well, at least not too many).
I hope Metacat will prove to be a worthy successor to Copycat.

Thanks also to the other FARGonauts, past and present, for making CRCC such
a great place to work and hang out (not necessarily in that order), especially John
Rehling, Dave Chalmers, Bob French, Liane Gabora, Wang Pei, and Hamid Ekbia.

For invaluable administrative assistance over the years I would like to thank Helga
Keller and Pam Larson. They both kept me safely insulated from the IU bureaucracy

for years, and for that I am deeply grateful.

Thanks to Jim Herriot for many enjoyable discussions about “Coffeecat” and

viil

“Latte Spirit”, and for being such an enthusiastic follower of FARG work in general,
and of Metacat in particular. It was always fun to talk about Metacat and Letter

Spirit with him and John Rehling whenever he came to town.

Immense thanks go to John Zuckerman for providing CRCC with a copy of his
wonderful SchemeXM/SGL graphics package. Without SXM, the development of
Metacat would have been infinitely more painful. I am truly more grateful than I can
say. Also, John cheerfully made a number of extensions to SXM at my (and Gary

McGraw’s) request.

Many other friends have enriched my time in graduate school, including Laura
Blankenship, Amy Barley, Amy Burton, Manuel Cordero, Patti Freeman, Eric Jeschke,
Kannan Konath, Shirley Lee, Mike Ly, Devin McAuley, Brenda Sermersheim, Lisa

Thomas, and Paola Voci.

The Swarthmore College computer science department has been an exceptionally
congenial place to work for the past two years. Thanks to Charles Kelemen, Lisa
Meeden, Jeff Knerr, and Joan McCaul for making my time at Swarthmore so enjoy-
able, and for waiting patiently while I finished my thesis. In particular, I would like
to thank Jeff for letting me borrow an Ultra-5 all summer long (and then some) in
order to finish the work. I definitely could not have done it otherwise. Thanks also
to the other Swat sysadmins for providing essential software and hardware support.

Thanks to the Pat Metheny Group for providing constant musical inspiration
whenever it was needed.

My mother Jean Burris has given me unflagging moral support and loving encour-
agement throughout my many years of work on this project, and for that [am truly
grateful. Thanks, Mom. Likewise, my sister Maria Marshall and my brother-in-law
Bill Wightman cheered me on as I approached the finish line, and have been pillars

of support throughout the whole process.

Finally, very special thanks go to Francesca Parmeggiani, who has been there with

ix

me throughout the entire writing of this dissertation—gently encouraging me to keep
going, patiently listening to me complain, and always believing in me no matter what.
Grazie, Chicco (voglio molto bene a te).

This research has been supported in part by Sun Microsystems Co. Academic
Equipment Grant #EDUD-NAF0-960418 and by grants to the Center for Research on

Concepts and Cognition from the College of Arts and Sciences of Indiana University.

CONTENTS

Abstract
Acknowledgments
List of Tables
List of Figures

1 The Copycat Model

1.1 High-Level Perception
1.2 Conceptual Fluidity and Analogy-Making.
1.3 The Ubiquity of Analogy in Human Thought
1.4 Creativity, Randomness, and Subcognition
1.5 A Computer Model of Conceptual Fluidity
1.5.1 An idealized microworld for studying analogy-making
1.5.2 The architecture of Copycat
1.5.3 Conceptual activity in the Slipnet
1.5.4 Perceptual activity in the Workspace
1.5.5 Codelets and the parallel terraced scan
1.5.6 Temperature and nondeterminism

From Copycat to Metacat

2.1 A Short History of FARG Work
21.1 Jumbo
2.1.2 Seek-Whence
2.1.3 Tabletop
2.1.4 Letter Spirit

2.2 Copycat’s Weaknesses o
2.2.1 Copycat lacks insight into its own behavior
2.2.2 Copycat cannot remember what it has done
2.2.3 Copycat cannot perceive differences between strings

2.3 The Objectives of the Metacat Project

x1

© ~J Ot W -

10

20
21
26
28

2.3.1 Handling arbitrary strings 45

2.3.2 Self-watching oo 46
2.3.3 Episodic memory and reminding L. 47
2.3.4 Comparing and contrasting answers 48
2.3.5 Working backwards from a given answer 49
2.3.6 Making up new analogy problems 49
2.3.7 The objectives of the present work 51l

2.4 An Overview of the Metacat Architecture 51
2.4.1 The Episodic Memory 52
2.4.2 The Themespace 53
2.4.3 The Temporal Trace 54
2.4.4 Themes and self-watching: An example 57
2.4.5 Working backwards: An example 59
2.4.6 Comparing and contrasting answers: An example 62

2.5 Relation to Other Work 68
Generalizing the Representation of Rules 72
3.1 Similarities and Differences Between Strings 73
3.2 Building Rules in Copycat 75
3.3 Building Rules in Metacat 76
3.3.1 Generalized mappings between strings 76
3.3.2 From mappingstorules 80
3.3.3 A sampler of Metacat rules 82
3.3.4 The internal structure of rules in detail 89
3.3.5 Measures of rule quality 96
Uniformity 98
Abstractness 100
Succinctness 102

3.3.6 The rule-abstraction process in detail 103
Rule-abstraction heuristics 110

3.4 Nondeterministic Rule Translation 113
3.4.1 Coattail slippageso L 119

3.5 Other Refinements to Copycat 122
An Architecture for Self-Watching 126
4.1 Themes and the Themespace 127
4.1.1 Organization of the Themespace 131
4.1.2 Top-down influence of themes 138

4.2 Patterns L 145
4.2.1 Theme-patternso 146
4.2.2 Concept-patterns 150

xil

4.2.3 Codelet-patterns 150

4.3 Answer Justification Lo L oL 152
4.3.1 Answer-justifier codelets 0oL 154

4.4 The Temporal Trace 161
4.5 Self-Watching 167
4.5.1 Progress-watcher codelets 167
4.5.2 Jootser codelets 170

4.6 The Comment Window 178
4.7 The Episodic Memory 184
4.7.1 Answer descriptions 184
4.7.2 Snag descriptionso Lo 188
4.7.3 Comparing and contrasting answers 190
4.7.4 Generating commentary in English: An example 193
475 Reminding Lo L o 197

5 Performance of the Model 201
5.1 Three Families of Analogy Problems 202
5.1.1 The xyz family oL 202
5.1.2 The mrryyy familyo 202
5.1.3 The eqe family 204

5.2 Sample Runs of the Program 206
5.2.1 Examples of answer justification 206

Run 1: abc=- abd; mrrygg=mrrygsy. 206

Run 2: xqe= xzqd; mrryyy= mrrkkk 214

Run 3: rst=rsu; xyz=uyz 219

5.2.2 Examples of jootsing 224

Run 4: abc= abd; xyz=dyz. 224

Run 5: xqe= xzqd; mrrygg=mrrygyy 227

Run 6: eqe= gqeq; abbbc=- aaabccc 231

Run 7: abc=abd; xyz= 2 237

Run 8: eqe= qeq; abbbc= 2 242

5.2.3 Examples of answer comparison and reminding 247

5.3 Problems with the Model 256
5.3.1 Implausiblerules 256
5.3.2 Poor thematic characterizations of answers 263

6 Conclusion 271
6.1 Summary e 271
6.2 Contributions and Future Work 275
Appendix: Random Number Seeds 283

xiil

LIST OF TABLES

2.1 Six answers and their associated answer descriptions.

4.1 Two answer descriptions and one snag description for the problems
“eqe = geq; abbba= ?” and “eqe=- qeq; abbbc= ?"
4.2 The themes associated with dyz and xyd

Xiv

LIST OF FIGURES

1.1 Copycat’s Slipnet 19
1.2 The final activations of Slipnet concepts for a run of Copycat 24
1.3 The final Workspace configuration for a run of Copycat 25
1.4 Copycat’s behavior on the problem “abc= abd; mrriyy= 2" . . . 29
1.5 Copycat’s Coderack at different points during a run of the problem

“abc= abd; mrrygy= %27 31
2.1 A snag situation in Copycat 42
2.2 The architecture of Metacat 56
2.3 Avoiding snags via negative thematic pressure 60
2.4 An inconsistent interpretation of wyz 61
2.5 'The final consistent interpretation of wyz 63
2.6 An interpretation of “abc= abd; xyz= ?” that yields xyd 65
3.1 Horizontal and vertical mappings between abec, aabbdd, and gkl . . 77
3.2 A grammar that describes the structure of Metacat’s rules. 90
3.3 Intrinsic change-descriptions applied to the string abec 94
3.4 The complete internal structure of several rules 95
3.5 A possible mapping for abc=cba 104
3.6 A possible mapping for eqe =qeq 105
3.7 A possible mapping for abc=abed 106
3.8 A possible mapping for abe = ccbbaa 108
3.9 A possible mapping for aa=bb 111
3.10 A possible mapping foraa =2z 112
3.11 Applying a successor = predecessor slippage to yield kgz 115
3.12 Ignoring a successor = predecessor slippage to yield kkkjjjiie 116
3.13 Applying a Letter-Category = Length slippage to yield mmmrry . . 117
3.14 Ignoring a Letter-Category = Length slippage to yield grrmmm . . . 118
3.15 An example of the “coattail slippage” effect 120
3.16 Another example of the “coattail slippage” effect 121
3.17 New link labels in Metacat’s Slipnet 124
3.18 Vertical bridges supported by the non-conflicting concept-mappings

first = last, leftmost = leftmost, and rightmost = rightmost 125

XV

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10
411
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

The activations of themes in Metacat’s Themespace 134
The Themespace after finding the answer kkgghh 136
The mutual excitatory and inhibitory effects of themes 138
The effect of theme activation on Workspace structure strength . . . 142
The answer kjj to the problem “abc=-abd; kji= 2" 147
The answer lj¢ to the problem “abc=-abd; kji= 2" 149
Two examples of concept-patterns 151
The effect of clamping a codelet-pattern on the selection probabilities

of codelets in Metacat’s Coderack 153
An example of an unsupported bottom rule 157
The unsupported bottom rule’s theme-pattern 158
The three levels of processing in Metacat 162
The temporal record of a run of “abc= abd; xyz= 2" 164
The temporal record of a justification run of “abc=- abd; xyz= ?” . 165
Metacat’s commentary on two runs of “abec=- abd; xyz= 2" 179
Metacat’s commentary with Eliza mode turned oft 183
The full answer description for wyz 187
Six answer descriptions stored in Metacat’s Episodic Memory 199
Three families of letter-string analogies 203
The answer description for mrryggy oL 213
Different degrees to which Metacat was reminded of various answers . 248
Two convoluted rules for describing eeqgee =qeeq 257
Another pair of convoluted rules for eeqee = qeeq 258
Two different rules for describing abc = aabbce 262
The result of a justification run for ¢ll 264
A misleading justification run for hgkko L. 266
Metacat’s assessment of hgkk and 290l 267
The answer description created for wyz 268
The answer description created for yyz 269
Metacat’s assessment of yyz and wyz 270

xXVvi

CHAPTER ONE

The Copycat Model

The Metacat project is an extension of the Copycat computer model of analogy-
making and high-level perception originally developed by Douglas Hofstadter and
Melanie Mitchell as part of an ongoing research program aimed at computationally
modeling the fundamental mechanisms underlying human cognition. Central to the
philosophy of this research program is the belief that the ability of the human mind
to perceive similarities between different situations—and to make analogies based on
these similarities—Ilies at the core of intelligence. To understand the mental mech-
anisms by which analogical thinking and perception take place is to understand the
source of the remarkable fluidity of the human mind, including its hidden wellsprings

of creativity.

1.1 High-Level Perception

Copycat focuses on the idea of high-level perception, which can be regarded as that
level of perceptual processing in which semantically-defined concepts play a critical
role [Chalmers et al., 1992|. In contrast, low-level perception involves the processing
of raw, modality-specific sensory data obtained directly from the environment, such
as the processing of light-intensity information from the retina by the visual cortex

of the brain, or the processing of auditory information from the inner ear by the

2 The Copycat Model

temporal cortex. Low-level perceptual processing is a necessary prerequisite for high-
level perception to occur, and there are many intermediate processing stages, involving
many levels of abstraction, leading from the former to the latter. The end result of
this process is the conscious recognition or understanding of the input stimulus as an

instance of a particular mental concept or set of concepts.

Consider, for example, the everyday experience of recognizing your own mother.
A pattern of light falls on the hundred million or so photoreceptor cells in your retina,
and a fraction of a second later, the idea of your mother comes to mind. A particular
mental concept has become highly activated, while most others remain dormant.
This process of recognition, for the most part, takes place below the level of conscious
awareness. One does not have to do much deliberate thinking in order to successfully
recognize one’s mother (at least in the absence of degraded environmental conditions
such as poor lighting). High-level perception, like many other mental phenomena,

depends largely on subcognitive processing mechanisms [Hofstadter, 1985c¢].

The recognition of a person as belonging to the category of mother is a fairly pro-
saic example of high-level perception. This same general phenomenon, however, often
occurs at much higher levels of abstraction, such as when a person hears a piece of mu-
sic for the first time and recognizes it as coming from a particular composer or musical
style, or when a painting is clearly recognized to be, say, an Impressionist work, or as
belonging to Picasso’s “Blue period”. Moving to an even higher level of abstraction,
an entire situation involving messy and complicated webs of people, objects, rela-
tionships, and choices may collectively be seen as a “Catch-22” situation—that is, as
an instance of this particular concept. Even the seemingly straightforward concept
of mother is, in reality, a remarkably subtle matter. Depending on context, a huge
variety of things can be recognized as being abstract instances of the mother concept.
To name just a few examples: the planet Earth is often regarded as being the mother

of all living things, an idea commonly expressed by the phrase “Mother Earth”. The

1.2 Conceptual Fluidity and Analogy-Making 3

nation of Russia is often considered to be the mother of the Russian people, as in
the phrase “Mother Russia”. Betsy Ross is often described as “the mother of the
American flag”. And the Biblical notion of the Apocalypse is sometimes billed as
“the mother of all battles”. Normally, one is not inclined to regard planets, nation-
states, or military campaigns as likely candidates for motherhood; indeed, in a strict
sense such notions do not even make sense. But given the right context, people
can effortlessly see how the concept applies, thanks to the natural fluidity of human

cognition.

1.2 Conceptual Fluidity and Analogy-Making

In general, a concept in the mind is not a sharply-defined entity with clear-cut bound-
aries, always applying to certain things (such as someone’s mother) but never to
others (such as someone’s father, or a planet). Rather, the boundaries of concepts
are inherently ill-defined and blurry, and are strongly influenced by the context in
which high-level perception takes place. We refer to this type of inherent flexibility
as conceptual fluidity, in order to stress the idea of concepts as nonrigid, malleable,

adaptable, and highly context-sensitive.

Not only are the “shapes” of individual concepts dynamically adaptable; so too
are the “conceptual distances” separating them. To some extent, every concept in the
mind consists of a central core idea surrounded by a much larger “halo” of other re-
lated concepts. The amount of overlap between different conceptual halos is not rigid
and unchangeable, but can instead vary according to the situation at hand. Much
work has been done in cognitive psychology investigating the nature of the distances
between concepts and categories [Shepard, 1962; Tversky, 1977; Smith and Medin,
1981; Goldstone et al., 1991]. For most people, certain concepts lie relatively close

to one another in conceptual space, such as the concepts of mother and father (or

4 The Copycat Model

perhaps mother and parent), while others are farther apart, at least under normal
circumstances. However, like the boundaries defining individual concepts, the degree
of association between different concepts can change radically under contextual pres-
sure, with the potential result that two or more normally quite dissimilar concepts
are brought close together, so that they are both perceived as applying equally well
to a particular situation, such as when the Earth is seen as an instance of both the
mother concept and the planet concept. This phenomenon, referred to in the Copycat
model as conceptual slippage, is what enables apparently unrelated situations to be

perceived as being fundamentally “the same” at a deeper, more abstract level.

As another example, consider a typical American adult’s concept of Vietnam. On
the surface, this concept refers to a particular nation located in Southeast Asia. But
in the average American mind at least, it is also tightly associated with the huge
political and military debacle in which the United States got mired in the late 1960’s
and early 1970’s, along with all of the internal social and cultural strife that occurred
as a result. This entire complex political-historical situation is conventionally referred
to in America as simply “Vietnam”. Hovering about the central core of this concept
are enormous numbers of other related concepts, some closer in, some farther out—
concepts such as communism, war, Cambodia, President Nizon, social unrest, the
Pentagon, rice, 1968, dominos, failure, and so on. Other concepts clearly lie very far
away from the core: penguins, say, or rollerskates, or computer software. Or do they?
Consider the following humorous quip, which appeared on the World Wide Web:
“Windows 95: Microsoft’s Vietnam?” [Leake, 1996]. Whether or not one agrees with
its sentiment, its meaning is readily understood. Windows 95, a computer operating
system, can be perceived as an instance of the concept of Vietnam. In doing so, an
implicit analogy has been made between two complex and apparently distinct entities,
mapping, among other things, the United States onto Microsoft, the 1960’s onto the
1990’s, and, perhaps, former U.S. President Richard Nixon onto Microsoft Chairman

1.3 The Ubiquity of Analogy in Human Thought D

Bill Gates. In a more serious vein—and relying on less of a conceptual leap—the 1979
Soviet invasion of Afghanistan is commonly regarded by American political observers
as being “the Soviet Union’s Vietnam”. (Similarly, the 1994-96 conflict in Russia’s
breakaway Chechnya region might be a strong contender for the title of “Russia’s
Vietnam”.) It is the complex, fluid nature of concepts that allows such analogies to

be effortlessly understood and appreciated.

1.3 The Ubiquity of Analogy in Human Thought

Traditionally, researchers working on the computational modeling of analogy have
tended to view analogy-making as a special type of thinking useful for solving prob-
lems via the technique of analogical reasoning. According to this view, a good way to
solve a given problem is often by recourse to a similar problem that one has encoun-
tered and solved previously. By setting up an analogy between the previous problem
and the current problem, and using the previous solution as a guide, one can often
discover a solution to the problem at hand [Evans, 1968; Carbonell, 1986; Riesbeck
and Schank, 1989; Leake, 1996]. This type of reasoning is often used by students
when trying to work through scientific or mathematical problems in textbooks. Typ-
ically, a worked-out example in the text, similar to the problem to be solved, is first
identified (the more similar, the better). The worked-out example solution is then
applied to the corresponding elements of the new problem (hopefully without too

much modification required), yielding a solution [Chi et al., 1989].

This type of analogical reasoning is certainly a powerful technique for solving
problems, but it is only part of the picture. In contrast to the conscious, deliberative
use of analogy as a tool for reasoning about problems, most analogy-making in the
mind occurs spontaneously and unconsciously, at the subcognitive level, almost with-

out ever being noticed. To regard analogy-making only as a specialized cognitive tool

6 The Copycat Model

useful in solving problems is to ignore the ubiquity of analogy in everyday thought

processes.

To take just one example from personal experience, I was at a picnic one day,
where I had been playing frisbee with several friends. At one point, I approached
the serving table where the food was laid out, hungrily eyeing the potato salad, with
frisbee in hand, and noticed to my disappointment that there were no more paper
plates left. I happened to glance down at the frisbee I was holding, and at that
moment [suddenly thought of the idea of using my frisbee as a makeshift plate. In
thinking of this, I did not consciously set up a deliberate analogy between the idea
of a frisbee and the idea of a plate in hopes of solving the problem of where to put
my food; rather, I simply saw the frisbee in a new light, as a plate. Another way of
saying this is that the particular situation I was in caused me to recognize the object
in my hands as an instance of the plate concept, whereas under normal circumstances
the object causes only the frisbee concept to become activated. Said yet another
way, a slippage between the concepts of frisbee and plate occurred in my mind which

resulted in the object being perceived simultaneously as an instance of both concepts.

As this example illustrates, the distinctions between categorization, recognition,
reminding, and analogy-making are not clear-cut. Rather, all of these mental phe-
nomena represent different types of high-level perception, and are best viewed as
points along a broad continuum ranging from simple recognition tasks all the way
to highly abstract analogies and poetic metaphors. Robert French gives many won-
derful examples of everyday analogy-making running the full length of this spectrum
[French, 1995, Chapter 1]. He also discusses the “me-too” phenomenon, an extremely
common type of analogy-making that pervades ordinary, day-to-day conversation.
Hofstadter has collected a large number of first-hand examples of “me-too” analogies
as well [Hofstadter, 1992; Hofstadter and FARG, 1995]. The following exchange be-

tween two people having a drink in a hotel lobby—one of whom had a beer and the

1.4 Creativity, Randomness, and Subcognition 7

other a Coke—is typical:

Shelley: I'm going to pay for my beer now.
Tim: Me, too.

Such “mundane” analogy-making occurs all the time in human thinking, mostly below
the level of conscious awareness. Conscious, step-by-step analogical reasoning in
the service of problem-solving is certainly one manifestation of analogy-making, but
it is just the tip of the iceberg. Everyday thought and language are permeated
with myriad, fleeting analogies effortlessly made and understood, most of which go
unnoticed because they seem so unremarkable—such as thinking of a Coke as a beer,
or a frisbee as a plate (or describing analogical reasoning as the tip of an iceberg,
which is a fairly abstract analogy in and of itself). Indeed, as George Pdlya wrote,
“analogy pervades all our thinking, our everyday speech and our trivial conclusions
as well as artistic ways of expression and the highest scientific achievements” [Pélya,

1957].

1.4 Creativity, Randomness, and Subcognition

The connection between analogy-making and scientific creativity has long been rec-
ognized. Analogies have played an instrumental role in the creation of new and some-
times revolutionary scientific theories. One of the most famous examples, discussed
at length by Margaret Boden in her book The Creative Mind: Myths and Mechanisms
[Boden, 1991], was the discovery of the molecular structure of the benzene molecule
by Friedrich von Kekulé in 1865, who, while dozing by the fireside, experienced a
vision of a snake biting its own tail. In a flash, he realized that a molecular ring
structure was the answer to the mystery of the benzene molecule’s geometry, which,
up until that time, had been assumed by chemists to consist of a linear sequence of

atoms. This insight led to the establishment of the field of aromatic chemistry. As

8 The Copycat Model

this example shows, the capacity for creative, insightful thinking is deeply tied to the
capacity for perceiving abstract similarity between things that, on a more concrete
level, would appear to be utterly different. Keith Holyoak and Paul Thagard’s book
Mental Leaps: Analogy in Creative Thought contains a good discussion of many other
instances of analogically-inspired creativity in science [Holyoak and Thagard, 1995,
Chapter 8|.

In her enlightening book, Boden examines many historical examples of creativity
taken from art, music, science, and literature. In almost all verbal or written accounts
of the creative process, whether scientific, artistic, or otherwise, the actual moment
of insight experienced by the creator seems to take on an almost mystical or inde-
scribable aura. It seems notoriously difficult to pin down, in any precise way, exactly
which thought processes are involved in the creative act itself. Indeed, it often seems
as if new ideas come randomly, without warning, from “out of the blue”. As the

mathematician Jacques Hadamard put it [Koestler, 1964]:

On being very abruptly awakened by an external noise, a solution long
searched for appeared to me at once without the slightest instant of re-

flection on my part.

Both Henri Poincaré and Arthur Koestler were interested in the underlying mental
mechanisms of creativity that give rise to such seemingly unanalyzable flashes of
insight. Poincaré expressed a view of creativity as the random coming together of
diverse ideas in the subconscious mind, much like a swarm of gnats or a collection
of gas molecules jostling against one another [Poincaré, 1921]. Koestler, however,
maintained that a purely random association of ideas is not enough; the mixing of
ideas must be guided by mental structures acting as constraints, a process he termed
the “bisociation of conceptual matrices” [Koestler, 1964]. Indeed, this notion of
directed randomness in the service of creativity turns out to be of critical importance

in understanding the fluid mechanisms of cognition, and consequently plays a central

1.5 A Computer Model of Conceptual Fluidity 9

role in the architecture of the Copycat program.
On the other hand, both Koestler and Poincaré agreed that the processes involved
in creative thinking are carried out largely at the subconscious level. As Koestler

eloquently observed [Koestler, 1964]:

The moment of truth, the sudden emergence of a new insight, is an act
of intuition. Such intuitions give the appearance of miraculous flashes, or
short-circuits of reasoning. In fact they may be likened to an immersed
chain, of which only the beginning and the end are visible above the
surface of consciousness. The diver vanishes at one end of the chain and

comes up at the other end, guided by invisible links.

In fact, Poincaré distinguished four phases of creativity that occur during problem-
solving: an initial preparatory phase involving conscious attempts to solve the prob-
lem using familiar methods; an incubation period in which the conscious mind is fo-
cused on other things while at the same time ideas are being continually recombined
at a deeper, subconscious level; an abrupt flash of insight at the level of conscious
awareness; and, finally, an evaluation phase in which the insight’s ramifications are
consciously worked out in full. He characterized the sudden flash of illumination as

“a manifest sign of long, unconscious prior work”.

1.5 A Computer Model of Conceptual Fluidity

A fundamental motivation driving the Copycat project, and consequently the Metacat
project, is a belief in a common set of mechanisms responsible for creative insights
and analogy-making—from the most rarefied strokes of artistic and scientific genius all
the way down to the (far more common) type of run-of-the-mill analogy-making that
pervades everyday thought and language. According to this view, creative analogical

thought is a natural by-product of the dynamic, fluid nature of concepts in the mind.

10 The Copycat Model

Conceptual fluidity provides the means through which flexible high-level perception

takes place.

Copycat is a computer model of the nondeterministic, subcognitive mental pro-
cesses out of which conceptual fluidity emerges. It represents the tangible instan-
tiation of a general theory of mind describing how fluid concepts interact with and
guide perception, and how genuine understanding—at least in a limited domain—can
emerge from the dynamics of this interaction. A fully detailed exposition of the Copy-
cat project can be found in [Mitchell, 1993] and [Hofstadter and FARG, 1995]. The
rest of this chapter gives a thorough, but condensed, overview of Copycat, along with
several examples illustrating the behavior of the program. Since the Metacat project
builds directly on the Copycat architecture, this background is necessary in order to

understand the work on Metacat described in the remainder of this dissertation.

1.5.1 An idealized microworld for studying analogy-making

The domain in which Copycat operates is a microdomain—a tiny, idealized world
explicitly designed to isolate the essential, fundamental aspects of analogy-making
and creativity by stripping away from it as many insignificant and confusing “real-
world” details as possible. This act of idealization brings out the deep issues of high-
level perception in stark relief, rendering them accessible and amenable to careful,

controlled study.

Specifically, the raw material of Copycat’s domain consists of the 26 lowercase
letters of the alphabet. Copycat analogy problems are stated in terms of three strings
of letters: the initial string, the modified string, and the target string. A typical
Copycat problem is the following: “If the string abc changes to the string abd, how
might the string mrryyy change in an analogous way?” Or, displayed graphically:

1.5 A Computer Model of Conceptual Fluidity 11

abc = abd

mrrjj] = ¢

On first seeing this problem, most people answer either mrrkkk or mrrjjk [Mitchell,
1993]. The rightmost component of abe (i.e., the letter ¢) is perceived as changing to
its successor, so doing “the same thing” to mrrjjy amounts to changing the rightmost
component of mrrjjj to its successor (i.e., either the group of three j’s viewed as a
chunk, or just the rightmost letter j).

There are, however, many other defensible answers to this problem, which people

tend to give less often, including:

e mrrjjd (change the rightmost letter literally to d)
e mrrddd (change the entire rightmost group to d’s)
e mrrjjj (change only ¢’s to their successor)

e mrrjkk (view mrrjjj as the three letter-pairs mr—rj—jj and change the right-

most pair to its successor)
e mrrjdd (view mrrjjj as mr—rj—jj, but change the rightmost pair to d’s)
e mrsjjj (change the third letter to its successor)
e mrdjjj (change the third letter to d)

e mrrijjj (view mrrjjj abstractly in terms of group lengths, as 1-2-3, and

increase the rightmost length by one)

e mrrkkkk (view mrrjjj as 1-2-3, but change both the length and letters of
the rightmost group)

e mrsjjk (view mrrijj as mrr—jjj and change the third letter of each group to

its successor)

12 The Copycat Model

e mrskkk (change each letter after the two leftmost letters to its successor)

e mssjjj (change each instance of the third letter to its successor)

e abd (change the entire string literally to abd)

e abbddd (change the letters to a’s, b’s, and d’s, but retain the 1-2-3 structure)
e mrk (change 7 to k but make everything single letters)

e mrd (change j to d but make everything single letters)

Clearly, some of these answers are more obvious than others, and the obvious ones
may not be the most aesthetically pleasing ones, but there is no single, indisputably
“correct” answer. In fact, a wide range of answers is possible for almost any imag-
inable Copycat problem. Despite its apparent simplicity, Copycat’s domain harbors
an exceedingly rich variety of subtle analogy problems often admitting deeply elegant
yet non-obvious answers [Hofstadter, 1984b; Hofstadter, 1985a; Mitchell, 1993]. This
is the mark of a well-designed microdomain. The depth and complexity of analogy-
making in the Copycat world has not been sacrificed at the expense of simplicity; on
the contrary, the deep issues of analogy-making have been brought to the surface and
laid bare, precisely because of the domain’s austerity.

An analogy from physics may be useful in thinking about the utility of mi-
crodomains. In order to understand complex physical phenomena occurring in the
real world, physicists first devise idealized theoretical models of the phenomena, in
an attempt to understand their most essential aspects. Only after these fundamental
aspects have been understood can further progress be made in understanding the
full complexity of the phenomena as they occur in the real world. For instance, in
order to understand the complex motion of real-world objects, it is necessary to first
understand the motion of objects in an idealized, frictionless world. Ignoring the com-

plicating factor of friction allows the fundamental laws of motion to be understood,

1.5 A Computer Model of Conceptual Fluidity 13

which in turn provides the foundation necessary for achieving a deeper understanding

of motion involving friction.

Likewise, modeling human analogy-making or other “real-world” cognitive phe-
nomena in a microdomain necessarily involves selectively ignoring certain aspects
of cognition, while concentrating on others of more fundamental importance. This
does not mean, however, that the former aspects are unimportant or unworthy of
investigation—only that they are better left for later investigations, after a deep un-

derstanding of the truly fundamental aspects of cognition has been achieved.

In the “frictionless” world of Copycat’s microdomain, the fundamental aspects
under study are the fluid nature of concepts and the phenomenon of conceptual
slippage. Other aspects of cognition have been deliberately idealized away, such as
the retrieval of knowledge from a large repertoire of experience stored in memory,
or the learning of new concepts from experience. To be sure, no full and satisfying
account of cognition will be possible without a deep understanding of these latter
phenomena. However, such an account—whenever it may come—will surely rest on

a deep understanding of the nature of concepts in the mind.

Like the idealized models of physics, Copycat’s microdomain facilitates the study
of concepts and analogy-making by avoiding many types of “friction” that would
otherwise further compound the difficulty of understanding these mental phenomena.
In the meantime, it remains a formidable challenge, indeed, to develop a computer
program capable of displaying the full range of creativity and flexibility exhibited by

people on problems taken from this domain—however tiny and idealized it may be.

It is also important to stress the generality of Copycat’s domain. The letter-
string microworld has been carefully designed with an eye toward universality. All
information pertaining specifically to letters has been factored out, such as the actual
shapes of letters or any associated semantic connotations. In the Copycat world,

letters are nothing more than abstract, atomic categories, much like the notion of an

14 The Copycat Model

undefined term in geometry. It is irrelevant whether or not letter-strings happen to
form recognizable words or phrases. Furthermore, only three relations among letters
are meaningful: sameness, predecessorship, and successorship. All letters except a
have an immediate predecessor, and all letters except z have an immediate successor;
hence the alphabet does not “wrap around” from z back to a.! No other properties
of letters are involved.

Thus, it is misleading to regard Copycat analogy problems as being about alpha-
betical strings of letters per se. Rather, they should be viewed simply as idealized
situations involving a set of abstract objects, among which certain relations may hold.
The architecture of Copycat is “configured” so that these objects and relations cor-
respond to our intuitive notions about successorship, predecessorship, and sameness
among letters of the alphabet, but this need not be the case. A different configuration
could be chosen to reflect a different set of objects and relationships, without signifi-
cantly altering the architecture of the program. In fact, a program similar to Copycat,
called Tabletop, models certain spatial aspects of high-level perception that occur in
a different domain: that of objects on an ordinary table, such as cups, glasses, and
silverware [Hofstadter and French, 1992; French, 1995; Hofstadter and FARG, 1995].
Important differences exist between Copycat and Tabletop, but the two programs can
be regarded essentially as different instantiations of a single underlying architecture,
each of which operates in an abstract domain of objects and relations. Copycat is
configured so that these objects and relations mirror certain properties of letters of
the alphabet, while Tabletop is configured so that they mirror certain properties of
objects on a table.

Copycat’s microdomain is sometimes criticized as being unable to represent analo-

gies between different domains of knowledge. So-called “cross-domain” analogies—for

!The choice of a strictly linear alphabet was made deliberately, in order to introduce structural
irregularity to the domain. This gives an interesting twist to certain analogy problems involving the
“edge” letters a and z, to be discussed later.

1.5 A Computer Model of Conceptual Fluidity 15

example, between the solar system and the Rutherford-Bohr model of the atom, or
between water flowing through a pipe and heat flowing through a metal bar [Gentner,
1983; Holyoak and Thagard, 1989; Falkenhainer et al., 1990]—typically involve source
and target situations characterized by very different subsets of “real-world” concepts.
The true power of analogy manifests itself in such mappings through the transfer of
useful ideas between apparently dissimilar domains. In contrast, it is argued, since
Copycat’s source and target situations are both restricted to letter-string concepts
only, the model is “domain-specific”’, and hence fails to capture the most important

aspects of analogical processing. As [Forbus et al., 1998] puts it:

The most dramatic and visible role of analogy is as a mechanism for
conceptual change, where it allows people to import a set of ideas worked
out in one domain into another. Obviously, domain-specific models of

analogy cannot capture this signature phenomenon. (page 247)

If we are correct that the analogy mechanism is a domain-independent
cognitive mechanism, then it is important to carry out research in multiple
domains to ensure that the results are not hostage to the peculiarities of

a particular micro-world. (page 251)

However, such a hasty conclusion overlooks the principle of universality at the core of
Copycat’s letter-string domain. Since the “letters” of Copycat’s world—as far as the
program is concerned—are really just atomic categories joined together by abstract
relationships, there is in principle no reason why idealized versions of “cross-domain”
analogies cannot be constructed within this microdomain as well.

Indeed, the answer mrryjgy to the problem “abc = abd; mrrjij= ?” mentioned
earlier (which will be discussed more fully in section 1.5.4) could be interpreted as
just such an analogy. On the surface, different sets of ideas apply to the situations

represented by the strings abe and mrryjyy. For example, the idea of successorship

16 The Copycat Model

is clearly present in the former situation, while the notion of a group is central to the
latter. In an abstract sense, these strings could be viewed as situations taken from
two very different domains, each of which involves a subset of the concepts available
in the encompassing letter-string microdomain. If the two situations are looked at in
the right way, however, the idea of successorship can be transferred over from the first
situation to the second, resulting in a kind of “mini-paradigm-shift” that reveals the
hidden 1-2-3 structure of mrryjy, which consequently leads to the answer mrrjj37.
Of course, both of these “domains” involve concepts taken from Copycat’s letter-
string world, but the crucial point is that they involve different sets of concepts,
just as the domains of “cross-domain” analogies from the real world involve different
subsets of real-world concepts taken from the larger universe of real-world things and
relationships.

In fact, on closer examination, the distinction between different domains is often
not clear-cut. For instance, Holyoak and Thagard discuss a complex analogy be-
tween World War II and the Persian Gulf War [Holyoak and Thagard, 1995]. Should
this analogy be regarded as a “cross-domain” analogy, or as an analogy between two
situations within the common domain of military conflicts? What about the anal-
ogy between the solar system and the Rutherford-Bohr atom? Does this analogy
involve two distinct domains (i.e., the domain of atomic physics and the domain of
astronomy), or the single domain of scientific models?? The purported distinction
between “cross-domain” and “intra-domain” analogies (as well as the distinction be-
tween “domain-general” and “domain-specific” approaches to modeling analogy) is

in fact largely artificial, and depends very much on the particular definition of the

2The performance of the Structure-Mapping Engine (SME) program, developed by Brian Falken-
hainer, Ken Forbus, and Dedre Gentner, on this particular analogy problem has often been cited
as support for the claim that SME can handle analogies between very different real-world domains
[Falkenhainer et al., 1990]. See [Hofstadter and FARG, 1995] for a detailed examination and discus-
sion of these claims, as well as similar claims made by Holyoak and Thagard about their Analogical
Constraint Mapping Engine (ACME) program—another model of analogy supposedly able to make
cross-domain mappings [Holyoak and Thagard, 1989].

1.5 A Computer Model of Conceptual Fluidity 17

domains involved, which in turn depends on the particular way in which we choose
to carve up the world into categories. The power of a microdomain derives from its
ability n principle to model any number of different aspects or domains of the real

world within a common abstract framework.

1.5.2 The architecture of Copycat

The Copycat architecture is divided into two principal components, which can be
thought of as corresponding very roughly to short-term and long-term memory. Copy-
cat’s “short-term memory”, called the Workspace, serves as the locus of perceptual
activity during a run of the program. However, in contrast to human short-term
memory, information in Copycat’s Workspace cannot be transferred to “long-term
memory” or otherwise retained indefinitely. The information in the Workspace is
specific to each individual run, and has no effect on subsequent runs of the pro-
gram.®> The Workspace is similar to the Blackboard architectural component of the
Hearsay Il speech-understanding system, from which the Copycat project derived

much early inspiration [Erman et al., 1980].

When Copycat is given an analogy problem to work on, it starts out with the letter-
strings in its Workspace. Small, nondeterministic computational agents called codelets
notice relations among the individual letters and build new structures around them,
effectively organizing the letters into a coherent high-level picture. Codelets “swarm”
about the Workspace looking for suitable structures to work on, much like enzymes in
a cell. All processing occurs through the collective actions of many codelets working
in parallel, at different speeds, on different aspects of an analogy problem, without

any centralized “executive” controlling the course of events. The overall macroscopic

3 Addressing this deficiency is a central goal of the Metacat project, and will be discussed further
in Chapter 2.

18 The Copycat Model

behavior of the program is not explicitly programmed; rather, is a statistically emer-
gent consequence of a large number of stochastic, localized micro-actions performed

by codelets.

Influencing the perceptual activity occurring in the Workspace are active concepts,
which reside in the “long-term memory” component of Copycat, called the Slipnet
(shown schematically in Figure 1.1). Most perceptual structures in the Workspace
are, in fact, instances of particular concepts in the Slipnet (such as letter or group).
The Slipnet serves as the program’s permanent repository of knowledge about its
domain. It contains representations for various concepts relevant to solving letter-
string analogies—such as successor and predecessor, the abstract notion of opposite,
the letter-categories a, b, ¢, and so on—as well as a numerical estimate of the in-
trinsic degree of abstractness of each concept, called the concept’s conceptual depth
(not shown in the figure). The Slipnet also encodes information about the inherent
associative distances between concepts, which determine the propensities for various
conceptual slippages to occur. A slippage between a pair of Slipnet concepts occurs
whenever instances of the concepts in the Workspace are seen as playing identical

roles in different contexts.

Some concepts in the Slipnet are themselves instances of other concepts. For
example, the concepts left and right are both instances of the more abstract Direction
concept, and the concepts leftmost, rightmost, middle, single, and whole are all
instances of the String-Position concept. Nodes that represent various categories of
concepts, such as Direction or String-Position, are called category nodes, and are

shown capitalized in the figure.

Although the Slipnet contains permanent information, it is not a static structure.
Over the course of a run, concepts in the Slipnet assume different levels of activation;
as this happens, distances between concepts grow and shrink, changing the propensi-

ties for various slippages to occur. The stochastic behavior of codelets is dynamically

1.5 A Computer Model of Conceptual Fluidity

19

BondCategory ObjectCategory

predecessor @
predecessor-group n. successor-group

Figure 1.1: Copycat’s Slipnet

sameness-group

GroupCategory

20 The Copycat Model

biased by the time-varying pattern of concept activations in the Slipnet. In turn,
this pattern of activations is itself an emergent consequence of codelet processing.
Conceptual activity in the Slipnet thus influences, and is influenced by, perceptual
activity in the Workspace, forming a tightly-coupled feedback loop between these two

architectural components.

1.5.3 Conceptual activity in the Slipnet

In some ways, the Slipnet is similar to a traditional semantic network, in that it
consists of a set of nodes connected by links. Each of these links has an intrinsic
length that represents the general degree of association between the linked nodes,
with shorter links connecting more strongly associated nodes (the links drawn between
nodes in Figure 1.1 do not in general reflect the actual lengths involved). Each node
corresponds to an individual concept, or rather, to the core of an individual concept.
A concept is more properly thought of as being represented by a diffuse region in
the Slipnet centered on a single node. Nodes connected to the core node by links are
included in the central node’s “conceptual halo” as a probabilistic function of the link
lengths. This allows single nodes to be shared among several different concepts at
once, depending on the links involved. Thus, concepts in the Slipnet are not sharply
defined; rather, they are inherently blurry, and can overlap to varying degrees.
Unlike traditional semantic networks, however, the Slipnet is a dynamic structure.
Nodes in the Slipnet receive frequent infusions of activation, as a function of the type
of perceptual activity occurring in the Workspace. Activation spreads throughout a
node’s conceptual halo, flowing across the links emanating from the core node to its
neighbors. The amount of spreading activation is mediated by the link lengths, so
that more distant nodes receive less activation. However, the link lengths themselves
are not necessarily fixed. Some links are labeled by particular Slipnet nodes, and

may stretch or shrink in accordance with the activation of the label node. A labeled

1.5 A Computer Model of Conceptual Fluidity 21

link encodes a specific type of relationship between two concepts, in addition to the
conceptual distance separating them. For example, the link between the predecessor
and successor nodes is labeled by the opposite node, and the link from the a node
to the b node is labeled by the successor node. Whenever a node becomes strongly
activated, all links labeled by it shrink. As a result, pairs of concepts connected by
these links are brought closer together in the Slipnet, allowing activation to spread
more easily between the two, and also making it more likely for conceptual slippages
to occur between them.

In the absence of further infusions of activation, a node’s activation level gradually
decays towards zero at a rate that depends inversely on its conceptual depth. Thus,
shallow, “surface-level” concepts such as a tend to decay more rapidly than highly
abstract concepts like opposite. As a node’s activation decays, any links labeled by
it relax back to their intrinsic lengths. The Slipnet thus has a decidedly “spongy”
feel to it, reflecting the fluid nature of the concepts it represents. Slipnet concepts
“awakened” by perceptual activity occurring in the Workspace, and to a lesser de-
gree neighboring concepts awakened through spreading activation, distort the overall
“shape” of the Slipnet, temporarily blending and blurring various concepts into one
another. Driven by the gradual ebb and flow of activation, new patterns of active con-
cepts continually emerge in the Slipnet, deforming and reshaping it anew, throughout

the course of a program run.

1.5.4 Perceptual activity in the Workspace

Conceptual activity in the Slipnet influences the behavior of codelets as they build
new structures in the Workspace. These structures include bonds representing suc-
cessor, predecessor, or sameness relations between adjacent letters of a string; groups
composed of adjacent letters (or possibly other groups) that have been bonded to-

gether by a common relation; bridges between letters or groups in different strings;

22 The Copycat Model

various types of descriptions of structures; and a rule describing the way in which
the initial string changes into the modified string.

Bonds and groups bind the individual letters of a string (i.e., the raw, unstructured
perceptual input) together into hierarchical chunks. For example, during a typical
run of the problem “abe=- abd; mrrjjy= ?”, sameness bonds are created between
the adjacent j3’s and the pair of ’s in mrrjyy. These bonds then serve as the basis
for creating two sameness groups, rr and 337.

Codelets, in addition to building up the internal organization of strings by chunk-
ing letters into groups, also build mappings between strings. A mapping consists of a
set of bridges between letters or groups in two different strings that play similar roles
in each string. Each bridge is supported by a set of concept-mappings that describe
how the objects connected by the bridge correspond to one another. For example,
a bridge between ¢ in abc and 337 in mrryyy might be supported by the concept-
mapping letter = group (a slippage representing the idea that one object is a letter
and the other a group), and the concept-mapping rightmost = rightmost (an “iden-
tity mapping” representing the idea that both objects are rightmost in their strings).
The distributed nature of codelet processing interleaves the mapping process with the
chunking process, and as a result each process influences and drives the other.

Codelets also build rules, which are Workspace structures representing how the
initial string changes into the modified string.* There are usually several possible ways
of describing this change, depending on the level of abstraction used. For example,
two possible rules describing abe = abd are Replace letter-category of rightmost letter
by successor and the more “literal-minded” rule Replace letter-category of rightmost
letter by ‘d’.

Whenever new Workspace structures are built, concepts in the Slipnet relating to

4This usage of the term “rule” differs significantly from the traditional AT meaning of the term.
In particular, Copycat’s rules are completely unrelated to the types of rules used in expert systems
or other rule-based problem-solving systems.

1.5 A Computer Model of Conceptual Fluidity 23

them receive activation, which then spreads to neighboring concepts. In turn, highly-
activated concepts exert top-down pressure on subsequent perceptual processing by
promoting the creation of new instances of these concepts in the Workspace. Thus,
which types of new Workspace structures get built depends strongly on which concepts

are relevant (i.e., highly activated) in a given context.

For example, the creation of the groups rr and 337 in mrrjjj causes the sameness
and sameness-group concepts in the Slipnet to become highly activated, which makes
it more likely that the letter m itself will be seen as a sameness group as well,
even though it consists of just a single letter. Given the context of the rr and 337
sameness groups, seeing m as a group of length one makes sense. The creation
of such a group causes the Length concept—up until now deemed irrelevant to the
situation—to become activated in the Slipnet. Once the relevance of this idea has been
recognized, a higher-level successor group composed of m, rr, and g7 encompassing
the entire string can then be built, based on the concept of Length (i.e., 1-2-3)
rather than Letter-Category (i.e., m-r—j). This brings out the abstract successorship
structure of mrryjyy, allowing it to be mapped as a whole onto the letter-category-
based successor group abe, which leads to the answer mrrjjjy. Such a mapping
represents the recognition of abc and mrryjy as being fundamentally the same at a
deep level, even though their surface resemblance is negligible. Figure 1.2 shows the
final activations of concepts in Copycat’s Slipnet at the end of a run in which the

> The size of a circle represents the activation

program found the answer mrryjj;.
level of a node. In particular, the successor-group node is highly activated, reflecting

the relevance of this concept in the current context.

5Copycat was originally implemented in Common Lisp and C for the SunView window system.
The version of the program shown here is a complete reimplementation written in Scheme for the
X window system using John Zuckerman’s superb SchemeXM/SGL package, an extended symbolic
graphics language for X/Motif based on Chez Scheme [Zuckerman, 1992a; Zuckerman, 1992b; Dyb-
vig, 1996].

24 The Copycat Model

[¢]
Slipnet Activation
o o . @ -

Oppeste SkingPos Imost st middle wrbacde sngle Objectlizy lobler growp AlphaFlos st last
Idembty Direchion right BeondCigy pred L] same Groupllgy predsry sucegry somegrp Lebearliy
3 1 2 4] ¥ = h ! i E I m
n o P q » H it i o w a0 » =
@ - @ - o
Length ane b thrae Foeer five BendFacet

Figure 1.2: The final activations of Slipnet concepts for a run of Copycat on the
problem “abc= abd; mrrigy=- 27, in which the program found the answer mrrijgg.

Different ways of looking at the initial/modified change, combined with differ-
ent ways of building the initial /target mapping, give rise to different answers. The
configuration of structures in the Workspace collectively represents an interpretation
of a given analogy problem, and leads to a particular answer for the problem. To
produce an answer, codelets use the slippages underlying the initial/target mapping
to “translate” the rule describing the initial/modified change into a new rule that

applies to the target string.

For example, if the abe = abd change is described as Replace letter-category of
rightmost letter by successor, and the abstract successor-group similarity between abc
and mrryjy has been noticed, then the rule will be translated as Replace length of
rightmost group by successor, yielding the answer mrrjy37. On the other hand, if this
similarity has not been noticed—that is, if the mapping between abc and mrrjj

does not include a bridge supported by the slippage Letter-category = Length—then

1.5 A Computer Model of Conceptual Fluidity 25

Workspace

(Codalets ni: 964)

a . ? c. = a b d
f T L || Fepluee letter—cotegory of vightmost letter by successor ||
. E ;
2 LeltCley=xLength
Eroup=rgroup
right=>right
three=>three
whoele=>whole
SUCCEFP=FSUOCERY
‘} Lt - 3 i SUCC=FFUCC
L g
M1 Rz Ja—
m ' ' 7 J J = m r LY Y B I |
|| Replace length of rightmost group by successor ||
Ymost=rrmost “Iost=>Emost middle=middle
leRer==group leHer=>group leHer=>group

Figure 1.3: The final Workspace configuration for a run of Copycat on the problem
“abc=- abd; mrrygy= ?”, in which the program found the answer mrrjjjy.

other answers such as mrrkkk, mrrijk, mrrddd, or mrrkkd may be found instead,
depending on the rule and whether or not ¢ in abc is seen as corresponding to
the 777 group or to just the rightmost letter 7 in mrryyy. Figure 1.3 shows the
Workspace at the end of a run in which mrrjjjy was found. (This is the same run
that was referred to in Figure 1.2.) Many structures can be seen, including concept-
mappings supporting the vertical bridges between abc and mrrjjj, the rule describing
abc = abd, the translated rule describing mrrjjy = mrrjjjj, and several tentative
structures that were being explored but had not yet been built by codelets (shown as
dotted lines). A complete discussion of Copycat’s behavior on this problem, including
screen dumps of sample runs, can be found in [Mitchell, 1993] and [Hofstadter and

FARG, 1995].

26 The Copycat Model

1.5.5 Codelets and the parallel terraced scan

In general, the letter-strings of an analogy problem can be interpreted in many dif-
ferent, often mutually exclusive ways. For most problems, the potential number of
distinct configurations of bonds, groups, bridges, and so on, is very large. If Copycat
were simply to try out every possible configuration, one after the other, trying to
find a compelling interpretation of the strings, it would be quickly overwhelmed by a
combinatorial explosion of possibilities. Instead, in order to discover a good overall
configuration of structures from among a vast set of possibilities within a reasonable
amount of time, many potential pathways through “interpretation space” must be
searched simultaneously, with relatively more attention being devoted to exploring
promising pathways than to pathways that don’t seem to be leading anywhere inter-
esting. This type of differential parallelism, called the parallel terraced scan, is one of

the central ideas underlying the Copycat architecture.

To achieve this differential effect, Workspace structures are built in stages rather
than all at once. At first, a structure is simply proposed as a possible candidate
by codelets. This tentative structure subsequently undergoes an evaluation stage,
in which its potential for strengthening the existing perceptual organization in the
Workspace is estimated. Finally, if the structure seems promising enough, it gets
built, and acquires a strength value indicating how well it fits into its surrounding
context. The presence of the newly-built structure may in turn alter the strengths of
other structures in the Workspace, or the activation levels of concepts in the Slipnet,
thereby changing the perceptual context and consequently influencing the fate of
other tentative structures still in the early stages of creation.

Since any structure must pass through several stages during its creation, all
structures are ultimately built by chains of codelets, rather than by single codelets.
Codelets responsible for proposing new structures or evaluating proposed structures

spawn new codelets, which then continue the process at the next stage in the chain.

1.5 A Computer Model of Conceptual Fluidity 27

Distributing the process of structure creation over several stages is critical, because
the interleaving of these stages allows many mutually-dependent processes to effec-
tively run in parallel, exploring the search space in various directions simultaneously.
Perceptual activity in the Workspace consists of a large number of these tightly in-

tertwined, concurrent exploratory processes.

Sometimes a structure is proposed that would be incompatible, if built, with an
existing structure. In “abc= abd; mrryjy= ?”, for instance, the ¢ cannot corre-
spond to both the 777 group and the single rightmost letter 3 at the same time, since
this would make no sense in an analogy. Bridges representing these correspondences
are mutually incompatible. An existing structure in the Workspace may, in fact, be
destroyed in favor of a new, more promising one if the existing structure has a low

strength value relative to the proposed structure.

In addition to its strength, each structure has a salience value that determines how
much it tends to attract attention from codelets. More specifically, codelets choose

Workspace structures for processing as a probabilistic function of their saliences.

Some types of codelets are concerned with general bottom-up properties of the
input data, while other types are driven by specific top-down contextual pressures.®
For instance, some bottom-up codelets examine adjacent letters or groups to see if
any type of bond can be made between them, regardless of the current perceptual
context. In contrast, top-down codelets look for ways to build structures that support
a particular concept. If, for example, several sameness groups have been built in
a string (as in mrryjj, described earlier), the sameness concept will be strongly
activated in the Slipnet. In this context, there is greater pressure to notice sameness
relations, if they exist, than successor or predecessor relations. The active sameness

concept floods the Workspace with top-down codelets specifically looking for sameness

6All in all, there are 24 different types of codelets in Copycat. See [Mitchell, 1993] for a detailed
description of each type.

28 The Copycat Model

among letters, increasing the likelihood that other sameness bonds will be created.
In general, top-down codelets driven by context-sensitive pressures are the means
through which conceptual activity in the Slipnet influences perceptual activity in the
Workspace.

Because Copycat is implemented on a serial computer, codelets have to be run one
at a time. In order to realize the differential parallelism of the parallel terraced scan,
a pool of available codelets is maintained, called the Coderack, from which codelets
are selected probabilistically to run. Each codelet in the Coderack is assigned an
urgency value reflecting the codelet’s estimated promise of the pathway it is exploring.
Codelets are selected to run as a stochastic function of their urgencies, and as a result,
promising regions of Copycat’s search space tend to be explored more quickly and to
a greater depth, on average, than less promising regions, although even the lowest-
urgency codelets always have some chance of running. This is important, because in
principle all regions of the search space should always remain open to the possibility
of exploration, even if they do not currently appear to be interesting. This type
of urgency-modulated stochasticity, which allows different processes to advance at
different rates according to their estimated promise, gives rise to the parallel terraced

scan.

1.5.6 Temperature and nondeterminism

The nondeterministic nature of Copycat’s processing implies that different runs of
the program on the same analogy problem may produce different answers. Indeed,
the program is usually able to discover a range of answers for any given problem.
If Copycat is run many times on a single problem, clear trends emerge. Typically,
the program finds one or two answers much more frequently than it finds other an-
swers. These answers are, in some sense, more “obvious” to the program, and lie in

easily accessible regions of Copycat’s search space. For example, Figure 1.4 shows

1.5 A Computer Model of Conceptual Fluidity 29

abc => abd ; mrrjjj =>?

705 Tolal number of fens: 1068
Average minber of cogelels per rn. 853

197

15 12] 9
I I
murrkkk | mrrjjk | mrrjkk | mrrjjj | mrrgjd | mrergjj
430 490 o 280 520 320

Figure 1.4: Summary of 1000 runs of Copycat on the problem “abc=- abd;
mrryy = 2”7, showing each answer’s frequency and average final temperature. From
[Mitchell, 1993].

a histogram of Copycat’s answers for the problem “abc=- abd; mrrjjy= ?”. The
straightforward answer mrrkkk is by far the most common—both for Copycat and

for people [Mitchell, 1993].

In general, the most obvious answer is not necessarily the “best” answer. The
notion of answer quality is represented in Copycat by a dynamically changing number
called the temperature (ranging from 0 to 100), which reflects the degree of perceptual
order in the Workspace. At the beginning of a run, when few perceptual structures
exist, the temperature of the Workspace is very high, reflecting a general absence
of understanding of the input strings. Gradually, as codelets examine the situation
and build new structures, increasing the perceptual organization of the Workspace,
the temperature falls, reflecting a more coherent understanding of the strings. If,
however, structures are subsequently destroyed, the temperature will increase. At
the end of a run, the final Workspace temperature can be interpreted as a measure of
the quality of the answer found, with lower temperatures indicating higher quality. An
insightful answer—one based on a strong, coherent mapping between the initial and

target strings—typically has a very low final temperature. For example, the average

30 The Copycat Model

final temperatures of Copycat’s answers for the problem “abc=- abd; mrryjs= 2"

appear immediately below each answer in Figure 1.4.

Temperature does more than simply reflect the ever-changing degree of order in
the Workspace. It also continually influences the many probabilistic decisions made
by codelets throughout the course of processing. Temperature acts as a focusing mech-
anism for the search process by dynamically regulating the amount of randomness
used in making decisions. At high temperatures, it is hard to distinguish promising
from unpromising directions, since little structural information exists in the Work-
space. As a consequence, decisions are made in a highly random manner, with codelet
urgencies, as well as the strengths and saliences of existing structures, having only a
marginal effect. However, as regularities among the letter-strings are discovered and
structures are built, Copycat begins to gain “confidence” in its understanding of the
situation, and less randomness seems called for in making decisions. At lower temper-
atures, therefore, decisions are still stochastic, but are more strongly biased according
to current urgencies, saliences, and strengths. At very low temperatures, decisions
become largely deterministic, with the highest-urgency codelets almost always being
chosen to run next, the most salient structures almost always being looked at, and so
on. Thus, the type of strategy Copycat uses to explore its search space ranges along
a broad continuum, from being very diffuse and highly parallel at high temperatures

to being very serial and focused at low temperatures.

As an illustration of this, Figure 1.5 shows the state of Copycat’s Coderack at two
different points during the earlier run of the problem “abc=- abd; mrryjy= #?” from
Figure 1.3. For each possible codelet type, the relative probability that a codelet of
that type will be selected to run next is indicated by a horizontal bar. The left image
shows the selection probabilities of codelets at an early point in the run, when the
temperature is high. As can be seen, the selection probabilities are all roughly the

same, reflecting the still-strongly-parallel nature of processing. In contrast, the right

1.5 A Computer Model of Conceptual Fluidity 31

[O

Temperature Temperature
“wE z
- Codelet Type Selection Probability Codelet Type Selection Probability -
z N
- [feere v B [feere v B -
y m:-:\oiﬁ m:-:\oiﬁ .

- g band - g band

CORBRION) SO CORBRION) SO

oo bong oo bong

{g&’c&ion;l 00U {g&’c&ion;l 00U

S e valaator S e valaator
S utidgier

T — AT T — AT

.:'ﬁ:wgw:rjl Feout .:'ﬁ:wgw:rjl Feout I

T — A g T — A g

I For) Soout I A ;I:MI

Wit - seeing At Fade - iR

o Soat . ol soout I

St Svaliatoe St Svaliatoe

B ettt -t B ettt -t

ORISR Soat ORISR Soat

ORI scout ORI scout

f T e f T e

valiatoe valiatoe

e I e

[=tesera i [=tesera i

-:?'e:cq?::-.:oqgc.lr I -:?'e:cq?::-.:oqgc.lr

T —go e T —go e

d:-?fcrp.:m I d:-?fcrp.:m

Fr—— Fr——

vl I vl

Fr—— Fr——

gy gy

R soout I R soout

Rk e valiztoy Rk e valiztoy

R by R by

Bk Bt I Bk Bt I

Raplznentent Raplznentent

[[

vty vty

Figure 1.5: The state of Copycat’s Coderack at two different points during a run of
the problem “abc=- abd; mrryjg= 27, showing the relative selection probabilities of
codelets. The temperature of the Workspace at each point is also shown.

32 The Copycat Model

image shows the situation later in the run, after the temperature has dropped to a
much lower value. Processing is now much more serial and deterministic, with the
selection of Bond-evaluator codelets being strongly favored at the moment—as indi-
cated by the large spike in selection probability. (Typically, at low temperatures, this
pattern of spiking varies dramatically from moment to moment—changing according
to the need for particular types of codelets to run next. Watching this in “real time”
on the screen conveys, in a quite vivid way, the serial nature of processing at low
temperatures.)

In summary, Copycat’s Workspace temperature guides the program as it explores
“interpretation space” in search of strong, consistent mappings between letter-strings.
The search for a good configuration of perceptual structures leading to a high-quality
answer proceeds via a large number of fine-grained stochastic decisions made by
codelets during processing. These decisions, which depend on the current temper-
ature, cause new structures to be built, or existing structures to be destroyed. This
changes the temperature, which in turn influences further structure creation, and so
on, forming a kind of feedback loop. Temperature thus serves as a very crude mech-
anism for self-watching in Copycat, since it allows the program, to some extent, to
regulate its own behavior. That is, by coupling the stochastic activity of codelets
to the temperature, the program becomes sensitive to the consequences of its own
behavior, since the temperature reflects this behavior in a very broad way. This
type of rudimentary self-watching, however, is quite primitive. Accordingly, as will
be explained in the next chapter, developing a much more sophisticated approach to

self-watching is one of the central goals of the Metacat project.

CHAPTER TWO

From Copycat to Metacat

As a result of the work on Copycat, much light has been shed on many central issues of
cognitive science and artificial intelligence, including the nature of concepts and their
appropriate representation in computers, the relation of concepts to perception, and
the role of emergent computation in computer models of cognition [Hofstadter and
FARG, 1995; Mitchell, 1993; Mitchell and Hofstadter, 1990; Mitchell, 1990]. Although
this work represents a considerable achievement, it nevertheless must be regarded as
only the first step toward a more comprehensive realization of the original ideas
underlying the project [Hofstadter, 1984a]. Initial work necessarily concentrated on
certain foundational issues of cognition while postponing others for future research.

In particular, Copycat focused on the computational modeling of:
e The internal structure of concepts in long-term memory
e The mutual interaction of concepts in long-term memory
e The organization of raw perceptual data into a coherent high-level interpretation
e The interaction between concepts and high-level perception

Coming to grips with these fundamental issues has been the major contribution of

the Copycat project.

33

34 From Copycat to Metacat

2.1 A Short History of FARG Work

Copycat is part of a broader ongoing research program whose ultimate objective is to
capture as closely as possible, in a computational model, the full range of human psy-
chological processes responsible for high-level perception and analogy-making. This
is, of course, a very ambitious goal, given the overwhelming subtlety and complexity of
human cognition. Over the years, several projects by Hofstadter and his colleagues in
the Fluid Analogies Research Group (FARG) have taken different routes toward this
same general goal by focusing on different aspects of high-level perception [Hofstadter
and FARG, 1995]. All of these projects have involved building computer models that

operate in carefully-designed microworlds.

2.1.1 Jumbo

The earliest such project—and the one most directly related to Copycat—was called
Jumbo, and modeled the processes involved in chunking unstructured perceptual parts
into hierarchical, integrated wholes [Hofstadter, 1983]. Jumbo worked in the domain
of anagram puzzles, attempting to rearrange a given set of “jumbled” letters into
English-like words. The program’s knowledge was limited to the general clustering
properties of vowels and consonants in the English language (e.g., the fact that s
and h form a frequent consonant cluster, while z and ¢ do not). It had no built-in
dictionary of English words to consult. Coming up with actual English words, how-
ever, was not the point; the focus of Jumbo was on building fluid representational
structures—structures that could be easily reconfigured at a moment’s notice. Solv-
ing word jumbles clearly requires the ability to regroup and reshuffle combinations
of letters on many different levels (for example, reperceiving “week-nights” as “wee-
knights”, or rearranging “pang-loss” into “lang-poss” or “loss-pang”). This type of

representational fluidity, however, is not limited solely to anagram puzzles, but is

2.1 A Short History of FARG Work 35

instead a deep property of perception in general. Work on Jumbo focused on devel-
oping the computational mechanisms needed to support flexible, malleable perceptual
representations. In fact, Jumbo’s reconfigurable data structures were the precursors
to Copycat’s bonds and groups. The Jumbo architecture also pioneered the idea of
the parallel terraced scan, and incorporated computational temperature as a crude
form of self-watching. Unlike Copycat, however, Jumbo did not attempt to model

concepts at all.

2.1.2 Seek-Whence

Another early precursor to Copycat was the Seek-Whence project [Meredith, 1986;
Meredith, 1991], which modeled the perception of abstract patterns hidden in open-

ended sequences of numbers, such as the one shown below:
2122222322422522...

The task of the program was to try to predict the next number in a sequence. Se-
quences were presented to the program one term at a time rather than all at once,
which required the program to continually refine and, if necessary, revise its under-
standing of the basis of the sequence as new terms were provided. Unlike many
sequence extrapolation programs, Seek-Whence had almost no knowledge of mathe-
matical concepts beyond simple integer predecessorship and successorship; thus, in
particular, it had no knowledge of addition, subtraction, or other arithmetical op-
erations. Instead, the strength of the program was its ability to create hierarchical
perceptual structures and to reorganize them dynamically according to context as
more and more terms of a sequence appeared. After seeing the first five terms of
the above sequence, for example, the program might settle on the idea of a simple
alternation between 2’s and the sequence of natural numbers, thus leading it to in-

correctly predict a 3 as the next term. In the light of this and subsequent terms, it

36 From Copycat to Metacat

would be forced to revise its view of the sequence in favor of some other represen-
tation. Eventually, after seeing enough terms, it might reperceive the sequence as
a progression of integers in which each one is surrounded by 2’s, effectively shifting
the perceptual boundaries of the sequence’s basic underlying pattern of organization.
Work on Seek-Whence thus broadened the development of fluid perceptual mecha-
nisms begun in Jumbo by focusing on the critical notion of context-sensitivity. Like
Jumbo, however, Seek-Whence made no attempt to model the structure of concepts

themselves.

2.1.3 Tabletop

The fundamental nature of concepts was addressed by Copycat, and by the Tabletop
project already mentioned in Chapter 1. Tabletop was an idealized model of analogy-
making in a world of objects on a table, such as cups, glasses, and silverware [French,
1995]. A particular object on one side of the table would be singled out, or “touched”,
and the program’s task was to “do the same thing” from the point of view of an ob-
server seated on the other side of the table. Which object was seen as the counterpart
to the touched object from the new perspective depended on many factors, includ-
ing the types of objects on the table, their particular spatial arrangement, and their
semantic connotations. Touching a fork on one side of the table, for example, might
correspond to touching a spoon on the other side if no fork were available there,
since the concepts of fork and spoon are generally associated quite closely with each
other in most people’s minds. Many subtle and competing pressures to touch various
objects could be created and systematically varied by changing the relative positions
and groupings of objects on the table. Like Copycat, Tabletop’s perception of a given
situation was guided by a context-sensitive network of active concepts. Unlike Copy-
cat, however, Tabletop explored high-level perception in a two-dimensional domain

in which spatial proximity played a key role. It also utilized a somewhat different

2.1 A Short History of FARG Work 37

approach to calculating computational temperature. Nevertheless, both models in-
corporated similar architectural components and processing mechanisms supporting

fluid concepts.

2.1.4 Letter Spirit

Finally, the Letter Spirit project extended the fluid conceptual machinery developed
in Copycat and Tabletop to the world of visual letter perception and design [McGraw,
1995; Hofstadter and FARG, 1995]. Initial work on this project concentrated on the
perception and categorization of gridletters, which are highly stylized letterforms
of the lowercase roman alphabet drawn on a two-dimensional grid consisting of 56
allowable line segments [Hofstadter, 1987]. Designing a full set of gridletters from a
to z in a single abstract, yet well-defined style is a challenging act of artistic creation.
The goal of the Letter Spirit project is to develop a program capable of perceiving
the visual style common to an initial set of gridletters, and then designing the rest of
the alphabet in the same style. This very ambitious project, currently in its second

phase, is intended to model the deepest aspects of creative artistic design.

A key element of the Letter Spirit architecture is the “central feedback loop of
creativity”, in which the program not only creates new letterforms in a particular
style, but also judges the quality of the letterforms it creates, in order to assess how
well they actually reflect the desired style, possibly revising them as a result. This
continual cycle of creation, assessment, and revision is essential to the design process,
and ought to play a key role in any faithful computer model of creativity. Current
work on Letter Spirit is focused on imbuing the program with this type of ability
to step back and evaluate its own performance, something almost entirely lacking
in Copycat, and is closely related to the central issues of Metacat [Rehling, 1997;
Rehling, 1999].

38 From Copycat to Metacat

2.2 Copycat’s Weaknesses

In many ways, Copycat is a strong, psychologically-plausible model of creative analogy-
making. The range of answers it finds on many analogy problems is comparable to the
range of answers given by people. Furthermore, the answers most frequently found
by the program tend to be the ones most often suggested by people [Mitchell, 1993].
Moreover, Copycat’s rankings of its answers according to their final temperature val-
ues often agrees quite well with people’s intuitive judgments of answer quality.

On the other hand, Copycat sometimes comes up with extremely bizarre answers,
based on seeing its strings in ways that a human almost never would. Mitchell
identifies three classes of unrealistic answers: (1) bad-grouping answers, which result
from the program building groups based on no particular motivation, such as building
a rightmost group rss in the string ppgqrrss; (2) answers involving unmotivated
slippages, in which slippages are made without any underlying motivation; and (3)
answers involving the unmotivated use of group lengths, in which the concept of group
length is seen as playing a role in a problem, but for no particular reason. Fortunately,
the program tends to find such answers very infrequently.

Still, the fact that it finds them at all might appear to be a weakness of the
program, since this does not seem to accurately reflect human behavior. However,
it is actually a strength, because the program’s stochastic processing mechanisms
keep open the possibility of finding not only “crackpot” answers such as these (albeit
infrequently), but also, on occasion, deeply creative answers. No potential way of
interpreting the strings is ruled out a priori. This is as it should be, provided that
Copycat’s stochastic mechanisms lead it to find reasonable, run-of-the-mill, human-
like answers most of the time. Indeed, the fact that Copycat discovers very creative
answers infrequently is a strength of the model as well, since a program that almost
always discovered deeply creative answers would be no more psychologically plausible

than a program that almost always gave nonsensical answers. After all, even the

2.2 Copycat’s Weaknesses 39

most creative people in the world do not make great, insightful, creative discoveries
every day of their lives. The problem with Copycat is not that it sometimes discovers
bizarre answers based on random, unmotivated ideas. Rather, the problem is that
Copycat does not recognize when it has done so. Although Copycat assigns lower
temperatures to “better” answers, it does this mechanically and without any insight;
it has no ezxplicit understanding of what makes an answer good or what makes one

nonsensical.

2.2.1 Copycat lacks insight into its own behavior

Copycat’s limitations as a general cognitive model become all too apparent when
viewed against the wider backdrop of human cognition. Of course, full human cog-
nition is such an extraordinarily complicated phenomenon that no computer model
could hope to capture it in its entirety, at least given the current nascent state of cog-
nitive science. The aim of Copycat, however, has always been to model the essence of
cognition as faithfully as possible by isolating its most important and indispensable
features. But here the model suffers from a serious weakness. Stated simply, Copycat
has virtually no insight into the answers it comes up with. It is unable to say why
a particular answer it has found makes sense (or doesn’t), or how it arrived at the
answer, or how the answer compares to other possible answers. In contrast, people
are usually able to give an account of why they consider some Copycat analogies to
be better or worse than others. Something of central importance to human cognition
is clearly missing from the Copycat model.

The reason for this lack of insight is that Copycat focuses almost exclusively
on perceiving patterns and relationships in its perceptual data (the letter strings),
while ignoring patterns that occur in its own processing of those data. It lacks any
explicit, internal representation or knowledge of the underlying process that leads to

the discovery of an answer—knowledge that could provide a basis for evaluating the

40 From Copycat to Metacat

answer’s strengths or weaknesses, thereby permitting an insightful assessment of its
quality. Said another way, the problem is that Copycat’s behavior is too unconscious.
Unlike people, when Copycat solves analogy problems it exhibits an almost complete
lack of “awareness” of what it is doing and of the ideas it is working with. Of course,
this is not too surprising, since Copycat was intended to be a model of the subcognitive
mechanisms underlying cognition. All of the nondeterministic codelet activity in the
Workspace—the building of bridges and groups, the making of slippages, and so on—
was intended to represent perceptual activity carried out at the subcognitive level,
below the level of “consciousness”. Copycat’s lack of a higher cognitive level, however,
is a major deficiency of the model, and stands in stark contrast to human cognition,
since people are generally aware of their own thought processes, at least on some

level.

For example, an interesting psychological phenomenon called the self-explanation
effect has been described and studied in the context of students learning to solve
physics problems from examples [Chi et al., 1989; Chi et al., 1994]. In this series of
studies, students mentally monitored their own comprehension or misunderstanding
as they studied worked-out textbook examples of mechanics problems, generating
verbal explanations of the example solutions in the process. Those students who
learned most effectively from the examples were consistently able to generate more
detailed and in-depth explanations of their understanding, demonstrating a greater
capacity for accurate monitoring of their own cognitive processes, which in turn re-
duced their reliance on worked-out examples in solving subsequent problems. Such
studies clearly illustrate the ability of people to pay attention to patterns in their own
thinking. (See also [Pirolli and Bielaczyc, 1989; VanLehn et al., 1992; VanLehn and
Jones, 1993; Sandoval et al., 1995].)

As was mentioned at the end of Chapter 1, computational temperature can be

viewed as a rudimentary form of self-watching in Copycat. But such a simple feed-

2.2 Copycat’s Weaknesses 41

back mechanism is far too crude to be considered a serious model of self-awareness.
Furthermore, although the final temperature of an answer can serve as a rough indi-
cation of answer quality, it offers no insight at all into why an answer is good or bad.
A single integer value simply doesn’t contain enough information. In order for the
program to gain a deeper level of insight into its answers, it must achieve a deeper
understanding of its own behavior. A sophisticated self-watching ability is needed.
An example that makes Copycat’s lack of awareness of its own behavior painfully

clear is the following analogy problem:

abc = abd

xyz = ?

In Copycat’s microworld, the letter @ has no predecessor and the letter z has no
successor. The alphabet was explicitly designed not to cycle back to a after z, so an
answer such as xya, based on taking the successor of z in xyz, is impossible. One
is forced to adopt a different strategy as a result of this constraint. One way out is
simply the literal-minded answer xyd. On the other hand, if the alphabetic symmetry
between the “opposite” letters a and z is noticed, then the elegant answer wyz may

‘

come to mind, based on seeing abc and xyz as mirror images of each other “wedged”
against opposite ends of the alphabet, with abe going to the right via successorship
and xyz going to the left via predecessorship.! This answer is quite creative, and
most people see wyz as being strongly analogous to abd, even though the idea is not
at all obvious at first.

When Copycat tries to solve this problem, it almost invariably perceives abc

and zyz as going in the same direction, which is certainly a reasonable thing to

do. However, this interpretation of the situation leads inevitably to an attempt

!Equivalently, one could see abc as a left-directed predecessor group and xyz as a right-directed
successorship group, but this doesn’t change the symmetry.

42 From Copycat to Metacat

Workspace

(Codetts mur: 276)

a b c == a b d
|| Fepluce letter —cotegory of rightmost letter by successor ||
B I 2
FHCC=FFUCC
FUCCErP=rsUCCEIP
whele=>whole
right=>right
Eroup=groupy
LeltCley=xLelCley
r -——a == il
1 1
X y z = ?
————————— y - -
| Replace letter —category % st letter by successor
\bmost=>Emost “rmost=rrmost *middle=rmiddle

leMter=>leRter

Figure 2.1: A snag situation resulting from Copycat’s attempt to change the letter z
to its successor.

to take the successor of z, since z is seen as corresponding to c¢. This attempt
fails, and Copycat “hits a snag”, as shown in Figure 2.1. It is forced to reinterpret
the situation. Often, it circumvents this difficulty by changing the rule describing
abc = abd from Replace letter-category of rightmost letter by successor to Replace
letter-category of rightmost letter by ‘d’, leaving intact the same-direction mapping
between abc and xyz, which then yields the answer xyd. Sometimes, however, the
same-direction mapping itself is broken and eventually replaced by a very different,
crosswise mapping based on the opposite a—z symmetry, yielding wyz. More often
than not, though, after breaking the mapping, Copycat tends to rebuild the same
structures all over again, which leads it right back to the snag situation. Round and

round in circles it goes, hitting the snag over and over again, until it finally manages

2.2 Copycat’s Weaknesses 43

to stumble onto some other way out, such as falling back on the literal-minded rule
mentioned above. Unfortunately, Copycat hits the snag an average of nine times per
run on this problem—and sometimes as often as twenty or thirty times in a single run.
This is quite unlike typical human behavior. People tend to “get the message” after
attempting some unsuccessful strategy a few times. They either get bored and give
up completely, or, recognizing that their strategy isn’t working, they try something

different.

2.2.2 Copycat cannot remember what it has done

As this example makes clear, the program is unable to recognize when it has fallen
into a repetitive pattern of behavior. It has no memory of its actions over time,
and thus cannot compare its current situation to other situations encountered in the
past. This holds true not only on short-term time scales involving a single run of the
program in which some situation is encountered over and over again (i.e., a snag), but
also on longer time scales involving several answers to a single problem, or different
answers to different problems. Once Copycat discovers an answer to a problem, it
stops and reports the answer, along with the final temperature, but does not retain
this information further. On subsequent runs of the program, no recollection of the
answer is possible. This makes comparison of different answers impossible, either for
a single analogy problem or among different problems.

Copycat’s Workspace and Slipnet are sometimes regarded as the program’s short-
term and long-term memory. To some extent, this is justified, since the Workspace
contains perceptual structures that exist only during the course of a run, whereas
the Slipnet contains the permanent set of concepts the program understands about
its microworld. This conceptual information is hard-wired into the program, and
thus persists over the course of many runs. The activations of Slipnet concepts,

however, are reset to a standard initial state at the beginning of every run. Changes

44 From Copycat to Metacat

in conceptual distances and activation levels that occur during a run are not retained
after the program stops with an answer. Likewise, all perceptual structures built in
the Workspace during a run are erased as soon as a new run is begun. Consequently,
any type of learning that might occur over multiple runs of Copycat is impossible—
although, to be fair, learning per se was never intended to be a central focus of the
project, since the notion of learning to make “better” Copycat analogies is not entirely
clear. Nevertheless, it is clear that in order for the program to be able to recognize
patterns in its own behavior, it needs a more sophisticated type of short-term memory
than what the Workspace provides, and in order for it to be able to compare different
answers to a given problem, or to compare different problems as wholes, it needs a

more comprehensive type of long-term memory than what the Slipnet provides.

2.2.3 Copycat cannot perceive differences between strings

Yet another limitation of the model concerns the creation of rules. Work on Copycat
focused on the mapping process between the initial and target strings, and paid rel-
atively little attention to the creation of rules describing the change from the initial
string to the modified string. That is, the first phase of development concentrated on
developing mechanisms for perceiving similarity between strings via bridges and slip-
pages, rather than on characterizing differences between strings via rules. For exam-
ple, in the problem “abec = abd; mrryjy= ?”, Copycat is able to see abec and mrrjjy
as being “the same” by building a mapping between the strings in which both are
represented as successor groups at an abstract level of description, based on concept-
mappings such as Letter-Category = Length and successor-group = successor-group.
In contrast, abc and abd differ by just a single letter, and this difference is relatively
easy to characterize in terms of a rule.

In fact, Copycat places severe restrictions on what types of changes are allowed

to the initial string. At most, a single letter-category change involving just one

2.3 The Objectives of the Metacat Project 45

letter is allowed. Thus, the program is able to characterize abc = abd, but more
general changes—even as simple as abc = cba or abc = abce, in which more than
one letter changes or the length of the string changes—cannot be captured by any rule.
Under such rigid restrictions, creating an initial/modified mapping and abstracting
a rule based on it is an essentially trivial task, because such a mapping is always
one-to-one and always involves just one possible type of change. Developing more
robust mechanisms for perceiving and characterizing differences between strings was

postponed to a later phase of the project.

2.3 The Objectives of the Metacat Project

2.3.1 Handling arbitrary strings

Accordingly, one of the primary objectives of the Metacat project has been to ex-
tend and generalize Copycat’s rule-building mechanisms so that the program is able
to handle a wider class of analogy problems. Restrictions on the types of changes
allowed between the initial string and the modified string have been greatly relaxed.
To this end, the bridge-building mechanisms for creating mappings between strings,
which were fully applied only to the task of perceiving similarity between the initial
and target strings in Copycat, have been generalized in Metacat to handle arbitrary
mappings between the initial and modified strings. This is an important step toward
increasing the model’s flexibility, although it does not constitute a major conceptual
advance beyond the theoretical ideas originally developed in the Copycat architecture.
Nevertheless, developing a generalized ability to perceive similarities and differences
between arbitrary strings lays the necessary groundwork for addressing Metacat’s
further objectives.

Hofstadter has outlined five other important challenges to be addressed in any

future work stemming from Copycat [Hofstadter and FARG, 1995, Chapter 7]|. For

46 From Copycat to Metacat

the most part, meeting these challenges involves overcoming the weaknesses of Copy-
cat discussed earlier. The remainder of this section reviews these five objectives and
discusses to what extent they have been addressed in the development of the Meta-
cat architecture described in this dissertation. A detailed discussion of Metacat’s

expanded rule-building mechanisms will be deferred until Chapter 3.

2.3.2 Self-watching

The central, long-term goal of the Copycat line of research is to computationally
model how high-level cognitive phenomena such as creativity, self-awareness, and
understanding can arise out of a subcognitive substrate composed of a huge number
of tiny, nondeterministically-interacting micro-agents, each of which is far too small by
itself to support such phenomena. Few people would suggest that individual neurons
in the brain (or individual molecules, for that matter) are “conscious” in anything like
the normal sense in which humans experience consciousness. Unless one is mystically
inclined, one is forced to accept the fact that consciousness arises, somehow, out of
nothing but billions of individual molecular chemical reactions and neuronal firings.
How can individually meaningless physical events in a brain—even a huge number of
them—ultimately give rise to meaningful awareness? Hofstadter argues that two key

ideas are of paramount importance [Hofstadter and FARG, 1995, page 311]:

What seems to make brains conscious is the special way they are or-
ganized—in particular, the higher-level structures and mechanisms that
come into being. I see two dimensions as being critical: (1) the fact that
brains possess concepts, allowing complex representational structures to
be built that automatically come with associative links to all sorts of prior
experiences, and (2) the fact that brains can self-monitor, allowing a com-
plex internal self-model to arise, allowing the system an enormous degree

of self-control and open-endedness.

2.3 The Objectives of the Metacat Project 47

Such a capacity for self-monitoring (or self-watching) rests on a foundation of
high-level perception—already well-developed in Copycat—which allows concepts to
be used in very flexible ways. The principal objective of Metacat is thus to develop
mechanisms that will allow the program to monitor its own actions and, consequently,
to make explicit the ideas that come into play during the course of solving a given
analogy problem. This amounts to building a higher-level “cognitive” layer on top of
Copycat’s “subcognitive” layer, which can watch and remember what happens at the
lower level as perceptual structures are built, reconfigured, and destroyed in pursuit
of an answer.

To do this, Metacat needs to create an explicit sequential record of the most
important processing events that occur as it works on a problem. The temporal
record left behind by the program can then be examined by codelets for patterns—in
much the same way that Copycat’s codelets examine letter-strings for patterns. By
monitoring its own perceptual processing, and by building explicit representations of
this activity, Metacat should be able to achieve a deeper awareness of what its answers
are really about by examining the key ideas and events that led to the discovery of
particular answers. Furthermore, it should be able to recognize when it has fallen
into a repetitive or otherwise unproductive pattern of behavior. Recognizing that it is
stuck in a rut should enable it to subsequently “jump out of the system” by explicitly

focusing on ideas other than the ones that seem to be leading it nowhere.

2.3.3 Episodic memory and reminding

Metacat’s ability to create an explicit temporal trace of its “train of thought” should
enable the program to form abstract, high-level characterizations of the answers it
finds by extracting from the trace the most essential information about an answer.
The program should store these abstract answer characterizations in a long-term

episodic memory, allowing the program to gradually build up, over the course of

48 From Copycat to Metacat

several analogy problems, a repertoire of experience on which to draw when confronted
with new situations—rather than simply forgetting everything about an answer as
soon as a new problem is started. After having seen a number of letter-string analogy
problems, people are often reminded of previous problems when confronted with a
new problem that is similar to one they have already seen. Likewise, Metacat should
sometimes be “reminded” of answers it has previously seen if they are sufficiently

similar to an answer just found.

2.3.4 Comparing and contrasting answers

When people come up with more than one answer to an analogy problem, or when they
get reminded of some other answer they have encountered before, they can usually
explain—if pressed to do so—why the answers seem similar, or how they differ. They
are able to compare and contrast answers in terms of the key ideas involved. Metacat
should be able to do this as well. For example, the essence of the mrryjy answer
to the problem “abc=- abd; mrrjjy= ?” lies in seeing both abc and mrryy as
successor groups, one based on the idea of letter category and the other based on the
idea of group length. This abstract similarity is what fundamentally distinguishes the
answer mrrjjy) from other, more straightforward answers to the same problem, such
as mrrkkk, mrryjk, or mrrddd, all of which overlook the hidden successorship fabric
lurking beneath the surface of mrrjjy. Although Copycat can recognize mrrjjy as a
successor group, it cannot point to this idea as being the key to the answer mrryj33 .

Recognizing that the answers mrrkkk and mrrjjk are fundamentally similar
in a way that mrrkkk and mrryjjy are not amounts to making analogies between
analogies, since each answer itself constitutes an analogy in the world of letter-strings.
Thus, an ability to make “meta-analogies” arises naturally from the ability to map
answers onto each other, whether through the process of reminding via spontaneous

memory retrieval, or through direct comparison of alternative answers to a problem.

2.3 The Objectives of the Metacat Project 49

2.3.5 Working backwards from a given answer

An ability to insightfully evaluate the relative strengths and weaknesses of different
answers should make it possible for Metacat to evaluate not only its own answers,
but also answers suggested to it by an outside agent. In other words, Metacat should
not only be able to find answers to analogy problems, it should also be able to justify
answers on their own terms, even if the program itself didn’t come up with them.
This amounts to “working backwards” from a given answer toward an insightful
characterization of the answer, in order to understand why it makes sense. Once an
answer has been understood in this way, it can be compared and contrasted with
other answers that the program has either discovered previously itself, or been shown
by someone else.

This type of “hindsight understanding” presents little difficulty for humans. Peo-
ple who are asked to solve the problem “abc=- abd; mrrijy= 2”7, for example, may
not think of the answer mrrjjj7, even when given an unlimited amount of time.
However, as soon as this answer is suggested to them, they have no trouble seeing
why it makes sense, even though they weren’t able to think of it themselves. In a
similar vein, suggesting the somewhat “tongue-in-cheek” answer abd usually elicits
a few chuckles from people, indicating that they can see how it “makes sense”, al-
though practically no one gives this answer on their own [Mitchell, 1993]. Of course,
this is not to say that every suggested answer can be readily understood in retrospect
(for example, a person might never figure out the justification for an answer such as
mssjjj), but for many non-obvious answers, no additional explanation beyond just

the answer itself is needed.

2.3.6 Making up new analogy problems

Finally, a very long-term goal of the Metacat project is to endow the program with

the ability to make up entirely new, high-quality analogy problems on its own. This

50 From Copycat to Metacat

would require Metacat to have not only a deep understanding of the issues that
arise in individual analogy problems, but also a deep grasp of the inherent subtleties
of letter-string analogies in general. Such an ability would represent the program’s
attainment of expert-level mastery over its microdomain—something that requires a
great deal of experience even for humans to attain. Inventing elegant and clever letter-
string analogy problems is a skill that is only acquired through doing many analogy
problems and by being acutely aware of the various competing pressures evoked by
rival answers. Thus, in any program able to invent its own problems, learning from
experience would almost certainly have to play a critical role. As the program invented
more and more analogy problems, it would gradually learn what makes for interesting
problems, and the subtlety and sophistication of its creations would increase. In order
to do this, the program would have to be able to “try out” problems it had invented,
comparing and contrasting the various possible answers with one another and with
other similar problems stored in its memory, and to recognize when it had come up

with something intriguing.

For example, the best problems are often those in which a straightforward, easy-
to-see answer masks a more elegant answer hidden “below the surface”, such as the
problem “apc=- abc; opc= ?” [Hofstadter and FARG, 1995, page 317]. For this
problem, one possibility is to “take the bait” offered by the pec in both apc and opc
and simply change the p to b, obtaining obe. On the other hand, a more abstract way
of looking at things yields the answer opgq, in which apc = abc and opc = opq are
both seen as “fixing a one-letter flaw” in successor groups of length three. Recognizing
this problem as being interesting would require the program to appreciate the delicate

interplay of pressures between the rival answers obc and opq.

Once the program had pinpointed the key pressures inherent in a particular prob-

lem, it might then go on to suggest subtle variants of the problem by systematically

2.4 An Overview of the Metacat Architecture 51

changing the balance of pressures in interesting ways, possibly creating an entire fam-
ily of related problems stemming from the original. Such an ability of the program to
step back and assess the quality of its own analogy-problem creations, possibly revis-
ing and improving them as a result, is very similar in flavor to the “central feedback

loop of creativity” of the Letter Spirit project mentioned earlier in section 2.1.4.

2.3.7 The objectives of the present work

All of the above objectives except for the last one (making up new analogy problems)
have been addressed in the development of the Metacat architecture described in this
dissertation. At the present stage, I believe that it is too early to attempt to imbue
the program with even a rudimentary ability to make up its own problems. A pro-
gram able to consistently invent good analogy problems would require a qualitatively
different level of understanding than that modeled by the current Metacat program.
Such an escalation in ability would be, I believe, comparable in magnitude to the
escalation from the ability to make analogies, as was modeled in Copycat, to the
ability to comprehend analogies, as is modeled in Metacat. Therefore, tackling this
challenge is best left to a later stage of development. Only after the notion of com-
prehending individual analogies has been thoroughly explored and computationally
modeled should the task of building a program able to comprehend analogy-making

in general be undertaken.

2.4 An Overview of the Metacat Architecture

The remainder of this chapter presents a broad overview of the Metacat architecture,
and concludes with a discussion of Metacat’s relationship to other work in Al and

cognitive science, particularly work in case-based reasoning and derivational analogy.

52 From Copycat to Metacat

Metacat is an extension of the Copycat model—mnot an alternative model de-
signed to supplant it. Consequently, Metacat’s architecture includes all of Copycat’s
main architectural components, such as the Workspace, the Slipnet, and the mech-
anisms that support distributed, nondeterministic codelet processing. In addition,
the mechanisms for building bridges and creating rules have been greatly extended
and generalized, and new architectural components have been incorporated into the
model. Together, these components provide a common framework in which to address

self-watching and the other objectives outlined in the previous section.

2.4.1 The Episodic Memory

Unlike Copycat, Metacat incorporates an episodic memory for its answers, which al-
lows it to remember its problem-solving experiences over time. When the program
discovers a new answer, it pauses temporarily to display the answer along with the
groups, bridges, rules, slippages, and other Workspace structures that gave rise to it,
instead of simply quitting. Together, these structures represent a way of interpreting
the analogy problem that yields the answer just found. All of this information, in-
cluding the problem itself, is then packaged together into an answer description and
stored in Metacat’s memory, after which the program continues searching for alter-
native answers to the problem. Gradually, over time, a series of answer descriptions
accumulates in memory, each one containing much more information than just the

answer string itself.

The most important information stored in answer descriptions consists of struc-
tures called themes. Themes are high-level structures that represent the key ideas
underlying an answer. In Copycat, at the time an answer is found, the configuration
of structures in the Workspace collectively represents a particular way of interpreting

the problem, but which aspects of that interpretation are essential and which are

2.4 An Overview of the Metacat Architecture 53

not remains unclear. In Metacat, themes are used to identify and explicitly repre-
sent those aspects of the interpretation that are most important in characterizing
the answer. This amounts to abstracting out an explicit, high-level description of
the answer’s essence from the many Workspace structures and events that led to its
discovery. This high-level answer description is represented as a collection of themes,
and serves as the basis for comparing and contrasting the answer to other answers
stored in memory. Furthermore, Metacat may get reminded of similar answers it
has encountered in the past if the themes associated with a newly-discovered answer,
acting as memory retrieval cues, match those of some previously stored answer de-
scription sufficiently well. The pattern of themes in an answer description serves as

an index under which an answer can be stored and retrieved from memory.

2.4.2 The Themespace

Themes reside in Metacat’s Themespace, and consist of pairs of Slipnet concepts. For
example, a theme representing the idea of alphabetic-position symmetry between two
objects is composed of the concepts Alphabetic-Position and opposite. In some ways,
themes act like ordinary Workspace structures. They are not initially present in the
Themespace; rather, they get built during the course of a run, in response to the
creation of various structures in the Workspace. In the same way that Workspace
structures such as bridges and groups explicitly represent patterns among input let-
ters, themes explicitly represent patterns among Workspace structures. Thus they
are in some sense “meta-level” Workspace structures.

In other ways, however, themes act like Slipnet concepts. They can take on var-
ious levels of activation, depending on the extent to which the ideas they represent
are present or absent in the current configuration of structures in the Workspace.
Although each theme consists of a pair of Slipnet concepts, a theme’s activation level

is distinct from the individual activations of its constituent concepts. Furthermore,

54 From Copycat to Metacat

a theme’s activation may decay over time, and may be influenced by the activation
levels of other themes. Like Slipnet concepts, themes can, under certain conditions,
exert strong top-down pressure on perceptual activity occurring in the Workspace.
In fact, themes can assume both positive and negative levels of activation, rang-
ing from —100 to 4+100. Positively-activated themes exert “positive thematic pres-
sure”, encouraging the building of Workspace structures compatible with the themes.
Negatively-activated themes, on the other hand, exert “negative thematic pressure”.
Their effect is to discourage the creation of compatible structures, promoting instead

the creation of structures incompatible with the themes.

2.4.3 The Temporal Trace

In addition to the Themespace and Episodic Memory, Metacat’s architecture includes
a separate short-term memory called the Temporal Trace (or just the Trace for short)
that serves as the focus for self-watching. Like the Themespace, the Temporal Trace
accumulates information over the course of a single run, so it can be viewed as an
extension of the Workspace. Specifically, the Trace stores an explicit temporal record
of the most important processing events that occur during the course of solving
an analogy problem. Examples of such events include recognizing some key idea
pertaining to the problem (by noticing the strong activation of a theme or concept
embodying the idea), encountering a snag situation, or discovering a new answer. Of
course, a huge number of events of all “sizes” occur during the processing of almost
any analogy problem, ranging from fine-grained “micro events” (such as proposing
a bond between two letters, or evaluating the strength of some proposed structure)
all the way to global “macro events” (such as hitting a snag). However, only those
events above a threshold level of importance get represented in the Trace. This allows
Metacat to filter out all but the most significant events, giving the program a very

selective, high-level view of what it is doing.

2.4 An Overview of the Metacat Architecture 55

Once events have been explicitly represented in the Trace, they are themselves
subject to examination by codelets. This allows Metacat to perceive patterns in
its own processing in much the same way that Copycat perceives patterns in its
letter-strings—via codelets looking for relationships among perceptual structures. In
Copycat’s case, these perceptual structures are the letters, groups, bonds, and so
on, stored in the Workspace; in Metacat’s case, they also include “reified” structures
stored in the Trace which are created from events that occur during the processing
of Workspace structures. When a new answer is found, an answer description can be
formed by examining the temporal record in the Trace to see which events contributed

to the answer’s discovery.

Figure 2.2 shows a schematic diagram that summarizes Metacat’s main architec-
tural components and the principal ways in which they interact. Metacat’s basic
repertoire of concepts relating to the letter-string microworld are stored in the Slip-
net. The Themespace contains aggregate structures (i.e., themes) which characterize,
at an abstract level of description, the activity occurring in the Workspace. These
structures are themselves collections of Slipnet concepts, and (like Slipnet concepts)
can exert strong top-down pressure on processing in the Workspace. This processing,
in turn, influences the activation levels of both themes and concepts. Sitting above
the subcognitive processing level is the Temporal Trace, which “watches” the activity
occurring at the lower levels and records the most important events that take place.
Codelets can examine the resulting chain of structures in the Trace, which, under
certain circumstances, may result in particular patterns of themes in the Themespace
being clamped at high activation. This will in turn strongly influence subsequent
activity at the subcognitive level. Once an answer is found, a high-level description
of the answer can be formed by extracting from the temporal record the most im-
portant themes and events that contributed to its discovery. This description is then

stored as a new episode in memory indexed under the appropriate themes. In the

56 From Copycat to Metacat

Temporal Trace

O-O-O O

create new
answer descriptions

clamp patterns record
of themes and important
concepts events
Episodic Memory Themespace Slipnet

_ record
retrieval cues O O important
©)
0

top—down bottom—up
pressure activation
on processing of themes and
concepts
recall past
experience Workspace

abc — abd

Xyz — ?

Figure 2.2: Metacat’s main architectural components, and the principal ways in which
they interact. The Themespace shares properties of both the Slipnet and the Work-
space. Both the Temporal Trace and the Themespace can be regarded as extensions of
the Workspace that contain “meta-level” perceptual structures. Together, these three
components constitute Metacat’s short-term memory. The Episodic Memory and the
Slipnet together constitute Metacat’s long-term memory.

2.4 An Overview of the Metacat Architecture 57

future, should Metacat encounter a problem that evokes a pattern of themes similar
to the pattern of themes stored with the answer description, the stored episode may
be recalled as a result. Furthermore, different answers can be compared to each other

on the basis of the information stored in their descriptions.

2.4.4 Themes and self-watching: An example

As was mentioned earlier, themes take on varying levels of activation during the course
of processing. At any given moment, a theme’s activation level represents an estimate
of the importance of its role in characterizing the program’s understanding of the sit-
uation at hand. Thus, themes are first and foremost representational structures (in
this sense they are like Workspace structures). But under certain conditions, when
highly activated, they can also exert powerful top-down pressure on Metacat’s sub-
cognitive processing mechanisms, strongly biasing the stochastic behavior of codelets
in favor of particular outcomes (in this sense they also exhibit Slipnet-like qualities).

As an example, consider again the problem “abc=- abd; ryz=- ?” discussed at
the end of section 2.2.1. In Copycat, the idea of perceiving abc and xyz as going in the
same direction can be represented implicitly by a mapping consisting of the vertical
bridges a—x, b—y, c—z, and a higher-level bridge between the successor groups (or
predecessor groups) abe and xyz. In Metacat, this state of affairs can be represented
explicitly by a “vertical” theme based on the concepts of String-Position and identity,
which captures the essential idea underlying the vertical mapping between abc and
xyz that objects having identical positions in their respective strings correspond
to one another. Conversely, seeing the strings as going in opposite directions is
represented in Copycat by a “crosswise” vertical mapping involving the bridges a—=z
and c—x, the essence of which can be captured abstractly in Metacat by a String-
Position: opposite vertical theme.

Should a String-Position: opposite theme become highly activated, it will strongly

58 From Copycat to Metacat

promote the creation of Workspace structures that support the idea of mapping abe
onto xyz in a “mirror image” fashion, and will suppress the creation of structures
incompatible with this idea. For instance, the creation of vertical bridges based on
the concept-mappings rightmost = leftmost or leftmost = rightmost will become ex-
tremely likely, whereas leftmost = leftmost or rightmost = rightmost bridges will be
inhibited. Active themes can be thought of as Metacat’s way of “seizing on” certain
key ideas implicit in an analogy problem and making them explicit, driving the pro-
gram toward an interpretation of the problem organized around these ideas. Different
configurations of active themes in the Themespace will guide Metacat toward differ-
ent interpretations of an analogy problem, which consequently may cause different

answers to be discovered for the problem.

On the other hand, themes can sometimes acquire negative activation. Negatively-
activated themes exert negative thematic pressure on codelet processing, which tends
to drive the program away from certain interpretations of a problem. For example,
a strongly-negative String-Position: identity vertical theme will discourage the cre-
ation of bridges between letters of abc and xyz having the same string position,
such as @ and or ¢ and z, making it difficult to build a same-direction vertical
mapping between the strings. This will in turn push the program into other regions

of “interpretation space”, encouraging it to explore alternative ways of creating this
mapping.

The ability to steer away from certain interpretations of an analogy problem by
negatively activating certain patterns of themes offers a way for Metacat to avoid
falling into mindlessly repetitive patterns of behavior, or at least to be able to “jump
out of the system” when it does end up falling into one. As was seen earlier, Copycat
is plagued by such “loopy” behavior on certain problems, for it has no way of noticing
patterns in its own processing. Although theme activation is not a sufficient mech-

anism, by itself, for overcoming repetitive behavior, Metacat’s themes nevertheless

2.4 An Overview of the Metacat Architecture 59

provide a general framework in which to address this problem, which will now be
explained.

When an event is added to the Temporal Trace during the processing of an anal-
ogy problem, the themes most active at the time of the event are also noted along
with it. These themes serve as the event’s thematic characterization. In the case of an
“answer event”, a high-level answer description is abstracted from these themes and
the other events in the Trace and stored in Metacat’s episodic memory, as was men-
tioned earlier. For a “snag event”, however, the thematic characterization represents
a way of interpreting the analogy problem that has just led to failure. If Metacat
continues to hit the same snag several times in succession, a series of failure events will
accumulate in the Trace, all with very similar thematic characterizations. But since
these processing events are now represented as concrete perceptual structures, they
are subject to examination and manipulation by codelets in a natural way. Similarity
between multiple failure events in the Trace can be noticed by codelets in much the
same fashion that similarity between multiple letters or groups in the Workspace is
noticed. By monitoring its own behavior in this way, Metacat can recognize when it
is stuck in an ongoing, repetitive pattern of behavior. Furthermore, once the program
has recognized a particular thematic configuration as leading to failure, it can clamp
the “offending” themes with strong negative activation, effectively steering itself away
from the unproductive interpretation leading to the snag. In this way, Metacat can
both recognize and subsequently break out of repetitive behavior. Figure 2.3 shows

this idea schematically.

2.4.5 Working backwards: An example

While negative thematic pressure is useful for avoiding problematic interpretations
that lead repeatedly to failure, positive thematic pressure can guide Metacat toward

interpretations based on particular key ideas. This makes it possible for the program

60 From Copycat to Metacat

.......................... Negative thematic pressure
£ StringPos: iden

Common Themes -

discovery of
o a—z symmetry, L /\/\(V\I)_/\Z>
direction reversal -
StringPos:iden StringPos:iden StringPos:iden of string, etc.

Time

Figure 2.3: Schematic diagram showing how themes common to several snag events
in the Temporal Trace can trigger negative thematic pressure, subsequently steering
Metacat away from a problematic interpretation of a problem (e.g., viewing abe and
xyz as going in the same direction), and eventually toward alternative interpretations.

to effectively work backwards on analogy problems, starting from a given answer.
When Metacat runs in “justify mode”, it takes a problem together with an answer
supplied by the user and attempts to discover a way of interpreting the problem in
which the given answer makes sense. To do so, it begins by building up perceptual
structures among the letter-strings, as usual. This “bottom-up” approach, however,
may lead it to build an inconsistent interpretation of the problem that does not
support the answer in question. Nevertheless, examining different parts of this inter-
pretation may suggest new ideas to try out. Metacat can explicitly focus on these
ideas, represented as patterns of themes, by clamping the themes with strong posi-
tive activation. The resulting thematic pressure forces the program to reorganize its
interpretation of the problem in accordance with these ideas, leading to a new—and
perhaps more coherent—way of looking at things.

For example, when Metacat is asked to justify the answer wyz to the problem
“abc = abd; xyz=- ?”, it typically begins by building straightforward mappings in

which all the strings are seen as going in the same direction. In addition, it may

2.4 An Overview of the Metacat Architecture 61

Workspace

(Cogeiets . 556)

——————————————————————————————————————

FUCCEYP=TRUCCENY
whele=rwhele
SUCO=TSUCC
LehiCley=>LetiCley
right=2right
g:houp:bg‘moup
v G NN
———————————————————————————————————————
T ost=>Imost middle=>middle rmost=>rmost | Change letter—category of leftmost letter to predecessor |
lefter==Ictter ielter==lctter R N

Figure 2.4: An inconsistent interpretation of the answer wyz.

create a “top” rule describing the abc = abd mapping as Change letter-category of
rightmost letter to successor and a “bottom” rule describing the xyz = wyz map-
ping as Change letter-category of leftmost letter to predecessor. This state of affairs
is shown in Figure 2.4. Although each of the three string mappings making up this
interpretation is locally consistent when considered in isolation, together they do not
make sense at a global level. The letters ¢ and & are not seen as corresponding
to each other (since there is no bridge between them), yet they are both identified
by the rules as being the objects that change in their respective strings (the ¢ to

62 From Copycat to Metacat

its successor and the x to its predecessor). Comparing the two rules to each other,
however, suggests the idea of rightmost-leftmost symmetry, as well as successor—
predecessor symmetry. This idea can be captured by a set of vertical themes such as
String-Position: opposite, Direction: opposite, and Group-Category: opposite. Meta-
cat can explore the ramifications of this idea by clamping the associated themes at
full activation in the Themespace. The resulting positive thematic pressure strongly
promotes the creation of new structures compatible with the idea of mapping abc
and xyz onto each other in a crosswise fashion, and significantly weakens existing
structures incompatible with this idea, such as the a—x and ¢—z bridges. The net ef-
fect is that the original vertical mapping shown in Figure 2.4 is swiftly reorganized by
codelets into a new mapping consistent with the activated themes. Figure 2.5 shows
the final, globally consistent interpretation, in which ¢ and « are seen as correspond-
ing. In addition, the previously unnoticed alphabetic-position symmetry between the
letters @ and z has been identified as a result of the increased attention focused on
these objects by top-down thematic pressure. Consequently, the final abstract char-
acterization of wyz includes an Alphabetic-Position: opposite vertical theme based

on the first = last slippage underlying the a—z bridge.

2.4.6 Comparing and contrasting answers: An example

As the previous example illustrates, themes allow Metacat to “size up” answers that
are suggested to it by others, by working backwards to discover interpretations that
make sense. For answers that the program discovers on its own, it can examine the
history of events in the Trace in order to create abstract descriptions of the answers.
In either case, once answers have been described in terms of their key underlying
themes and stored in memory, they can be compared and contrasted with each other

on the basis of these descriptions.

2.4 An Overview of the Metacat Architecture

63

Workspace

(Cogieiets . 953)

2.
r —([B / - -2 5
. a l;/ - = a b d
L ——--ga iy
iL"]le : 2/ || Chawnge letter—capegory of rightmost letter o successor ”

Fuccgrp==predsrp
whele=rwhele
suoo=>prod

>g‘:noup
re k7 \ 5 5
Twmiddle=cmiddle Srmost=Imost ret=>Tast | Change letter—category of leftmost letter to predecessor ||
?;:ter:}l'eﬁ;r ‘ Ie!:ewﬂ'?!?er o= rnrest 2oy of £

lelter=>lelter

Figure 2.5: The final consistent interpretation of wyz.

64 From Copycat to Metacat

As an example of how the similarities and differences between analogy problems
can be understood in terms of themes, consider again the answer wyz just described
for the problem “abc=- abd; xyz= ?” (Figure 2.5). This answer relies on an in-
terpretation of the problem in which abe and xyz are seen as going in opposite
directions, abc and abd are seen as going in the same direction, and abc is seen as
changing to abd in an abstract way rather than in a more literal-minded fashion (i.e.,
this change is described by the rule Change letter-category of rightmost letter to suc-
cessor). At the crux of this interpretation lies the alphabetic-position symmetry of the
letters @ and z, which provides the justification for perceiving abc and xyz as “mirror
images” of each other. These ideas can be represented abstractly by a collection of
structures that includes Alphabetic-Position: opposite and String-Position: opposite
vertical themes, a String-Position:identity top theme, and the aforementioned rule.

Together, these structures constitute wyz’s answer description in long-term memory.

In contrast, Figure 2.6 shows Metacat’s Workspace after it has found the answer
xyd. In this interpretation of the problem, abc and xyz are seen as going in the
same direction, with letters in identical string positions linked by vertical bridges.
The strings abc and abd are mapped onto each other in a similar fashion, as shown
by the horizontal bridges across the top, and the ¢ in abc is seen as changing literally
to d, as indicated by the rule Change letter-category of rightmost letter to ‘d’. These
are the essential ingredients of the answer xyd, and they can be explicitly represented
by an answer description that includes a String-Position:identity vertical theme, a
String-Position: identity top theme, and the above rule. The idea of alphabetic-
position symmetry does not arise in the case of xyd, so there is no corresponding

Alphabetic-Position: opposite theme involved.

Now consider the problem “rst=-rsu; xyz=- ?”, which is similar in many re-

spects to the “abc=- abd; xyz= ?” problem. In particular, the answers xyu and

2.4 An Overview of the Metacat Architecture 65

Workspace

(Cingaiets s 1558)

Sy {Ie e

R = a b d

g g : || Chimge lerrer—coregory of righrmost letter to 'd’ ||

SUCCErP=SUCCETP
whele=>whele
SUCC=FSUCC

LetiCtgy=>LetbCiay

vight=>right
Eroup=-group
X y z = X y d
Yemost=>rmost middle=>middle Imost=rImost | Chonge letter—category of rightmost letter o 'd’ ||
letter=>letter letter==letter letter=>lelter

Figure 2.6: An interpretation of the problem “abc= abd; xyz= ?” that yields the
answer xyd, showing the various Workspace structures involved.

66 From Copycat to Metacat

wyz are possible, based on many of the same considerations that applied in the ear-
lier problem. Seeing the answer xyu rests in part on seeing rst and xyz as going
in the same direction, while the answer wyz depends on seeing these strings as go-
ing in opposite directions. However, in this problem there is far less justification for
seeing rst and xyz as mirror images of each other, unlike in the previous case of
abc and xyz, with their strong a—z symmetry. Indeed, the presence or absence of
alphabetic-position symmetry is the crucial difference between the two wyz answers.
Everything else about them is the same: both involve seeing abe and zyz (or rst
and xyz) as going in opposite directions, both involve seeing abe and abd (or rst
and rswu) as going in the same direction, and both involve viewing the abc = abd (or
rst = rsu) change abstractly rather than literally. The diminished justification for
the answer wyz in this problem tends to diminish its overall quality. While arguably
better than xyw, wyz is not nearly as superior to xyu as was wyz to xyd in the
previous problem. In short, yd and xywu play essentially identical roles in their
respective problems, and are thus of comparable quality, while the two wyz answers

are quite different, even though on the surface they appear to be identical.

In addition to these four answers, there are two other possibilities worth mention-
ing. The answer dyz, although perhaps a bit far-fetched, is certainly possible for the
problem “abc=- abd; xyz=- ?”. Seeing this answer depends on noticing the abstract
alphabetic symmetry between abc and xyz, and yet—somewhat ironically—taking
a very literal-minded view of the way in which ¢ changes to d. Thus, making the
“analogous” change to xyz involves changing its leftmost letter simply to d. The
answer uyz for the problem “rst= rsu,; xyz=- ¢” arises in a similar manner, except
that here there is no good reason to see rst and xyz as mirror images of each other
in the first place. Just as for the two wyz answers, the key difference between dyz
and uyz lies in the presence or absence of the idea of alphabetic-position symmetry.

In other words, the way in which the two wyz answers are analogous to each other

2.4 An Overview of the Metacat Architecture 67

| Problem/Answer | Vertical Themes Rule Type |

abc = abd; ryz=- wyz | Alphabetic-Position: opposite Abstract
String-Position: opposite

rst= rsu; xyz= wyz | String-Position: opposite Abstract
abc = abd; xyz= xyd | String-Position: identity Literal
rst=- rsu; xyz= xyu | String-Position:identity Literal

abc = abd; ryz= dyz | Alphabetic-Position: opposite Literal
String-Position: opposite
rst= rsu; xyz=- uyz | String-Position: opposite Literal

Table 2.1: Six answers and their associated answer descriptions.

is exactly like the way in which the dyz and wyz answers are analogous to each
other. Here we have a simple example of a “meta-level” analogy in the letter-string
microworld.

Table 2.1 shows these six answers along with their associated answer descriptions.?
These descriptions bring out very clearly the similarities and differences among the
various possible answers to the two problems. For example, it is clear from examining
the themes that the crucial distinction between the first wyz answer and dyz is
whether the abe = abd change is perceived abstractly or literally (as indicated by
the rule involved). The thematic characterizations of xzyd and zyu are identical,
revealing the deep underlying similarity between these two literal-minded answers.
The difference between the two wyz answers rests on the presence or absence of
the idea of alphabetic-position oppositeness. Furthermore, the way in which these
answers differ is precisely the same as the way in which dyz differs from uyz.

This example gives the flavor of how Metacat’s characterizations of its answers in

2For the sake of clarity, not all of the information stored in these descriptions is shown here.
In particular, top themes are also present, as are other vertical themes based on Direction and
Group-Type. In addition to themes, the rules responsible for each answer are also included. Nev-
ertheless, the information shown here captures the essential similarities and differences that exist
between the answers.

68 From Copycat to Metacat

terms of themes allow it to compare and contrast idealized analogies in an insight-
ful way. Such an ability lies far beyond that of Copycat, which has only a crude
numerical measure of “quality” available as a basis for answer comparison. In addi-
tion, Metacat’s answers can be retrieved from memory on the basis of their stored
descriptions. For example, suppose that Metacat finds the answer xyu to the prob-
lem “rst= rsu; xyz= ?”. If it has previously encountered the answer xyd to the
problem “abc=-abd; xyz= ?”, finding xyu may remind it of the xyd answer it
has already seen—based on the strong similarity between the themes characterizing
xyu and the stored description of xyd—prompting Metacat to “comment” on the
similarity between the two answers.

Metacat’s mechanisms that enable it to compare and contrast its answers in this
way will be explained more thoroughly in Chapter 4, and detailed sample runs of the
program on several families of analogy problems—including the examples discussed

above—will be presented and described in Chapter 5.

2.5 Relation to Other Work

Given the centrality of self-awareness to cognition, it is surprising how little work
has been done in Al and cognitive science on developing computer models that focus
directly on the issue of self-watching. Several researchers, however, have developed
models that exhibit some of the flavor of Metacat and Copycat—namely, in their
focus on the notion of processing as the emergent consequence of many nondeter-
ministic micro-actions occurring in parallel, and on the idea of spreading activation
among nodes of a semantic network in response to context-dependent pressures. The
DUAL cognitive architecture, developed by Boicho Kokinov and incorporated into
the AMBR model of analogy-making by Kokinov and Alexander Petrov, is one such
model [Kokinov et al., 1996; Kokinov, 1994b; Kokinov, 1994a]. In addition, much

2.5 Relation to Other Work 69

work has been done on other issues that figure prominently in Metacat, such as
analogy-making and reminding (see, for example, [Holyoak et al., 1998; Lange and

Wharton, 1994]).

Prior work on analogy-making includes the well-known structure-mapping theory
of Dedre Gentner [Gentner, 1983; Gentner, 1989], and the instantiation of this theory
in the form of the Structure-Mapping Engine (SME) computer model [Falkenhainer
et al., 1990; Forbus et al., 1994]. In a similar fashion, Keith Holyoak and Paul Tha-
gard’s multiconstraint theory of analogy has been used as the basis of their ACME
computer model of analogy-making [Holyoak and Thagard, 1995; Holyoak and Tha-
gard, 1989]. Computer models of reminding include the MAC/FAC model developed
by Ken Forbus, Keith Law, and Dedre Gentner, and Holyoak and Thagard’s ARCS
model [Thagard et al., 1990; Forbus et al., 1995; Law et al., 1994]. In addition,
much pioneering work on memory organization and retrieval has been done by Roger
Schank and his colleagues [Schank, 1982]. Over the years, this work has gradually

evolved into the now-thriving field of case-based reasoning (CBR).

In particular, Metacat touches on many of the issues underlying research in case-
based reasoning (for good overviews of CBR, see [Leake, 1996] or [Kolodner, 1993]).
Answer descriptions stored in Metacat’s memory can be likened to “cases” in CBR, in
the sense that they form a corpus of experience on which the program can draw when
faced with new situations. When Metacat finds a new answer, its stored experiences
may cause it to be reminded of similar answers it has seen in the past, in a way that is
reminiscent of the retrieval of previously-stored cases from memory in CBR according
to their degree of similarity to the current situation. The retrieved answer can then
be compared to the current answer on the basis of the thematic information stored
with it. This is roughly akin to comparing two cases in CBR in order to see how
the cases are similar (i.e., which aspects of the stored case can be applied directly,

without modification, to the current situation), and how the cases differ (i.e., which

70 From Copycat to Metacat

aspects must be adapted to fit the new situation). Furthermore, some work in CBR,
is beginning to address “metacognitive” issues such as introspective reasoning and
self-questioning (see, for example, [Oehlmann, 1995; Oehlmann et al., 1994; Ram and

Cox, 1994; Fox and Leake, 1994]).

However, there are important differences between CBR and Metacat. First of all,
even though Metacat is concerned with solving analogy problems, it is not intended
to model problem-solving per se. Rather, its focus is on modeling the way in which
fluid concepts allow analogies between different situations to be perceived in a natu-
ral and psychologically plausible manner. It is concerned with analogical perception
(and, in particular, with self-perception), not analogical reasoning employed as a tool
for solving problems, as in CBR. Furthermore, the emphasis in much CBR work is
on systems that learn to solve problems in a progressively faster and more efficient
manner, whereas in Metacat the notion of learning to perceive analogies with ever

increasing efficiency and speed is irrelevant.

Metacat is actually closer to work on derivational analogy than to ordinary case-
based approaches that store only a final problem solution. In derivational analogy,
an entire trace of a problem-solving session is stored for future reference, not just
the solution produced in the end, together with a series of annotations describing
the conditions under which each step in the solution was taken [Carbonell, 1986;
Veloso and Carbonell, 1993; Veloso, 1994]. In Metacat, the thematic information
stored with an answer summarizes the important concepts and events that together
contributed to the discovery of the answer, much like the temporal problem-solving
trace of derivational analogy—although in Metacat’s case, instead of storing the entire
trace, an abstract description of the answer based on the information in the trace is

stored.

In contrast to derivational analogy and CBR, however, Metacat (like Copycat)

is deeply concerned with the nature of concepts. One of the prime objectives of this

2.5 Relation to Other Work 71

research is to explore how fluidly-adaptable concepts can give rise to understanding by
enabling analogies between disparate situations to be perceived. Metacat’s concepts,
to be sure, come nowhere close to exhibiting the full power and fluidity of human
concepts. Nevertheless, there is a sense in which they are genuinely meaningful
entities—not just empty static symbols that get shunted around by the program.
A concept node in the Slipnet—successor, for example—responds to the situation
at hand in a continuous, context-dependent way, reflecting the degree of perceived
relevance or presence of the idea of successorship in the Workspace at any given
moment. A wide range of superficially dissimilar strings can in principle activate
it—strings such as abc, yk, pgrstu, iig9kk, mrryjy, mmrrryyyy, and aababcabed.
Given the program’s ability to flexibly recognize a wide range of instances of the same
concept, some of them quite abstract, it is fair to say that Metacat’s concepts have at
least some small degree of meaningfulness, or genuine semantics, within the confines
of its tiny, idealized world (see [Hofstadter and FARG, 1995, Chapter 6] for a more
complete discussion of this point).

Work on Metacat is aimed at deepening Copycat’s understanding of its answers
by incorporating mechanisms for memory, reminding, and self-watching into the pro-
gram. Many important ideas from case-based reasoning are relevant to this aim, such
as the storing of past experiences as a repertoire of cases in memory, the activation
of stored cases by similar situations, and the issue of analogical similarity of different
situations. Unfortunately, case-based reasoning research concentrates on these issues
at the expense of understanding the nature of concepts. Indeed, it seems likely that
CBR’s ultimate success—at least as a cognitive model—will be limited on account
of its avoidance of this very difficult but critically important question. In contrast,
Metacat can be seen as an attempt to broaden and enrich these ideas by focusing on

them within a framework of fluid, context-sensitive concepts.

CHAPTER THREE

Generalizing the

Representation of Rules

The broad-brush overview of the Metacat architecture presented in the previous chap-
ter outlined several new architectural components and mechanisms not present in
Copycat (i.e., themes, the Episodic Memory, the Temporal Trace, and the Theme-
space). These components provide the basis for Metacat’s self-watching ability, and
together represent the model’s central theoretical advance over the Copycat model.
However, the development of the Metacat architecture has also involved extending
and generalizing mechanisms that were present in the earlier model, such as the mech-
anisms for building mappings between strings, and for creating rules that describe
differences between strings. This chapter examines these architectural refinements
in detail. A thorough discussion of Metacat’s new architectural components for self-
watching, including the Themespace, the Temporal Trace, and the Episodic Memory,
will be given in the next chapter. The focus of the present chapter is primarily on
Metacat’s generalized rule-building mechanisms, since it is here that restrictions in-
herent in the earlier model have been overcome to the greatest extent. However,

several improvements to other previously-existing Copycat mechanisms will also be

described.

72

3.1 Similarities and Differences Between Strings 73

3.1 Similarities and Differences Between Strings

In order to construct a rule that describes how the initial string changes into the
modified string, Copycat must examine the ways in which the components of the
strings correspond to each other, as well as how they differ. For example, in order
to describe abc = abd as Replace letter-category of rightmost letter by successor, the
c in abc must be seen as corresponding to the d in abd. Said another way, ¢ and
d must be seen as playing the same role in their respective situations—in this case,
the role of “rightmost letter in the string”. Likewise, the two a’s must correspond to
each other, as must the two b’s. Together, these correspondences effectively “align”
the strings in a straightforward, one-to-one fashion, capturing the essential similarity
shared by each letter of abe with its counterpart letter in abd—namely, the identical
positions occupied by corresponding letters within their respective strings.

In turn, this alignment highlights the difference between the strings, bringing out
the ¢ = d change clearly. This change can then be described in various ways using
different levels of abstraction. For example, ¢ can be described as either changing
to its successor (viewing the e=-d change abstractly) or as changing literally to
the letter d (viewing the change in a more concrete way). The first interpretation
results in the rule Replace letter-category of rightmost letter by successor, while the
second results in Replace letter-category of rightmost letter by ‘d’. Furthermore, the
letter ¢ itself can be described either abstractly as the “rightmost letter” of abe (as
in the above two rules), or literally as the ‘¢’ of abe. Seeing things in the latter
way results in the even more literal-minded rule Replace ‘c’ by ‘d’. These different
ways of describing abe = abd may give rise to different answers, depending on the
problem. For instance, in the problem “abc=- abd; 9yk=- ?”, these three rules yield,
respectively, the answers #l, #9d, and 23k.

In general, the bridges making up the mapping between the initial string and

the modified string model the way in which the strings are perceived as being the

74 Generalizing the Representation of Rules

same, while the rule models the way in which they are perceived as being different.
These differences are perceived against the “background of similarity” provided by

the mapping.

Another example that illustrates this “figure/ground” relationship is the problem
“pgq= qp; ykl= ?”. One way of perceiving pq = gp is to regard p and q as swapping
positions. This interpretation, supported by the bridges p—p and g—q, suggests
swapping the positions of the left and right letters of #ykl, yielding the answer ljkz.
The “background of similarity” in this case is the idea of letter-category invariance—
seeing the two p’s and the two g’s as corresponding to each other and thus implying
that their positions change. Consequently, a rule based on this mapping would specify

swapping the positions of the left and right letters of a string.

On the other hand, it is possible to see pq = gp differently—as p changing to its
successor and g changing to its predecessor. This interpretation suggests changing
the left letter of 29kl to its successor and the right letter to its predecessor, yielding
g7kk. Although people might not think of this answer at first, most would probably
agree, in retrospect, that it makes sense. Here, the similarity between pq and gp
rests on the idea of position-invariance—seeing the two left letters and the two right
letters as corresponding to each other—supported by the bridges p—q and g—p. A
rule based on this mapping would specify changes to the letter-categories of the left

and right letters of a string, rather than changes to their positions.

A third possibility, of course, is to regard pq as reversing direction as a whole,
yielding the answer lkj:. Rather than focusing on the individual letters p and g, this
interpretation sees pq and gp as being the same group, implying that pq’s direction
changes. A mapping representing this idea of object-invariance at the group level
would consist of a single bridge between the oppositely-directed groups pg and gp,
which would in turn give rise to a rule that specifies reversing the direction of a string

as a whole.

3.2 Building Rules in Copycat 75

3.2 Building Rules in Copycat

In Copycat, the ability to build arbitrary bridges between strings—and thus to char-
acterize their similarities—is restricted to the initial string and target string only.
Bridges between the initial string and modified string (which Mitchell calls “replace-
ments”) are only allowed between identically-positioned letters in each string, and no
bonds or groups can be built in the modified string. Thus, the only allowable map-
pings on which to base a rule are simple one-to-one isomorphisms between strings
of identical length. Furthermore, rules describing more than a single letter change
are not possible, limiting the program’s ability to characterize differences between
strings. For example, all of the rules describing pg = gp mentioned above are im-
possible for Copycat to build, since the first rule requires building the bridges p—p
and g—q, the second involves changes to both letters of pg, and the third requires
chunking the letters of gp into a group. Although the program can handle problems
involving abc = abd, it cannot handle other seemingly-simple string changes such as
abc = abce, abec = abed, or pg = ppqq.

Once all replacements have been built between the initial string and the modified
string (an essentially trivial task, given the restrictions imposed on the mapping),

Copycat builds a rule by simply filling in a predefined template of the form:

Replace of by

The “slot-fillers” of a rule template are individual concepts from the Slipnet, such
as letter, Letter-category, rightmost, or successor. The concepts making up a rule
specify: (1) which object changes in a string; (2) which aspect of that object changes;
and (3) how that aspect changes. For example, the rule Replace letter-category of
rightmost letter by successor consists of: (1) the concepts letter, String-Position,
and rightmost, specifying that the object to be changed is the string’s rightmost
letter; (2) the concept Letter-Category, specifying that the letter’s letter-category

76 Generalizing the Representation of Rules

changes (as opposed to, say, the letter’s position); and (3) the concept successor,
specifying that the letter-category changes to its successor (as opposed to, say, ‘d’
or some other letter). The important point is that, internally, rules are structured
collections of Slipnet concepts. (Outwardly, rules are rendered in the form of short
English phrases, but this is really just a surface-level “gloss” masking the underlying

conceptual representation.)

3.3 Building Rules in Metacat

3.3.1 Generalized mappings between strings

In Metacat, the restrictions on bridges built between the initial string and the modified
string have been relaxed. Any object of the initial string may map onto any object of
the modified string, as long as the resulting bridge is supported by concept-mappings.
Furthermore, bonds and groups can now be built inside the modified string. The same
codelet-based processes used in Copycat to build structures in the initial string and
target string (as well as between them) now extend to all three Workspace strings.
Thus, Metacat’s Bond-scout, Group-scout, and Description-scout codelets probabilis-
tically choose from among objects in all three strings (according to the same criteria
used in Copycat for just the initial string and the target string) when scouting for
possible new structures to propose. In addition, Copycat’s Correspondence-scout
and Replacement-finder codelets have been superseded in Metacat by Bridge-scout
codelets, which are capable of proposing either wvertical bridges between objects in
the initial string and target string, or horizontal bridges between objects in the ini-
tial string and modified string. Metacat’s vertical bridges are exactly the same as
Copycat’s correspondences, whereas horizontal bridges are generalizations of Copy-
cat’s replacements. Although horizontal bridges differ slightly from vertical bridges in
the types of concept-mappings that can support them (to be explained below), they

3.3 Building Rules in Metacat 77

N
S,
& -
|

o 8] [a

FUCCEIP=TIUCCENY
whele=rwhole
SHCC=TSUCT
LetiCigy==LeB gy
right="right
EFoup=Tgroupy

+

Ttmost==Imost Lomost=>rmost
letter=>lelter letter==lctter

Figure 3.1: Horizontal and vertical mappings created by Metacat for the problem
“abc = aabbdd; ykl= ?”. Concept-mappings underlying the horizontal bridges are
not shown.

are fundamentally equivalent to vertical bridges. Both types of bridges link objects

that play similar roles in a particular context.

An example illustrating Metacat’s ability to build generalized string mappings
is the problem “abc=- aabbdd; tkl=- ?”. Figure 3.1 shows a possible state of the
Workspace for this problem in which the letters of abc are mapped horizontally
(according to string position) to the sameness groups aa, bb, and dd in the modified
string. Likewise, vertical bridges map abc onto the target string #gkl. Each bridge is
supported by a set of concept-mappings, although only those associated with vertical
bridges are displayed in Figure 3.1. In particular, the horizontal a—aa bridge is
supported by the concept-mappings leftmost = leftmost, letter = group, one = two
(since a letter of length one maps to a group of length two), and a=-a; the b—bb
bridge is supported by middle =- middle, letter = group, one = two, and b=-b; and

c—dd is supported by rightmost = rightmost, letter = group, one = two, and ¢ = d.

78 Generalizing the Representation of Rules

On the other hand, the vertical a—z and c—1 bridges are supported by the concept-
mappings leftmost = leftmost, rightmost=-rightmost, and letter = letter, but not

the slippages a=-i or c= L.

This example points out a subtle difference between horizontal and vertical bridges.
Both types of bridges can be supported by identity concept-mappings involving length
or letter-category, such as three = three or a=-a, but slippages involving length or
letter-category, such as one = two or ¢ = d, are only possible for horizontal bridges.
(Both horizontal and vertical bridges, however, can be supported by slippages based
on concepts other than length or letter-category, such as letter = group.) Thus, the
vertical a—t bridge lacks an a=-1i slippage, the c¢—I bridge lacks a ¢ = I slippage, and
the bridge mapping the length-three group abec as a whole to the length-four group

gkl lacks a three = four slippage.

The fundamental reason for this asymmetry is that horizontal bridge concept-
mappings serve as the basis for characterizing both similarities and differences be-
tween strings, while vertical bridge concept-mappings serve only as the basis for
characterizing similarities between strings. A rule must be “abstracted” from the
concept-mappings underlying the horizontal bridges that explicitly describes how the
initial string changes into the modified string, but no such rule needs to be created
from the vertical bridges, since the notion of the initial string “changing into” the
target string is not meaningful. Surface-level differences between letter-categories or
lengths of objects are important when characterizing the changes that occur between
strings, but they are not as important in the perception of similarity between strings.
For example, in the problem “abc=- abd; mrrjjj= 2”7, both abc and mrrjjj can be
seen as successor groups, despite differences between the letter-categories and lengths
of their components, whereas the change from abc to abd cannot be adequately de-
scribed without taking into account the letter-category difference between ¢ and d.

This point should become clearer when the rule abstraction process is described in

3.3 Building Rules in Metacat 79

greater detail.

As in Copycat, Metacat’s Workspace objects have dynamically-varying, context-
dependent levels of importance and happiness associated with them, which together
determine an object’s salience—its overall attractiveness to codelets. The importance
of an object is a function of the object’s descriptions (specifically, the number of
currently-relevant descriptions, and the degree to which they are activated). The
happiness of an object depends on the strengths of the bonds, groups, and bridges
that together integrate the object into its surrounding context. Happiness reflects
both how well the object contributes to the internal organization of its string, and

how well it “fits into” the mappings constructed between strings.

However, unlike in Copycat, an object in Metacat’s Workspace may be part of
more than one mapping between strings. For example, in Figure 3.1, the a in abc
corresponds “horizontally” to the aa group in aabbdd, as well as “vertically” to the
letter ¢ in #ykl. In general, the horizontal mapping between the initial string and
modified string is independent of the vertical mapping between the initial string and
target string. Objects that are part of both mappings (i.e., objects in the initial
string) therefore maintain separate happiness values for each mapping.! Thus, in the
previous example, the b in abc has a lower wvertical happiness value than either a
or ¢, since it remains unmapped to any object in #kl, but the horizontal happiness
values of all three letters are about the same, since they all map to groups in aabbdd.
Since an object’s salience depends on its happiness, objects with separate horizontal
and vertical happiness values also have separate salience values for each mapping.
This distinction is important mainly to Bridge-scout codelets, which tend to focus on

the weaker mapping when looking for possible bridges to propose.

! This is also true for objects in the target string when Metacat “works backwards” from a given
answer to an understanding of that answer. In this case, an additional horizontal mapping is created
between the target string and the answer string. Metacat’s ability to justify a given answer in this
manner will be discussed in section 4.3 of Chapter 4.

80 Generalizing the Representation of Rules

3.3.2 From mappings to rules

To build a rule, codelets examine the concept-mappings underlying the horizontal
bridges built between the initial string and modified string. They look for regularities
among these concept-mappings—particularly among the slippages—and then build a
high-level description of the mapping based on the patterns they have noticed. Unlike
in Copycat, there are no fixed rule templates to be filled in which determine a prior:
the internal structure of rules. Instead, rules in Metacat are constructed according
to a set of basic guidelines (outlined below) that allow rules of arbitrary length and
complexity to be created, at least in principle.

Changes to objects in a string can be described either “intrinsically” or “extrinsi-
cally”. An intrinsic change describes a single object that changes in some way—for
example, the letter ¢ changing to its successor in abc = abd. An extrinsic change,
on the other hand, describes several objects that change in some way relative to each
other (by exchanging some attribute among themselves). An example would be two
letters that swap their positions in a string, such as p and q in pg=- gp.

In general, the guidelines for constructing rules are as follows:

1. An intrinsic change can involve any aspect of an object (not just the object’s
letter-category).? In abe = abee, for example, ¢’s length changes from one to
two, and its object-type changes from a letter to a group (assuming that the

letter ¢ in abe is seen as corresponding to the group cc in abece).

2. An extrinsic change can involve two or more objects. For example, eqge = geq
can be described extrinsically as a letter-category swap (involving the letter-

categories e and q) among all three letters of the string ege.

2The one exception to this is that a change to an object’s string position cannot be described
intrinsically—although it can be described eztrinsically in conjunction with other objects whose
positions also change.

3.3

Building Rules in Metacat 81

For a particular set of objects, an extrinsic change can specify exchanging any
number of attributes of the objects. For example, in eegee = geeq, the objects
ee, q, and ee in eegee can be described as swapping their lengths as well as
their letter-categories (assuming that these objects are seen as corresponding,

respectively, to g, ee, and ¢ in geeq).

Both intrinsic and extrinsic changes can designate all of the components of
a particular object as changing—rather than the object itself. For example,
abc = xxx can be described by a single intrinsic change specifying that all

objects in the string abe change to .

. A rule can specify any number of intrinsic or extrinsic changes to a string (in

any combination).

Finally, a special type of rule called a verbatim rule can describe an entire
string as changing literally to a particular sequence of letters. For example,
abc = pxgk can be described in this way. Verbatim rules do not specify any

other types of changes.

Like rules in Copycat, Metacat’s rules are represented internally as structured col-

lections of Slipnet concepts, but are expressed outwardly in the form of short English

phrases. The English-like appearance of rules, however, is somewhat deceptive. There

is nothing like an embedded “natural language module” for rules in Metacat. Instead,

the constraints placed on the structure of rules ensure that the set of concepts making

up a rule can be transcribed into passable English in a relatively straightforward way,

avoiding the need for sophisticated linguistic processing. Unfortunately, Metacat’s

“English” falls somewhat short of native-level mastery, occasionally resulting in a

vague or awkward-sounding rule. However, this is not really important from a the-

oretical standpoint, since the purpose of rules is to represent relationships between

strings in abstract conceptual terms, rather than in a more concrete linguistic form.

82 Generalizing the Representation of Rules

In some ways, this emphasis on the conceptual level is reminiscent of Schank’s
conceptual-dependency approach to mental representations, in which a small set of
abstract primitives is used to represent a wide variety of concrete, real-world sit-
uations [Schank, 1975; Schank and Abelson, 1977]. In Schank’s theory, the level
of representation that really counts is that of the underlying conceptual primitives.
Likewise, the same is true for Metacat’s rules. The English appearance of rules is re-
ally just a surface-level facade. However, unlike the primitives of Schank’s theory, the
conceptual primitives out of which Metacat’s rules are built (i.e., Slipnet concepts)
are not empty, static entities; rather, they are active representational structures that
respond in dynamic and context-sensitive ways to the pattern of perceptual activity

occurring in the Workspace.

3.3.3 A sampler of Metacat rules

This section presents a representative sampling of the types of rules that Metacat
is able to build. These examples illustrate more clearly the various guidelines for
constructing rules given in the previous section. Each example shows a pair of strings
along with one or more possible rules describing how the first string changes into the
second string. Since the creation of a rule depends on the particular mapping created
between the strings, the bridges between corresponding string objects are indicated
as well. In general, mappings may be described in more than one way, depending on
the level of abstraction used to refer to the string objects. For this reason, many of
the examples below list several possible rules for a single pair of strings (although not

every possible rule is necessarily shown).

The following rules describe intrinsic changes involving various attributes of string
objects, such as letter-category or length. The examples in this group illustrate the

first point appearing in the list of rule-creation guidelines given earlier.

3.3

Building Rules in Metacat

83

abc = abd (assuming a mapping with bridges a—a, b—b, and c—d)

o Change letter-category of rightmost letter to successor
o Change letter-category of rightmost letter to ‘d’

o Change letter-category of letter ‘c’ to ‘d’
abc = abce (assuming bridges a—a, b—b, and c—cc)

o Increase length of rightmost letter by one

o Increase length of letter ‘c’ by one
abc = abcee (assuming bridges a—a, b—b, and c—cec)
o Change rightmost letter to a group of length three
aaa = a (assuming a bridge aaa—a)
o Change whole group to a letter
a = z (assuming a bridge a—z)
o Change alphabetic-position of single letter to opposite
abc = cba (assuming a bridge abc—cba)
o Rewerse direction of whole group
axc = cxa (assuming bridges a—a, x—x, and c—c)
o Rewerse direction of string
abc = abed (assuming a bridge abc—abed)

o Increase length of whole group by one

o Change length of whole group to four

84 Generalizing the Representation of Rules

e abcd = abe (assuming a bridge abed—abc)
o Decrease length of whole group by one
e aabbcc = aabbcedd (assuming a bridge aabbec—aabbeedd)

o Increase length of whole group by one

Rules describing extrinsic changes, in which one or more object attributes are ex-
changed among several different string objects, are shown in the next set of exam-
ples. These examples illustrate the second and third points appearing in the list of

guidelines given earlier.
e abc = cba (assuming bridges a—a, b—b, and c¢—c)

o Swap positions of leftmost letter and rightmost letter

o Swap positions of letter ‘a’ and letter ‘c’
e abc = cba (assuming bridges a—¢, b—b, and c—a)
o Swap letter-categories of leftmost letter and rightmost letter
e aabcee = aaabee (assuming bridges aa—aaa, b—b, and ccc—cce)
o Swap lengths of leftmost group and rightmost group
e aabcee = aacbbb (assuming bridges aa—aa, b—c, and ccc—bbb)
o Swap letter-categories of middle group and rightmost group
e aabaa = bbabb (assuming bridges aa—bb, b—a, and aa—bb)

o Swap letter-categories of leftmost group, middle letter, and rightmost group

o Swap letter-categories of leftmost group, letter ‘b°, and rightmost group

3.3 Building Rules in Metacat 85

e azx = zar (assuming bridges a—a, z—z, and x—x)

o Swap positions of letter ‘a’ and letter 2’

o Swap positions of alphabetic-first letter and alphabetic-last letter
e ege = geq (assuming bridges e—¢q, g—e, and e—q)

o Swap letter-categories of leftmost letter, middle letter, and rightmost letter
e eegee = geeq (assuming bridges ee—q, g—ee, and ee—q)

o Swap letter-categories and lengths of leftmost group, middle group, and

rightmost group

The next set of examples shows how both intrinsic and extrinsic changes can refer to
all of the components of a particular object. This is a powerful abstraction capability,
which allows systematic changes across a string to be captured in a natural and
succinct manner. The real power behind this way of describing string changes becomes
apparent when rules are translated and applied to new situations (i.e., to new strings).

For example, in the problem “eqge=- qeq; axaxa= ?”, viewing the eqe = geq
change as a letter-category swap involving all of the letters of ege implies swapping
all of the letters of axaxa, yielding the answer xaxax, whereas viewing the swap
as explicitly involving the leftmost, middle, and rightmost letters of ege implies
swapping only the a’s in axaxa, which leaves the string unchanged.

The examples below serve to illustrate the fourth point in the list of guidelines

given earlier.
e abc = bed (assuming bridges a—b, b—c, and c—d)

o Change letter-categories of all objects in whole group to successor

86

Generalizing the Representation of Rules

abc = aabbece (assuming bridges a—aa, b—bb, and c—cc)

o Increase lengths of all objects in whole group by one

o Change all objects in whole group to groups of length two
aaabbbcce = aabbee (assuming bridges aaa—aa, bbb—bb, and ccc—cc)

o Decrease lengths of all objects in whole group by one

o Change lengths of all objects in whole group to two
abc = aaa (assuming bridges a—a, b—a, and c—a)
o Change letter-categories of all objects in whole group to ‘a’
abbcee = abe (assuming bridges a—a, bb—b, and ccc—c)
o Change all objects in whole group to letters
abbeee = aaabbbeee (assuming bridges a—aaa, bb—bbb, and cecc—ccce)
o Change lengths of all objects in whole group to three
aabbece = xzrx (assuming bridges aa—z, bb—x, and cc—x)
o Change all objects in whole group to the letter ‘z’
eqe = geq (assuming bridges e—q, g—e, and e—q)
o Swap letter-categories of all objects in string
eegee = geeq (assuming bridges ee—q, g—ee, and ee—q)

o Swap letter-categories and lengths of all objects in string

3.3 Building Rules in Metacat 87

e abbbc = aaabcce (assuming bridges a—aaa, bbb—b, and c—cce)
o Swap lengths of all objects in whole group

Several different changes to a string (both intrinsic and extrinsic) can be described
by a single rule. The following examples involve strings that change in multiple ways.
The rules in this series of examples illustrate the fifth point in the list of guidelines

given earlier.

e abc = cba (assuming bridges a—¢, b—b, and c—a)

o Change letter-category of leftmost letter to ‘c’
Change letter-category of rightmost letter to ‘a’

e abc = abdd (assuming bridges a—a, b—b, and d—dd)
o Change letter-category of rightmost letter to successor

Increase length of rightmost letter by one

o Change letter-category of rightmost letter to ‘d’
Increase length of rightmost letter by one

o Change letter-category of rightmost letter to successor
Change rightmost letter to a group of length two

o Change rightmost letter to a ‘d” group of length two

o Change letter ‘c’ to a ‘d’ group of length two

e abc = ddba (assuming bridges a—a, b—b, and c-dd)

o Change letter-category of rightmost letter to successor
Increase length of rightmost letter by one
Reverse direction of whole group

o Change rightmost letter to a ‘d” group of length two
Reverse direction of whole group

88 Generalizing the Representation of Rules

e abc = bbcedd (assuming bridges a—bb, b—cc, and c—dd)

o Change letter-categories of all objects in whole group to successor
Increase lengths of all objects in whole group by one

e abc = cbba (assuming bridges a—a, b—bb, and c—c)

o Increase length of middle letter by one
Swap positions of leftmost letter and rightmost letter

o Increase length of middle letter by one
Reverse direction of whole group

e abc = ccbbaa (assuming bridges a—aa, b—bb, and c—cc)

o Rewverse direction of whole group
Increase lengths of all objects in whole group by one

e ege = gqgeeqq (assuming bridges e—qq, g—ee, and e—qq)

o Increase lengths of all objects in string by one
Swap letter-categories of all objects in string

Finally, a verbatim rule describes changing one string into another in the most literal-
minded way possible, essentially ignoring any relationships between corresponding
letters or groups in the strings. Of course, if no such relationships exist to begin with,
then the only way to describe the situation is with a verbatim rule. Two examples
of such rules are shown below, rounding out the list of rule-creation guidelines given
earlier. (In fact, all of the string changes given in the preceding examples could have

been described by verbatim rules as well.)
e abc= abd

o Change string to “abd”

3.3 Building Rules in Metacat 89

e abc= mrrjjy

o Change string to “mrrjjj”

3.3.4 The internal structure of rules in detail

To more clearly appreciate the flexibility—and limitations—of Metacat’s rule repre-
sentation, it is necessary to examine the internal structure of rules more precisely.
Essentially, a rule consists of an arbitrarily-long list of rule clauses, of which there

are three possible types:

e An intrinsic clause refers to a single object in a string, and specifies an arbitrary

number of changes either to the object itself or to its components.

e An extrinsic clause refers to a set of objects in a string, and specifies one or

more attributes that are exchanged among the objects.

e A verbatim clause does not refer to any objects in a string. It simply specifies

a new sequence of letters to which the string changes.

In fact, a rule may contain no clauses at all, in which case it is the “identity rule”
Don’t change anything. Verbatim rules consist of exactly one verbatim clause. All
other rules consist of combinations of intrinsic and extrinsic clauses.

The detailed structure of rules can be described in terms of a simple grammar,
much like those used to specify the formal syntax of programming languages. This
“rule grammar” is shown in Figure 3.2. A rule is essentially a nested list structure
whose atomic elements are either Slipnet nodes, or special “tag” symbols that serve as
markers for various intermediate-level structures. The identity rule is represented by
the empty list. In the figure, Slipnet nodes are shown in slanted type (e.g., successor)

and tag symbols are shown in sans serif type (e.g., extrinsic).

90 Generalizing the Representation of Rules

((verbatim-clause))

()

(intrinsic-clause) — (intrinsic ({object-description)) ((change-description) ...))

(rule) — ({(intrinsic-clause) | (extrinsic-clause)} ...)
|
|

(extrinsic-clause) — (extrinsic ((object-description) ...) ({object-attribute) ...))
(verbatim-clause) — (verbatim ({platonic-letter) ...))

(object-description) — ({object-type) (object-attribute) (object-descriptor))
| (string String-Position whole)

(object-typey — letter | group

(object-attribute) — {any Slipnet category node }

(object-descriptory — {any Slipnet descriptor node }

(change-description) — ({referent) (object-attribute) {change-descriptor))
(referent) — object | components

(change-descriptor) — (platonic-relation) | {object-descriptor)
(platonic-relation) — successor | predecessor | opposite

(platonic-lettery — a|b|c|...|z

Figure 3.2: A grammar that describes the precise structure of Metacat’s rules.

3.3 Building Rules in Metacat 91

The symbols intrinsic, extrinsic, and verbatim distinguish different types of rule
clauses. Verbatim clauses—the simplest—contain just a list of platonic Slipnet letters
representing a literal transformation to a new string consisting of exactly those letters.
The rule Change string to “abd”, for example, consists of the single verbatim clause

(verbatim (a b d)).

In contrast, both intrinsic and extrinsic clauses refer to specific objects in a string
via object-descriptions. An object-description is a trio of Slipnet nodes that uniquely
identifies a particular object in a string. The first node indicates whether the object
is a letter or a group; the second and third nodes specify some attribute of the
object that distinguishes it from other objects in its string. For example, an object-
description consisting of the nodes letter, String-Position, and rightmost would refer
to the letter ¢ in the string abe, or to the rightmost letter k in 22j5kk. An object-
description consisting of the nodes group, Length, and three would refer to the group
7477 in mrrygy, or to the group bbb in abbbc. An object-description consisting of
letter, Letter-Category, and b would refer to the letter b in abed.

In general, any Slipnet category node—in conjunction with any descriptor node
associated with the category—may be used to designate an object. It is also possible
for an object-description to refer to the string itself, rather than to a specific letter or
group, even though there is no “string” concept in the Slipnet. In this case, the special
symbol string is used as the object type, along with the attribute String-Position and
the descriptor whole. Such an object-description, for example, could be used to refer
to the string paq, which cannot otherwise be described as a unit (unlike the string

abc, which can be described as a group encompassing the whole string).

An extrinsic clause contains a list of object-descriptions specifying a set of objects
in a string, as well as a list of the object-attributes that get exchanged among the
designated objects (such as their string positions or letter-categories). Since any num-

ber of objects may “participate” in an exchange, any number of object-descriptions

92 Generalizing the Representation of Rules

may appear in an extrinsic clause. For example, the rule Swap letter-categories and
lengths of leftmost group, middle letter, and rightmost group, which could describe the
string change eeqee = geeq, consists of an extrinsic clause containing three object-

descriptions:
e (group String-Position leftmost)
e (letter String-Position middle)
e (group String-Position rightmost)

and two object-attributes: Letter-Category and Length. As a special case, if an
extrinsic clause contains only one object-description, then the designated object’s
components are involved in the exchange, rather than the object itself. For example,
eegee = geeq could be described more generally as Swap letter-categories and lengths
of all objects in string (assuming that ee groups exist in eegee). The extrinsic clause

for this rule would contain just one object description:
e (string String-Position whole)

and the same two object-attributes as before: Letter-Category and Length, indicating
that the string’s component objects ee, g, and ee exchange their letter-categories and
lengths.

In contrast to an extrinsic clause, an intrinsic clause refers to just one object in
a string, so only one object-description is needed. However, any number of changes
to this object may be specified. Consequently, any number of change-descriptions
are permitted in an intrinsic clause. Each change-description describes a particular
change made either to the object itself, or to all of the object’s components (if the
object is not a letter). A change-description consists of three parts: a tag symbol that
indicates whether the change applies to the object or to the object’s components, the

particular object-attribute being changed (such as Letter-Category or Length), and a

3.3 Building Rules in Metacat 93

descriptor that specifies how the attribute changes. This descriptor may be either an
abstract relationship (i.e., successor, predecessor, or opposite), or a literal descriptor

(such as d or three). For example, the change-description

(object Length successor)

says to increase the length of an object by one. This change-description, in conjunc-
tion with the object-description (group String-Position whole), would transform the
string abe to abed (assuming that abe is seen as a string-spanning successor group).
On the other hand, if the change-description’s referent symbol were components in-
stead of object, then the length of each letter in abc would be increased by one,
resulting in the string aabbcc. Alternatively, both of these string changes could be
described in a literal way by using an explicit length descriptor in place of successor
(i.e., four in the case of abe = abed, or two in the case of abc = aabbcee). Sometimes,
using a literal change-descriptor is the only way to describe a change, as in the case
of abe=- abede or abec = aaabbbeee (since the concept of “double-successorship”
is unknown to Metacat). Finally, for any particular object-attribute, only certain
platonic relations can be used to describe a change at an abstract level. For exam-
ple, changing a group’s length can be described abstractly by the relations successor
and predecessor, but changing its direction can only be described by the relation
opposite, since the idea of successorship or predecessorship makes no sense for a
direction. These examples are summarized in Figure 3.3.

In general, any number of intrinsic or extrinsic clauses are permitted in a rule, so
any number of independent changes—involving any number of objects in a string—
can be expressed. In practice, however, most rules describe no more than two or
three changes, simply because the more complicated it becomes to describe the trans-
formation of one string into another, the more difficult it becomes for Metacat to

discover any underlying similarity between the strings in the first place, on which it

94 Generalizing the Representation of Rules

String change Object-description Change-description

abc = abcd group String-Position whole object Length successor)
abc = abed group String-Position whole object Length four)
abc = aabbcee group String-Position whole components Length successor)

() (
() (
() (
abc = aabbee (group String-Position whole) (components Length two)
() (
() (
() (

abc = abcde group String-Position whole) (object Length five)
abc = aaabbbcce (group String-Position whole components Length three)
abc = cba group String-Position whole object Direction opposite)

Figure 3.3: Ezamples of intrinsic change-descriptions applied to the string abe (seen
as a string-spanning successor group).

could then base a rule. For example, the string change abc = ddaxxx could theo-
retically be described as reversing the direction of abc while simultaneously changing
(1) the letter-category and length of the rightmost letter ¢ to its successor; (2) the
letter-category of the middle letter b to its predecessor; and (3) the letter-category
and length of the leftmost letter @ to x and three, respectively. Such a contrived rule,
while indeed expressible as a set of intrinsic-clauses, is unlikely to ever be built, since
it relies rather arbitrarily on seeing a as corresponding to xxx and ¢ as correspond-
ing to dd (much more likely would be the verbatim rule Change string to “ddazzz”).
The point is that the expressive power of Metacat’s rule formalism is substantially
greater than Metacat’s power to discover rules. In other words, Metacat’s ability
to describe differences between strings is limited more by the constraints that arise
out of its mechanisms for perceiving similarity between strings than by restrictions

imposed by the grammatical formalism used to represent rules.

We round out the present section by exhibiting the complete internal structure of
several of the rules listed in the “Metacat rule sampler” given earlier (see Figure 3.4).
The English language “fagade” of each rule appears in a box immediately above the
rule’s actual representation in terms of Slipnet concepts, along with a pair of strings

that could serve as the basis for building the rule.

3.3 Building Rules in Metacat 95

Change alphabetic-position of single letter to opposite a==z

((intrinsic ((letter String-Position single))
((object Alphabetic-Position opposite))))

Reverse direction of whole group

Increase lengths of all objects in whole group by one abc = ccbbaa

((intrinsic (

(

group String-Position whole))

object Direction opposite)

components Length successor)
components Object-Category group))))

NN TN N

Change rightmost letter to a ‘d” group of length two
Reverse direction of whole group

abc = ddba

((intrinsic ((letter String-Position rightmost))
((object Letter-Category d)
(object Object-Category group)
(object Length two)))

(intrinsic ((group String-Position whole))
((object Direction opposite))))

Swap lengths of leftmost group and rightmost group aabcce = aaabece

((extrinsic ((group String-Position leftmost)
(group String-Position rightmost))
(Length)))

Increase lengths of all objects in string by one

Swap letter-categories of all objects in string €qe = q9eeqq

((intrinsic ((string String-Position whole))
((components Length successor)
(components Object-Category group)))

(extrinsic ((string String-Position whole))
(Letter-Category)))

Figure 3.4: The complete internal structure of several rules from section 3.3.3.

96 Generalizing the Representation of Rules

One last point is worth mentioning. In general, if a string change involves one or
more letters that change their length, then the corresponding rule structure will in-
clude change-descriptions stipulating that Object-Category changes to group—since
increasing a letter’s length necessarily turns it into a group—in addition to the ap-
propriate Length change-descriptions. However, in order to avoid redundancy, the
English rendition of such a rule does not usually mention these “extra” change-
descriptions explicitly. The second and fifth rule examples in Figure 3.4 illustrate this
point (although the third rule, which is more literal than the others, does mention the
letter-to-group change explicitly). In any case, regardless of a rule’s outward English
appearance, all of the information that uniquely characterizes the rule is present in its
underlying conceptual structure, which is the only representational level that really

matters.

3.3.5 Measures of rule quality

In Copycat, the strength of a rule is a function of (1) the conceptual depths of
its descriptors, and (2) whether or not these descriptors play a role in the current
mapping between the initial string and target string (more specifically, between the
changed letter in the initial string and its corresponding object in the target string).
For example, to describe abc = abd, Copycat may build the rule Replace letter-
category of rightmost letter by successor or the rule Replace ‘¢’ by ‘d’. The former
rule involves the concepts rightmost and successor, which have greater conceptual
depth than the concepts c or d, so this rule is in general the stronger one—unless the
concept of ¢ (rather than rightmost) happens to apply to €’s corresponding object in
the target string. This would be the case in the problem “abc=- abd; rccx=- ?” if
the ¢ in abe were mapped to the middle cc group in xeex (based on the concept-
mapping ¢ = c), rather than to the rightmost letter (based on the concept-mapping

rightmost = rightmost).

3.3 Building Rules in Metacat 97

In Metacat, the calculation of rule strength is less straightforward, because the
internal structure of rules may be arbitrarily complicated. The quality of a rule in
Metacat depends not only on the conceptual depths of the rule’s constituent concepts,
but also on the internal “coherence” of these concepts. More precisely, the quality of

a rule is a function of three independent measures:

e The uniformity of a rule, which reflects to what extent different rule clauses

describe objects (or changes to those objects) in the same way.

e The abstractness of a rule, which reflects the depths of the concepts used to

describe objects (or changes to those objects).

e The succinctness of a rule, which reflects the number of rule clauses used to

describe objects (or changes to those objects).

All of these measures, to be discussed below, depend only on the internal structure
of a rule. In the current version of Metacat, the quality of a rule is not sensitive to the
perceptual context in which the rule is used (unlike in Copycat, as described above),
although ideally it should be. The situation in Metacat is complicated by the fact
that a single rule may specify any number of objects as changing in the initial string.
Some of these objects may be described in the same way as their corresponding target
string objects (as in the case of a leftmost object mapping to a leftmost object), while
others may be described differently (as in the case of a rightmost object mapping
to a ‘c’ object). All of these potentially conflicting considerations would need to be
taken into account in order to judge the quality of a rule with respect to a particular
perceptual context. In other words, the quality of a rule should be a function both of
the rule’s internal structure and of the string mappings that exist in the Workspace.
This problem should eventually be remedied. Nevertheless, the present method of
calculating rule quality suffices to allow rules to be qualitatively ranked, relative to

one another, in a plausible fashion.

98 Generalizing the Representation of Rules

Uniformity

As explained in section 3.3.4, rule clauses refer to objects in a string in terms of
attributes such as string position (e.g., the rightmost letter) or letter-category (e.g.,
the ‘c” letter). When several objects change in a string, there should be pressure to
refer to these objects in a uniform way, using the same object-attribute. Likewise,
there should be pressure to describe the changes in a uniform way—either all in terms
of abstract relationships (such as successor), or all in terms of literal descriptors (such

as d). The uniformity of a rule is thus a function of:

1. The uniformity of the intrinsic-clause object-description attributes. For exam-
ple, the string change abc = xxx could be described by each of the three rules

shown below:

(1) Change letter-category of leftmost letter to ‘x’
Change letter-category of middle letter to ‘x’
Change letter-category of rightmost letter to ‘x’

)

(2) Change letter-category of letter ‘a’ to ‘x
Change letter-category of letter ‘0" to ‘z’
Change letter-category of letter ‘c’ to ‘z’

(3) Change letter-category of alphabetic-first letter to ‘z’
Change letter-category of letter ‘b” to ‘z’
Change letter-category of rightmost letter to ‘x’

Rule (1) and Rule (2) are equally uniform, since both identify all of the changed
objects either in terms of their string positions or their letter-categories. In
contrast, Rule (3) describes the objects using a heterogeneous mixture of three

different object-attributes, so it is less uniform than the other two rules.

2. The uniformity of the extrinsic-clause object-description attributes. For exam-
ple, the string change abec = cba could be described by each of the three rules

shown below:

3.3 Building Rules in Metacat 99

(1) Swap positions of leftmost letter and rightmost letter
(2) Swap positions of letter ‘a’ and letter ‘c’
(3) Swap positions of letter ‘a’ and rightmost letter

As in the previous example, the first two rules are equally uniform, and both

are more uniform than the third rule.

3. The uniformity of the intrinsic-clause change-descriptors. For example, the
string change abc = bad could be described by each of the three rules shown

below:

(1) Change letter-category of leftmost letter to successor
Change letter-category of middle letter to predecessor
Change letter-category of rightmost letter to successor

(2) Change letter-category of leftmost letter to ‘b’
Change letter-category of middle letter to ‘a’
Change letter-category of rightmost letter to ‘d’

(3) Change letter-category of leftmost letter to successor
Change letter-category of middle letter to ‘a’
Change letter-category of rightmost letter to ‘d’

In Rule (1), all of the changes are described in terms of abstract successor or
predecessor relationships; in Rule (2) all changes are described literally. These
two rules are thus equally uniform (although they are not equally abstract).
However, both are more uniform than Rule (3), which describes the changes

using a mixture of abstract and concrete descriptors.

4. The uniformity of the clause types used to describe changes. For example, the
string change ege = geq could be described by each of the three rules shown

below:

100 Generalizing the Representation of Rules

(1) Change letter-category of leftmost letter to ‘q’
Change letter-category of middle letter to ‘e’
Change letter-category of rightmost letter to ‘q’

(2) Swap letter-categories of leftmost letter, middle letter, and rightmost letter

(3) Change letter-category of leftmost letter to ‘q’
Swap letter-categories of middle letter and rightmost letter

Rule (1) describes all of the changes intrinsically, while Rule (2) describes the
changes extrinsically. Both of these rules are more uniform than Rule (3), which

describes the changes using a mixture of intrinsic and extrinsic clauses.

Abstractness

The quality of a rule also depends on the average conceptual depth of its descrip-
tors. In general, abstract descriptions of string changes are preferred over literal

descriptions. The abstractness of a rule is thus a function of:

1. The average conceptual depth of object-description attributes. For example, both
of the rules shown below could describe the string change abc = xzxx, but the

first rule is more abstract than the second:

(1) Change letter-category of leftmost letter to ‘x’
Change letter-category of middle letter to ‘x’
Change letter-category of rightmost letter to ‘x’

K

(2) Change letter-category of letter ‘a’ to ‘c
Change letter-category of letter ‘b’ to ‘z’
Change letter-category of letter ‘c’ to ‘’

Likewise, both of the rules shown below could describe abc = cba, but the first
rule is more abstract than the second one, since the concept of String-Position

is of greater conceptual depth than the concept of Letter-Category:

3.3 Building Rules in Metacat 101

(1) Swap positions of leftmost letter and rightmost letter

(2) Swap positions of letter ‘a’ and letter ‘c’

2. The average conceptual depth of the intrinsic-clause change-descriptors. For
example, both of the rules shown below could describe abc = bad, but the first

one is more abstract than the second one:

(1) Change letter-category of leftmost letter to successor
Change letter-category of middle letter to predecessor
Change letter-category of rightmost letter to successor

(2) Change letter-category of leftmost letter to ‘b’
Change letter-category of middle letter to ‘a’
Change letter-category of rightmost letter to ‘d’

3. The average conceptual depth of the extrinsic-clause object-attributes. For ex-
ample, abe = cba could be described by both of the rules shown below (the

first rule is based on bridges a—a and ¢—c¢, while the second is based on bridges

a—c and c—a):
(1) Swap positions of leftmost letter and rightmost letter
(2) Swap letter-categories of leftmost letter and rightmost letter

Rule (1) is more abstract than Rule (2), since the String-Position concept has

a greater conceptual depth than the Letter-Category concept.?

30n the other hand, however, it could be argued that Rule (2) is actually the more abstract rule,
since Rule (1) is based on mapping a to a and ¢ to ¢, which is a very concrete and obvious thing to
do, whereas seeing abc = cba as a turning into ¢ and vice versa amounts to a subtler (and hence
more abstract) interpretation. This example shows that, in general, the mappings underlying rules
also need to be taken into account when judging rule quality, as was mentioned earlier on page 97.

102 Generalizing the Representation of Rules

Succinctness

There should be pressure to create shorter, more concise rules whenever possible.
Accordingly, the fewer clauses a rule has, the better. Also, the ability of rules to
describe changes in terms of the components of an object—without having to refer
to each component directly—powerfully assists in the creation of pithy rules. The

succinctness of a rule is thus a function of:

1. The total number of clauses in a rule. For example, both of the rules shown
below could describe abc = eba, but the first one is more succinct than the

second:

(1) Swap letter-categories of leftmost letter and rightmost letter

(2) Change letter-category of leftmost letter to ‘c’
Change letter-category of rightmost letter to ‘a’

2. The degree to which changes are described in terms of the components of objects.
For example, both of the rules shown below could describe abec = aabbcc, but

the first one is more succinct than the second:

(1) Increase lengths of all objects in string by one

(2) Increase length of leftmost letter by one
Increase length of middle letter by one
Increase length of rightmost letter by one

As another example, both of the rules shown below could describe ege = geq,
but the first is more succinct than the second, even though both rules consist

of just one extrinsic-clause:

3.3 Building Rules in Metacat 103

(1) Swap letter-categories of all objects in string

(2) Swap letter-categories of leftmost letter, middle letter, and rightmost letter

Finally, for completeness, two other special cases should be mentioned. The identity
rule Don’t change anything is maximally uniform, maximally abstract, and maximally
succinct. Verbatim rules, such as Change string to “abd”, are maximally uniform,

minimally abstract, and maximally succinct.

3.3.6 The rule-abstraction process in detail

Metacat’s structure-building processes—in keeping with the idea of the parallel ter-
raced scan—are broken up into sequences of smaller steps carried out by chains of
codelets. Thus the creation of a rule, like that of any other type of Workspace
structure, is accomplished in several stages. First, a Rule-scout codelet examines
the bridges built between the initial string and the modified string. Based on the
slippages underlying these bridges, the codelet tries to “abstract out” a high-level
description of how the initial string changes. If such a description can be found, it
is proposed as a new rule, although at this stage the accuracy of the rule cannot be
guaranteed. There is also some (small) chance that the codelet will simply ignore
the bridges and instead propose a verbatim rule, bypassing the abstraction process
entirely.

In any case, the newly proposed rule is subsequently evaluated by a Rule-evaluator
codelet, which determines (1) whether or not the rule actually works (that is, whether
applying the rule to the initial string really does produce the modified string), and (2)
whether the rule is of high enough quality to actually merit building. If the proposed
rule passes these tests, it then gets built by a Rule-builder codelet.*

4Unlike in Copycat, building a new rule in Metacat does not require that a previously existing
rule be destroyed. Instead, many different rules can coexist in Metacat’s Workspace, although only

104 Generalizing the Representation of Rules

Figure 3.5: A possible mapping for abc = cba

The first stage in this process—proposing a rule based on the slippages underlying
the horizontal bridges—is fairly intricate, because in general any given set of slippages
can be described in many different ways. Taken individually, every slippage represents
some type of intrinsic change to an object, but it may instead be possible to describe a
change extrinsically, in conjunction with other slippages. For example, the abc = cba
mapping shown in Figure 3.5 involves the slippages a=> ¢ (supporting the a—e¢ bridge)
and ¢ = a (supporting the ¢—a bridge). Each slippage by itself represents an intrinsic
letter-category change (either to the letter-category ¢ or to a) of a single letter, but
taken together they represent an extrinsic letter-category swap involving two letters.

These slippages could therefore give rise either to the rule
Swap letter-categories of leftmost letter and rightmost letter

consisting of a single extrinsic clause, or to the rule

Change letter-category of leftmost letter to ‘c’
Change letter-category of rightmost letter to ‘a’

consisting of two intrinsic clauses. In fact, several other variants of these rules are
possible, depending on whether the letters a and ¢ in abec are described in terms
of their string position (e.g., the rightmost letter) or their letter-category (e.g., the
letter ‘c”).

one of them will be associated with any given answer at a time.

3.3 Building Rules in Metacat 105

Figure 3.6: A possible mapping for eqe = qeq

As another example illustrating a wide range of possibilities, consider the mapping
ege = geq, in which bridges e—q, g—e, and e—q are supported by the letter-category
slippages e = q, = e, and e = q (see Figure 3.6). These slippages could be described
as three separate intrinsic letter-category changes to the leftmost, middle, and right-
most letters of ege; as a combination of intrinsic and extrinsic changes (such as
swapping the letter-categories of the leftmost and middle letters, and changing the
letter-category of the rightmost letter to q); or as a single letter-category swap involv-
ing all three letters. In the latter case, the swap could be described either as explicitly
involving the leftmost, middle, and rightmost letters of ege, or as involving all of the
components of ege. Furthermore, as in the previous example, the letters e, g, and
e could themselves be described in numerous ways (e.g., g could be described as the
letter ‘¢’ instead of the middle letter). All of these possible ways of constructing a
rule from the bridges shown in Figure 3.6 must be potentially discoverable by the
program; none should be excluded in principle. Thus, the rule abstraction process is

necessarily stochastic.

Another factor that complicates the creation of rules is the fact that some slip-
pages may be redundant or “misleading”, and should therefore be disregarded when
abstracting a rule. For example, Figure 3.7 shows a mapping for abc = abcd in
which the leftmost and rightmost letters of abe map, respectively, to the leftmost
and rightmost letters of abed, and the length-three successor group abec maps as a
whole to the length-four successor group abed. The latter bridge is supported by

the slippage three = four, which serves as the basis for constructing the rule Increase

106 Generalizing the Representation of Rules

Figure 3.7: A possible mapping for abc = abed

length of string by one. However, the e—d bridge is supported by the slippage ¢ = d,
which is, in a sense, already “implied” by the three = four length slippage. Including
the extra clause Change letter-category of rightmost letter to successor, based on an
intrinsic change arising from the slippage ¢ =- d, would result in an incorrect rule, so
this slippage should be ignored.

In general, Rule-scout codelets rely on a set of heuristics to help them avoid
incorporating redundant or spurious changes into a rule. These heuristics increase
the likelihood that a proposed rule correctly describes the differences between the
initial string and the modified string—although this is not guaranteed to be the case,
because the heuristics eventually break down if the horizontal mapping becomes too
complicated. However, even if an errant rule manages to slip by the heuristics in
the initial stage of rule creation, it will still be detected—and eliminated—by a Rule-
evaluator codelet at the next stage.

It is important to stress that the heuristics used by Rule-scout codelets are not
essential to the rule-creation process in principle. Rather than relying on heuristics
to eliminate redundant changes, a possible alternative approach might be to simply
eliminate some of the changes on a probabilistic basis. This approach would rely
completely on the subsequent evaluation stage to filter out spurious rules. Eventually,
if a rule were proposed with just the right combination of changes that enabled it
to correctly describe the transformation of the initial string into the modified string,

it would survive the evaluation stage and actually get built. However, this more

3.3 Building Rules in Metacat 107

“bottom-up” approach would significantly slow down the rule-creation process as
mappings between strings became more complex. More and more time would be
spent proposing (and then rejecting) rules that were doomed to failure from the start.
The space of potentially discoverable rules would nevertheless remain the same. Thus
the use of heuristics speeds up the rule-discovery process but does not represent a
fundamental increase in computational power beyond that provided by the parallel

terraced scan.

A step-by-step outline of the abstraction process

To abstract a rule from a set of bridges, a Rule-scout codelet first creates a hetero-
geneous mixture of intrinsic and extrinsic changes based on the bridges’ supporting
slippages. At the outset, all possible intrinsic changes specified by individual slippages
are included in the mix. Next, if extrinsic changes are possible, they get thrown into
the mix on a probabilistic basis. In addition, if “component” versions of intrinsic or
extrinsic changes are possible (i.e., changes that refer to all of the components of an
object), they also get thrown in probabilistically. Redundant changes are then filtered
out of the resulting mixture through the application of rule-abstraction heuristics act-
ing as a kind of “sieve”, leaving behind a final set of intrinsic and extrinsic changes.
These changes are then used to create the actual set of rule clauses making up the
new rule. A more detailed outline of this process is given below, along with examples

illustrating each step.

1. An initial set of intrinsic changes is created from the individual slippages under-
lying all of the horizontal bridges. For example, a total of seven intrinsic changes
would be created from the abc = ccbbaa mapping shown in Figure 3.8: one
describing the string abe as reversing direction (based on the right = left slip-

page underlying the top-level bridge); three describing the letters a, b, and ¢

108

Generalizing the Representation of Rules

—2

i b < — e el [o b]]a d

Figure 3.8: A possible mapping for abe = ccbbaa

as each changing from a letter to a group (based on the letter = group slip-
pages underlying the bridges a—aa, b—bb, and c—cc); and three describing the
letters as each changing in length from one to two (based on one = two slip-
pages underlying the bridges a—aa, b—bb, and c¢—cc). The bridges a—aa and
c—cc are also supported by the string-position slippages leftmost = rightmost
and rightmost = leftmost, but since changes to an object’s position cannot be

described intrinsically, these slippages do not contribute anything at this stage.

A few randomly-chosen subsets of bridges are examined in order to see whether
any symmetries exist among the underlying slippages. If a symmetry is de-
tected, an extrinsic change describing this symmetry is added to the current
set, of changes with some probability. For example, if the bridges a—aa and
c—cc in Figure 3.8 happen to be examined together, the symmetric slippages
leftmost = rightmost and rightmost = leftmost will be noticed. Based on these
slippages, an extrinsic change describing a string-position swap between the
letters @ and ¢ in abec may get created. On the other hand, if a different set
of bridges were examined (such as a—aa and b—bb), no such swap would be

detected.

An extrinsic change that happens to involve all of the components of some

higher-level object can be described either concretely in terms of the individual

3.3

Building Rules in Metacat 109

components themselves, or more abstractly in terms of the higher-level object.
Whenever such an extrinsic change is created, the level of abstraction used to
describe the relevant objects is chosen probabilistically. For example, in Fig-
ure 3.6, an extrinsic letter-category swap involving the letters e, q, and e of eqe
might get created on the basis of symmetric e = q and q=> e slippages shared
between all three bridges. The three letters of ege could either be described in-
dividually (perhaps resulting in the rule Swap letter-categories of leftmost letter,
middle letter, and rightmost letter), or collectively, as the components of the

string ege (resulting in the rule Swap letter-categories of all objects in string).

. It is also possible for intrinsic changes to collectively refer to the components

of objects. Sets of bridges that are “anchored” to all of an object’s components
are examined to see whether they have any slippage patterns in common. If a
common pattern is found, an intrinsic change describing this pattern is added
to the current set of changes with some probability. For example, in Figure 3.8,
the bridges a—aa, b—bb, and c—cc, which span the components of the string
abc, all share the slippages letter = group and one = two. Accordingly, two
intrinsic changes may get created: one describing all of the components of
abc as changing from letters to groups, and another describing all of abc’s

components as changing in length from one to two.

Once the mixture of intrinsic and extrinsic changes is complete, rule-abstraction
heuristics (described more fully below) are applied to filter out the redundant
changes. One example of this type of redundancy has already been discussed for
the abc = abcd mapping of Figure 3.7. As another example, suppose that for
the abc = ccbbaa mapping shown in Figure 3.8, an intrinsic change had been
created specifying that all of abe’s components change to groups (as in step 4

above). This would effectively render “obsolete” the original three intrinsic

110

Generalizing the Representation of Rules

changes (created in step 1 above) that individually describe the letters a, b,
and c¢ as changing to groups. Consequently, these changes would be suppressed

by the heuristics.

The last step in the rule-abstraction process creates the actual rule clauses that
appear in the proposed rule, based on the final remaining set of intrinsic and
extrinsic changes. Descriptions of changed objects, and the level of abstraction
used in describing the changes themselves, are chosen probabilistically as a
function of the particular concepts involved. For example, suppose that for
the abec = ccbbaa mapping of Figure 3.8, an extrinsic change is created that
describes a and ¢ in abc as swapping positions. The proposed rule might refer
to these letters in terms of their string positions (Swap positions of leftmost
letter and rightmost letter), or their letter-categories (Swap positions of letter
‘@’ and letter ‘c’), or even both (Swap positions of leftmost letter and letter
‘¢’). Similarly, if an intrinsic change is created that describes all of abc’s
components as changing in length from one to two, the proposed rule might
describe this either abstractly (Increase lengths of all objects in string by one)
or literally (Change all objects in string to groups of length two). In both cases,
the choices are biased by the conceptual depths of the relevant concepts (i.e.,
String-Position versus Letter-Category in the first case; successor versus two in

the second).

Rule-abstraction heuristics

The remainder of this section summarizes the rule-abstraction heuristics used by

Metacat to create new rules. Since horizontal mappings can become arbitrarily com-

plicated, depending on the particular strings involved, the use of these heuristics does

not always result in legitimate rules being proposed, although it does greatly improve

the odds in their favor.

3.3 Building Rules in Metacat 111

L]
q:..._/

i i
a a =

Figure 3.9: A possible mapping for aa=- bb

e If the components of an object are collectively described as all changing in
some way, then these changes do not need to be described on an individual
basis, and are therefore suppressed. An example of this was given earlier for the
abc = ccbbaa mapping shown in Figure 3.8. Describing the components of abe
as all changing to groups and all changing in length from one to two suppresses
the individual letter = group and one = two changes associated with each of

the letters a, b, and c.

e If a group is described as changing its letter-category, then changes to the letter-
categories of its constituent objects do not need to be individually described,
and are therefore suppressed. For example, all three bridges shown in Figure 3.9
for the mapping aa = bb are supported by an a=-b letter-category slippage,
and thus give rise to three separate letter-category changes: one to the aa
group itself, and one to each of its letters. However, the latter two changes
are redundant, since changing the letter-category of the group automatically

implies changing the letter-category of each of its letters.

e If an object is described as changing its alphabetic-position (i.e., from first to
last, or vice versa), there is no need to describe its letter-category as changing,
since this is implied by the alphabetic-position change. For example, if the aa

group in the aa = zz mapping shown in Figure 3.10 is described as changing its

112

Generalizing the Representation of Rules

i i
a a =

IS
IS

Figure 3.10: A possible mapping for aa=- zz

alphabetic-position from first to last, the group’s letter-category change (based
on the a= z letter-category slippage underlying the top-level bridge) will be sup-
pressed, as will the individual letter-category and alphabetic-position changes

associated with the group’s constituent letters.

If a group is described as changing in length, then individual changes to the
letter-categories of its constituent objects may in fact be spurious “side-effects”
of the length change, and are therefore suppressed. An example of this was
given earlier for the abc = abcd mapping shown in Figure 3.7. This mapping
gives rise to two intrinsic changes: a three = four length change to the group
abc, and a c=d letter-category change to the letter ¢. The latter change,

however, is suppressed, since it is really a consequence of the former change.

If a group is described as changing to a letter, there is no need to describe
the group’s length as changing to one, since this is automatically implied by
the group-to-letter change. The length change is therefore suppressed. For
example, an aa = a bridge would give rise to two intrinsic changes to the aa
sameness group: an object-type change based on the slippage group = letter,
and a length change based on the slippage two = one. Only the first change,
however, would be included in the final set of changes used to create the new

rule.

3.4 Nondeterministic Rule Translation 113

e If several intrinsic changes happen to describe a set of objects in a way that is
equivalent to some extrinsic change, then the intrinsic changes are suppressed.
For example, in the ege = geq mapping shown in Figure 3.6, an intrinsic letter-
category change is created for each of the letters e, q, and e of eqe. However,
an extrinsic change describing a three-way letter-category swap among these
letters may also get created—in which case the intrinsic changes are redundant,

and are therefore suppressed.

3.4 Nondeterministic Rule Translation

Once a new rule has been built, it is available for Answer-finder codelets to use in
trying to create new answers. These codelets probabilistically decide whether or not
to attempt answer creation on the basis of the overall strengths of the horizontal and
vertical mappings between strings® (as long as these mappings are weak, codelets are
unlikely to try).

At any given time in Metacat’s Workspace, there may be several different rules
available for codelets to choose from (unlike in Copycat, where only one rule at a
time can exist). Codelets choose rules probabilistically as a function of rule quality
and the degree of support each rule currently has in the Workspace. A rule’s degree
of support depends on the strengths (and continued existence) of the original bridges
used in creating the rule. In general, since the horizontal mapping between the initial
and modified strings may change over time, bridges that played a critical role in the
creation of a particular rule may no longer exist at the time the rule is chosen by an
Answer-builder codelet—or if they do still exist, they may be very weak. Additionally,
new bridges or groups may have been built that cause the chosen rule to no longer

work correctly when applied to the initial string. In any case, if the situation has

5The strength of a mapping between two strings is a function of the average mapping-specific
happiness values of the objects in the strings. These values were discussed earlier in section 3.3.1.

114 Generalizing the Representation of Rules

changed to the extent that the chosen rule either is no longer supported by strong
bridges or no longer works, the codelet abandons the rule and fizzles. Otherwise, the
codelet translates the rule from the “top” situation represented by the initial string
into the analogous “bottom” situation represented by the target string, using the
slippages underlying the vertical mapping between the initial string and target string
as a guide. The translated rule is then applied to the target string, as in Copycat,

yielding either a new answer or a “snag” condition.

The rule-translation process in Metacat is more complicated than in Copycat,
due to the greater structural complexity of Metacat’s rules, but the basic principles
are the same. The slippages supporting the vertical bridges are applied to the con-
cepts making up the rule, causing some of them to “slip” to new concepts. However,
in Metacat this process is nondeterministic, whereas in Copycat it is deterministic.
(Copycat’s decision whether or not to translate a rule is made probabilistically, but
the translation process itself is deterministic.) This allows a greater degree of “slop-
piness” on the part of the program when coming up with answers, as illustrated in

the following examples.

One way of interpreting the problem “abc=- aabbcc; 1153kk=- ?” is to regard all

of the letters of abc as increasing their lengths by one. If the sameness groups 2,

strings are both seen as going to the right). Perhaps the kk, jj, and 2 groups should
instead decrease their lengths by one, in accordance with the successor—predecessor
symmetry, yielding the answer kji. Figures 3.11 and 3.12 show configurations of
Metacat’s Workspace that represent these two situations. Both configurations in-

volve exactly the same string mappings, but exhibit different answers due to the

3.4 Nondeterministic Rule Translation 115

Workspace

(Cogialats wun. TT76)

e
¢ b el [l b

| Inerease lengthe of oll objects in wholz group by one ||

TP =IO,
?}i;kﬁ;» L
three=rthres
seco==pred

LetiCegy=>Letiliey

7 piin[e

most==Imost Smost=rrmost imiddle=rmiddle | Decregze lengthe of el objects in whole group by one |
leRer==group leler=>group leler=>group

Figure 3.11: Applying the successor = predecessor slippage when translating the rule
yields the answer kjt.

116 Generalizing the Representation of Rules

Workspace

(Codalets i 156.3)

TN = |[a a6 8] [c ¢

| Trcrecse kengths of ofl objects in whols group by one ”

TP = ;
g,}-’!;aé Zehe s
three=xthree
succ==pred
LekCiey=>LatilCicy
olal e hoie

7 ¥ g
— K2 J2 . 3 —1I3
Kok i) [j jﬂ ; iﬂ
i et plie. [Crereree e gty monei govp e |

Figure 3.12: Ignoring the successor = predecessor slippage when translating the rule

probabilistic nature of rule translation. In the first case, the successor = predecessor
slippage supporting the top-level vertical bridge was applied to the rule, resulting in
the translated rule Decrease lengths of all objects in string by one (i.e., change the
lengths of objects to their predecessor instead of successor), while in the second case

this slippage was not applied.

As another example, Figures 3.13 and 3.14 show two essentially identical Work-
space configurations for the problem “abc=- cba; mrrjjy=- ?”, in which mrryjjj is

seen as a 1-2-3 successor group corresponding to abc, and the letters a and ¢ of abc

3.4 Nondeterministic Rule Translation 117

Workspace

(Cogialats . 3546)

5 ™
b a

J

Sweop letter—cozegovies of lefemost
letter and vighttmost letter

=
S"“;‘g S"K;‘P

>

three=rthree
SUOC=FSUOD

C;

2.
0

3
M1 Rz L J1
m| (r r\|\j 5 7 m m m|r r H
_— _ e ;
[mpet=zlmost. zimﬁig”;:.’; 3}255;5521;2’3‘“‘* || Swap lengths of lefomast group endrightmost group ||

Figure 3.13: Applying the Letter-Category = Length slippage when translating the
rule yields the answer mmmrry.

118 Generalizing the Representation of Rules

Workspace

{Codalars min. 5TEE)

Swep letter—cozegories of lefrmost
letrer and righarmost letter

=2
gr%g?g£>ngk?p

three=xthres

ole=>whole
=FSUCCEY

7 3
M R: J e
m| \r rl|\j Jj j = M F r'm m m

’ - - P _ . :

E?Jg—‘::;g?::;’ zimg;:g‘:c’; 3}@;;&3‘5} ;:&m;gﬂe || Swep etrer—coregories of efonost group and rightmost grouwp ”

Figure 3.14: Ignoring the Letter-Category=- Length slippage when translating the
rule yields the answer jrrmmm.

3.4 Nondeterministic Rule Translation 119

are interpreted as swapping their letter-categories (as opposed to their string posi-
tions). In the first case, the Letter-Category = Length slippage is taken into account
when translating the rule, resulting in the lengths of group m and group jj7 being
swapped. In the second case, this slippage is ignored, resulting in the letter-categories

of m and jy7 being swapped.

3.4.1 Coattalil slippages

There is another way in which Metacat’s rule translation process is nondeterministic,
apart from probabilistically ignoring certain vertical bridge slippages. This has to do
with slippages that get pulled along on the “coattails” of other, related slippages. In
Copycat, no such coattail-slippage mechanism exists, although Mitchell notes that it
would be a desirable extension of the program [Mitchell, 1993, page 192]. A simple
example that illustrates this idea is the problem “a=-b; z= ?”. A natural answer is
y, based on the notion that since a changes to its successor and z is, in an alphabetic
sense, the opposite of a, one should do the “opposite thing” to z and change it to
its predecessor. This answer makes all the more sense given the fact that taking the
successor of z is impossible. Unfortunately, Copycat cannot get this answer, because
using the slippage successor = predecessor in translating the rule can only be done
if that slippage supports some vertical bridge. In this problem, the only potential
slippage between a and z is first = last; the concepts successor and predecessor
never come up, so there is no way for the translated rule to specify changing z to its
predecessor instead of its successor.

In Metacat, however, applying a first = last slippage to the successor concept in
some rule may occasionally cause the concept to slip to predecessor, even though
the slippage explicitly specifies slipping only first to last. The reason for this is that
the successor concept is linked to predecessor in the Slipnet via a link labled by the

concept opposite, which also characterizes the first = last slippage. If opposite is

120 Generalizing the Representation of Rules

Workspace

(Codalets i 394)

Change letter—cazegory of elphabetio—firse
letter to successor

s 8y

z § y
\frst=xlast Chomge letter —cotegory of alphabetic —loer
ﬁﬁfﬁ:ﬂﬁ? letter to predecessor

Figure 3.15: An example of rule translation in which a first=-last slippage causes
both the concept first and the concept successor to slip to their opposite concepts.

strongly activated, the distance between successor and predecessor shrinks, making a
successor = predecessor slippage more likely in the presence of any type of opposite
slippage. Thus, it is indeed possible for Metacat to get the answer y to the above
problem (see Figure 3.15). In general, a slippage labeled by a highly activated concept
(such as opposite) may cause slippages of a similar type to occur between other
concepts that are not explicitly present in the original slippage (but that are related
in the same way). The probability of such coattail slippages occurring is a function

of the activation of the original slippage’s label node.

3.4 Nondeterministic Rule Translation

121

Workspace

(Cogalels run 2445)

==

g { b4 =

imiddle=rmiddle
letter=>letter

Yonest=rImost
letter=xletter

red=>Tast
most==rmost
letter==lelter

Y

a

|| Chamge letter —cozegory of righamest leter to successor ||

I { V4

|| Change letter—coregory of lafomost letter to predecessor |

Figure 3.16: Another example illustrating the “coattail slippage” effect.

As another example, consider the problem “abc=- abd; glz= ?”, discussed by

Mitchell.

Even if Copycat notices the alphabetic a—z symmetry in this problem

and consequently maps the rightmost letter ¢ of abc to the leftmost letter g of

glz, it cannot answer flz, since there is no possibility of seeing glz as a left-going

predecessor group, which would give rise to a successor = predecessor slippage. The

best it can do is to answer hlz. Metacat, on the other hand, can sometimes make the

successor = predecessor slippage on the coattails of the first = last slippage, yielding

the answer flz (see Figure 3.16).

122 Generalizing the Representation of Rules

3.5 Other Refinements to Copycat

Before closing this chapter, it is worth mentioning one other refinement that has
been made to the bridge-building mechanisms inherited from Copycat. In Metacat,
as in Copycat, the strength of a bridge depends on both the internal coherence of the
bridge and the mutual support it receives from other existing bridges® (see [Thagard,
1989] for a discussion of similar ideas that arise in the context of scientific theoriz-
ing). The internal coherence and mutual support of bridges reflect the degree to
which the underlying concept-mappings support each other. Two concept-mappings
support each other if they involve the same relationship (such as opposite) and if
their corresponding descriptors are linked in the Slipnet.

For example, the concept-mappings first = last and leftmost = rightmost support
each other, since both concept-mappings are labeled by the opposite relation, and the
corresponding descriptor-pairs first and leftmost (as well as last and rightmost) are
linked in the Slipnet. A bridge based on these two concept-mappings would therefore

be internally coherent, such as an a—z bridge in the problem shown below:

abc = abd

Tyz = ¢

Likewise, a symmetric ¢—« bridge based on rightmost=-leftmost would rein-
force the a—z bridge, since rightmost=-leftmost supports (and is supported by)
the concept-mappings leftmost = rightmost and first = last.

On the other hand, Copycat considers the concept-mapping first = first to be
incompatible with leftmost = rightmost, which causes problems in certain situations.

For example, consider the problem shown below:

6This is true for both horizontal and vertical bridges in Metacat, but only for vertical bridges in
Copycat. See [Mitchell, 1993, Chapter 3] for a more complete description of bridge strength.

3.5 Other Refinements to Copycat 123

abc = abd

cba = ?

If the a letters get described as alphabetic-first letters, then a diagonal a—a bridge
based on the concept-mappings first = first and leftmost=- rightmost is considered
to be internally incoherent, and is therefore very difficult to build. Furthermore, such
a bridge cannot coexist with a diagonal ¢—c bridge, since the latter bridge would be
based on rightmost = leftmost, which conflicts with the first = first concept-mapping
underlying a—a.

In order to remedy this problem in Metacat, the notion of incompatibility be-
tween concept-mappings has been refined. Metacat’s Slipnet includes labels on four
links that were previously unlabeled in Copycat (see Figure 3.17). These links, la-
beled by either identity or opposite, allow Metacat to make finer distinctions between
concept-mappings. (This approach, of course, is not completely satisfactory, since the
concepts leftmost and rightmost are clearly neither identical to—mnor exactly the oppo-
site of—the concepts left and right, but it nevertheless serves as a reasonable interim
solution to the problem.) In order to be incompatible, two concept-mappings must
not only be based on different relationships, but the way in which their correspond-
ing descriptor-pairs are linked must also differ. For example, the concept-mappings
leftmost = rightmost and right = right are incompatible, since (1) they are based on
different relationships (i.e., opposite versus identity) and (2) the concepts leftmost
and right are linked in a different way than the concepts rightmost and right (i.e., the
former pair is linked by opposite, while the latter pair is linked by identity). These
concept-mappings are also incompatible in Copycat, but for reason (1) only.

In contrast, leftmost=>rightmost and first = first are not incompatible in Meta-
cat, even though one is based on opposite and the other on identity, since leftmost and

first are linked in the same way as rightmost and first (i.e., both links are unlabeled).

124 Generalizing the Representation of Rules

Figure 3.17: A portion of Metacat’s Slipnet showing the links between the concepts
leftmost, rightmost, left, and right. New link labels are shown in grey (compare with
Figure 1.1 on page 19). Aside from these four new labels, Metacat’s Slipnet is exactly
the same as Copycat’s Slipnet.

For the same reason, first = last does not conflict with either leftmost = leftmost or
rightmost = rightmost, unlike in Copycat. Figure 3.18 shows a situation in which
these latter concept-mappings simultaneously support a set of vertical bridges with-
out conflicting.

Although the above concept-mappings are not incompatible with each other in
Metacat, neither are they mutually supporting. For two concept-mappings to sup-
port each other, they must be based on the same relationship, and their correspond-
ing descriptor-pairs must be linked in the same way. For example, first = last and
leftmost = rightmost are mutually supporting (as they are in Copycat), since both
are based on the opposite relation, and the concepts first and leftmost are linked
in the same way as last and rightmost (i.e., both links are unlabeled). Likewise,
leftmost = rightmost and right = left support each other, since the link between
leftmost and right is labeled in the same way as the link between rightmost and

left in Metacat’s Slipnet (i.e., they are both opposite links).

3.5 Other Refinements to Copycat 125

(o]
Workspace
(Cogialats wun 2716)
Z X 4
Chomge clphabetic—position of keftmost letter to apposite
Chamge alphabetic—position of rightmost letter o opposite
a X a
! m;fi‘}ﬂ - zﬁm:;im " ‘middle=>middle Chomge alphabetic—pozition of kftmost letter to appozite
I:;:e:n_:}l'?!;er }mer;bz'z::er }C:;:r:>leﬂer Change elphobetic—position of rightmost letter to opposite
Figure 3.18: A possible configuration of Metacat’s Workspace for the prob-

lem “axa= zxz;, zxz=?", in which the wertical bridges are supported

by the mnon-conflicting concept-mappings first=-last, leftmost=-leftmost,

and
rightmost = rightmost.

CHAPTER FOUR

An Architecture for Self-Watching

This chapter discusses in detail Metacat’s new architectural components for self-
watching, which together provide a common unifying framework in which to address
the various objectives of the Metacat project outlined earlier in Chapter 2. These
objectives—making the program sensitive to patterns in its own processing, giving
the program the ability to remember its answers and to be reminded of answers it
has previously encountered, getting the program to compare and contrast different
answers, and giving the program the ability to work backwards from a given answer to
a coherent justification of that answer—focus on extending the capabilities of Copycat
in different ways, but all share the central, overarching goal of imbuing the program
with a deeper sense of “awareness” of what it is doing (and why) as it deals with

analogy problems in its microworld.

The first section describes themes and the Themespace in detail, and discusses the
critical role played by themes in regulating top-down pressures in Metacat. The next
section introduces the general notion of a pattern, another central idea of Metacat.
This is followed by a discussion of how themes (and patterns of themes) enable the
program to work backwards from an answer provided by the user, in an effort to

discover why the answer makes sense. The next two sections discuss the Temporal

126

4.1 Themes and the Themespace 127

Trace—the focal point of Metacat’s “self-awareness”—and the way in which the pro-
gram uses the information stored there to control its own behavior. Finally, the last
section describes Metacat’s long-term Episodic Memory—where abstract characteri-
zations of answers are stored—and the way in which these answers can be compared
and contrasted by the program on the basis of their abstract similarities and differ-
ences. Detailed sample runs of the program illustrating all of these capabilities will

be presented in the following chapter.

4.1 Themes and the Themespace

As was explained in the overview of the Metacat architecture given in section 2.4 of
Chapter 2, themes are structures that represent key ideas underlying an answer to an
analogy problem. More specifically, they represent regularities among the bridges that
make up the mappings between strings. For example, in the problem “abc=- abd;
ygk= ?7, if the strings abc and gk are mapped onto each other by the vertical
bridges a—%, b—3, and ¢k, these bridges will be supported by the concept-mappings
leftmost = leftmost, middle = middle, and rightmost=-rightmost (among others).
These three concept-mappings are all based on the idea of string-position identity, and
thus can be represented by a single vertical theme composed of the Slipnet concepts
String-Position and identity. This particular theme would be associated with any
answer that depended on seeing abc and 3k as going in the same direction—such
as ¢l or ¢yd. Likewise, if an answer depended on seeing abc and abd as going in
the same direction, represented by the horizontal bridges a—a, b—b, and ¢—d (that
is, if the answer’s rule depended on this), then a horizontal' String-Position: identity

theme would also be associated with the answer—again, as in the case of #jl or #3d.

! More precisely, a top theme, since horizontal bridges between the initial string and the modified
string are being described.

128 An Architecture for Self-Watching

As another example, the answer kkjjiz to the problem “abc=- ccbbaa; igk= ?”
depends on seeing abc and ¢k as going in the same direction—based, as before, on the
vertical bridges a—t, b—3, and ¢—k—and on seeing abc and ccbbaa as going in op-
posite directions, based on the horizontal bridges a—aa and e¢—ce (supported by the
slippages leftmost = rightmost and rightmost = leftmost). Consequently, the verti-
cal theme String-Position: identity and the horizontal theme String-Position: opposite
would be associated with this answer. In addition, the one = two slippages support-
ing the horizontal bridges a—aa, b—bb, and c—cec would give rise to the horizontal
theme Length: successor. Other themes are also possible. In the case of “abc=- abd;
yk= ?7, letter = letter concept-mappings underlie both the vertical and the hor-
izontal bridges, so vertical and horizontal Object-Type: identity themes would also
be associated with the answers gyl or #9d. In the case of “abc=- ccbbaa; yk= ?”,
letter = letter concept-mappings underlie the vertical bridges, while letter = group
slippages underlie the horizontal bridges, so a vertical Object-Type: identity theme
and a horizontal Object-Type: different theme would be associated with the answer

kkijijii.

In general, vertical themes describe vertical bridges between the initial string and
the target string, top themes describe horizontal bridges between the initial string
and the modified string, and bottom themes describe horizontal bridges between the
target string and the answer string (which get built when Metacat runs in “justify
mode”, working backwards from a given answer to an interpretation of the answer).
As will become clearer later, differentiating between vertical, top, and bottom themes
enables Metacat to selectively focus top-down pressure on specific types of Workspace
structures (for example, on bridges between the initial string and the modified string).
In contrast, top-down forces in Copycat are often too diffuse, too lacking in specificity
to enable the program to build the types of structures it most needs to build at a

particular moment, as Mitchell has pointed out [Mitchell, 1993, Chapter 7].

4.1 Themes and the Themespace 129

For example, if the Slipnet concept successor-group becomes highly activated, it
will exert top-down pressure to build successor groups wherever possible, with no
preference given to any particular string, even if such groups are really only needed in
one string. Codelets may thus waste considerable time and effort looking for successor
groups in all the wrong places, making it less likely that they will be built where they
are really needed. Likewise, if the opposite concept is active, it will promote the
creation of bridges anywhere that are based on slippages labeled by the opposite
concept. (Of course, in Copycat only bridges between the initial string and the target
string can be built in general, so the distinction between different mappings does
not arise.) In any case, themes in Metacat are associated with particular mappings
between strings, which makes them more effective than individual Slipnet concepts

in channeling top-down pressure in specific directions.

Regardless of its type, every theme consists of a category, which can be any Slipnet
category node, such as String-Position, Letter-Category, or Object-Type?, and a
relation, which can be any Slipnet relation node (i.e., any node that can be used to
label links between concepts in the Slipnet), such as opposite, successor, or identity,
or else the absence of a specific concept, which represents the idea of different. The
particular combination of theme-type, category, and relation uniquely identifies every

theme. All in all, a total of 66 distinct themes are possible.

Whenever a new bridge is built between two Workspace structures, themes based
on the concept-mappings underlying the bridge get created and added to the Theme-
space, if they are not already present. For example, if a vertical bridge is built
between the letters @ and z in the problem “abc= abd; ryz=- ?”, based on the

concept-mappings leftmost = rightmost, letter = letter, and first = last, then the

2The theme categories Object-Type and Group-Type are alternative names for the concepts
Object-Category and Group-Category.

130 An Architecture for Self-Watching

vertical themes String-Position: opposite, Object-Type: identity, and Alphabetic-Pos-
ition: opposite get created and added to the Themespace. These themes remain as-
sociated with the bridge for as long as the bridge exists. If a theme happens to
already exist when a bridge based on the theme is built, then the existing theme is
associated with the new bridge, and a new theme is not created. If a vertical b—y
bridge, for instance, had already been built prior to the a—z bridge, the Object-
Type: identity theme would already exist in the Themespace (on account of the
letter = letter concept-mapping underlying the b—y bridge). A duplicate Object-
Type: identity theme would not be added to the Themespace; rather, the existing

theme would simply be associated with the new a—z bridge.

As was mentioned in Chapter 2, each theme in the Themespace has an activation
level ranging between —100 and +100. (There is no effective difference between a
theme having an activation level of zero and the theme not existing in the Theme-
space.) Themes receive periodic infusions of activation from the Workspace struc-
tures (i.e., the bridges) associated with them, as a function of structure strength,
with stronger structures sending more powerful jolts of activation to their associ-
ated themes. For instance, in the above example, the Object-Type: identity theme
would receive activation periodically from both the a—z bridge and the b—y bridge,
while the String-Position: opposite theme would receive activation from only the a—=z
bridge. In the absence of further infusions of activation from the Workspace, theme
activations gradually decay over time, although the rate of decay does not depend
on the particular concepts that make up a theme (unlike concept activations in the

Slipnet, where the rate of decay depends on conceptual depth).

Generally speaking, the activation level of a theme is intended to represent how
explicitly “aware” Metacat is of a particular idea in its current interpretation of
an analogy problem. At any given time, many ideas are implicitly present in the

Workspace structures making up the mappings between strings, but highly activated

4.1 Themes and the Themespace 131

themes represent the explicit recognition, on the part of the program, of the im-
portance of certain ideas. Put another way, the activation of a theme reflects the
amount of “evidence” that exists in favor of regarding that particular idea as playing
an important role in characterizing the situation at hand. Ideas represented by highly
activated themes are likely to be of central importance, while ideas represented by

weakly-activated themes are likely to be irrelevant.

4.1.1 Organization of the Themespace

Not all themes are compatible with each other. In general, two themes of the same
type having the same category but different relations are incompatible, since each
one reflects a different kind of relationship among a set of objects (with respect
to some particular aspect of the objects). For example, the top themes Letter-
Category: identity and Letter-Category: successor represent the mutually contradic-
tory ideas of (1) seeing objects in the initial string and modified string as correspond-
ing to one another on the basis of identical letter-categories, and (2) seeing objects
in the strings as corresponding on the basis of letter-category successorship. In the
problem “abc=- abed; k= ?”, for instance, a natural way of viewing abc = abcd
is to regard the letters a, b, and ¢ in abc as corresponding to the letters a, b, and
¢ in abed (with d being the “odd letter out”). This idea, represented by a Letter-
Category: identity theme, suggests interpreting abc as a successor group beginning

with the letter @ whose length increases by one.

However, an alternative (if somewhat unnatural) possibility is to regard a, b, and
¢ as corresponding to b, ¢, and d in abed on the basis of successorship (where a is
now the odd letter). This idea, represented by a Letter-Category: successor theme,
suggests interpreting abc as a predecessor group beginning with the letter ¢ whose

length increases by one, and whose starting letter also “increases by one” from ¢

132 An Architecture for Self-Watching

to d. Like the conflicting interpretations of a Necker cube, these two interpreta-
tions of the abc = abcd change are mutually exclusive. Having both of the themes
Letter-Category: identity and Letter-Category: successor highly active at the same
time therefore makes little sense.

In order to discourage the emergence of inconsistent interpretations of string map-
pings, incompatible themes in the Themespace exert inhibitory effects on each other,
in proportion to their levels of activation. More precisely, the Themespace is orga-
nized into mutually-inhibitory clusters of themes all sharing the same theme-type and

category. For instance, the top themes shown below make up one cluster:

Letter-Category: identity
Letter-Category: successor
Letter-Category: predecessor

Letter-Category: different

If more than one theme within a cluster is positively activated, the themes in
the cluster will compete among themselves for dominance, in a manner reminiscent
of a “winner-take-all” network. (Themes in different clusters have no effect on each
other.) A theme is dominant if its activation level exceeds that of all other themes in
its cluster by a substantial margin (currently set to 90). The more infusions of acti-
vation a theme receives from Workspace structures that support it, the more likely it
will be to eventually suppress its weaker intra-cluster competitors and become dom-
inant, driving the other theme activations toward zero. The idea is that as more
Workspace structures involving a particular theme are built (and the longer these
structures persist), the more evidence there is that the theme is an important orga-
nizing motif underlying the interpretation emerging in the Workspace. Themes that
accumulate enough evidence of their importance eventually gain the upper hand over
other themes in their cluster, in a kind of “locking-in” process that occurs simultane-

ously for each cluster of themes in the Themespace. The result (it is hoped) is that a

4.1 Themes and the Themespace 133

single, consistent way of viewing an analogy problem gradually emerges from a num-
ber of mutually inconsistent alternatives vying for supremacy. Furthermore, the most
important ideas underlying the resulting interpretation are, in the end, represented

explicitly by a set of highly-activated, dominant themes in the Themespace.

To illustrate these ideas, Figure 4.1 shows a snapshot of Metacat’s Themespace
during a run of the problem “abc=- abd; kkjjii=- ?”, in which a total of eight themes
have been created and added to the Themespace. The activations of top themes are
shown in the window above the Workspace, while those of vertical themes are shown
to the left. Each Themespace “panel” represents a particular cluster of themes, and is
labeled by the cluster’s theme category. For instance, the letter-category top themes
Letter-Category: identity and Letter-Category: successor are shown in the leftmost
panel of the Top Themes window, with the identity theme more strongly activated
than the successor theme. This is because more top bridges have been built between
objects of identical letter-categories (i.e., the bridges a—a and b—b) than between
objects related by letter-category successorship (i.e., the bridge e—d), and thus the
former theme has received more boosts of activation than the latter. However, neither

theme is dominant in its cluster.

In contrast, the top themes String-Position: identity and Object-Type: identity are
dominant (as indicated by the highlighted panels), since each is much more strongly
activated than any competing theme within its cluster (in fact, no competing themes
exist in either cluster). This is because all three top bridges are between objects of
the same type (i.e., letters), all of which share identical positions in their respective
strings. Consequently, all three bridges contribute activation to the same Object-Type

and String-Position themes.

In the case of the vertical mapping between abc and kkjjiz, the vertical themes
Letter-Category: different and String-Position: identity are dominant, reflecting the

fact that all of the vertical bridges map objects of different letter-categories and

134

An Architecture for Self-Watching

[®] Vertical Themes

ar @

Lewter Ogy.

ien)

String Pos.

iden .

ag B

O&fect Type

Figure 4.1:

[¢] Top Themes

iden swec iden iden
@ e @
Letter Category String Position Object Type
Workspace

(Codetats s 344)

H""""\/\,\,\‘a
NW(‘!

Ttmost=>Emost

Smost=rrmost
lelter=rlelter

leler=>group

The state of Metacat’s Themespace during a run of the problem
“abc = abd; kkjjii= ?7, showing the activations of various themes.

Top themes,

characterizing the horizontal mapping, are shown in the window above the Workspace,
while vertical themes are shown to the left. Dominant themes are highlighted.

4.1 Themes and the Themespace 135

identical string positions onto each other. The Object-Type cluster, however, contains
competing identity and different themes, reflecting the mixture of letter = letter and
letter = group concept-mappings underlying the vertical bridges. Consequently, no

dominant vertical Object-Type theme exists.

Figure 4.2 shows the same run after Metacat has found the answer kkjphh. The
final set of dominant themes consists of the two top themes String-Position: identity
and Object-Type: identity, and the four vertical themes Letter-Category: different,
String-Position: identity, Group-Type: opposite, and Direction: identity. The latter
two themes reflect the fact that Metacat has perceived abe and kkjjiz as groups of
opposite types (i.e., abe as a predecessor group and kkjjii as a successor group) going
in the same direction (i.e., both to the left). The vertical Object-Type: different theme
remains just below the dominance threshold, however, due to the group=- group
concept-mapping underlying the whole-string bridge between abc and kkjjiz, which
conflicts with the letter = group slippages underlying the other vertical bridges. In
the case of the top themes, a weakly-activated Alphabetic-Position:identity theme
has appeared, on account of a first = first concept-mapping that got noticed and
added to the a—a bridge at some point, but this theme is not strong enough to
attain dominance. On the other hand, both Letter-Category top themes are strongly
activated, but neither one is dominant—probably due to the relatively high strength
of the c¢—d bridge, which prevents the successor theme from fading away or being

suppressed by the competing identity theme.

The themes in this example all exhibit positive levels of activation, represent-
ing varying estimates of the importance or centrality of particular ideas. How-
ever, negative activation levels are also possible for themes, as was mentioned ear-
lier (although negative themes normally arise only under certain special circum-
stances to be discussed fully in section 4.5.2). Unlike positively-activated themes, a

negatively-activated theme represents evidence for the absence or inappropriateness

136 An Architecture for Self-Watching

[¢] Top Themes

iden swee iden iden
Letter Category String Position Object Type

iden
o
Alphabetic Position
: (O]
[®] Vertical Themes
Workspace
(Codeiats e T424)
s @
Lewter Ogy.
ien)
/ {4/ < <
o @ a ¢ = a b d
String Pos. || Group Type 3 2 || Chamge letter—category of rightmost letter to successor ”
pre =FSUCCETP
whole==whole
iden
: . H

kK ¥
= il an e O

iden

Smost=rrmost middle=rmiddl || ¢ letter vy of i oup to pred: ”
i @ oo G e harg) ckdiads

O&fect Type

Figure 4.2: The state of Metacat’s Themespace during a run of the problem
“abc = abd; kkjjir= ?” after the program has found the answer kkjjhh.

4.1 Themes and the Themespace 137

of a particular idea in some situation. For example, a negatively-activated Letter-
Category: identity top theme represents the notion that letter-category sameness is
not a key idea underpinning the mapping between the initial string and the modified

string.

Accordingly, positive and negative themes within a single theme cluster exhibit
different dynamics. Unlike a positive theme, which exerts an inhibitory effect on
other positively-activated themes in the same cluster, a negative theme exerts an
excitatory effect on positive themes within the same cluster. The rationale is that
since the negative theme represents the inappropriateness of viewing a mapping in
some way, and the positive themes represent some degree of direct evidence for al-
ternative interpretations (with respect to the same theme category), the alternative
themes should become more highly activated. For example, a negatively-activated
Letter-Category: identity theme and a positively-activated Letter-Category: successor
theme both, in a sense, “pull in the same direction”—that is, away from the idea of
letter-category sameness and towards the idea of letter-category successorship—and

this tends to reinforce the latter theme.

Likewise, as direct, positive evidence accumulates in support of ideas (i.e., as pos-
itive themes become more strongly activated), the relevance of negatively-activated
themes diminishes. Accordingly, positive themes exert an inhibitory effect on their
negative rivals. For example, the building of a new ¢—d bridge adds a bit of “evidence”
in support of the idea of letter-category successorship, thus boosting the activation of
the Letter-Category: successor theme, which in turn inhibits the negatively-activated
Letter-Category: identity theme. The overall effect is that a gradual shift away from
a negative characterization of a situation (e.g., “letter-category sameness is not the
key here”) to a positive characterization (e.g., “letter-category successorship is the

key”) takes place.

Lastly, in the case of two negatively-activated themes within the same cluster,

138 An Architecture for Self-Watching

Figure 4.3: The mutual excitatory and inhibitory effects of themes within a cluster.
Positively-activated themes inhibit one another, as well as negatively-activated themes.
Negatively-activated themes excite positively-activated themes, but have no effect on
one another.

neither theme has any effect on the other, the rationale being that the inappropriate-
ness of one idea neither supports nor contradicts the inappropriateness of alternative
ideas. For example, knowing that letter-category sameness isn’t the key does not
warrant the conclusion, in the absence of any other positive evidence, that letter-
category successorship may well be. These relationships are shown schematically in

Figure 4.3.

4.1.2 Top-down influence of themes

In the early stages of development of the Themespace, a number of different ap-
proaches were tried for integrating top-down pressure from themes with Workspace
processing and other top-down forces in Metacat. Most of these approaches, however,
proved to be unsatisfactory.

One such approach involved letting the amount of top-down pressure exerted by a

theme vary continuously in proportion to the theme’s activation, so that all themes in

4.1 Themes and the Themespace 139

the Themespace—even if only slightly activated—would continually influence codelet
activity in the Workspace. A similar but more indirect approach involved themes
spreading activation to their constituent Slipnet concepts—again, continuously as
a function of their own activation (a combination of these two approaches was also
tried). In addition, the amount of mutual inhibition and excitation exerted by themes
on each other within theme clusters was varied, in the hope of finding a good balance
that would enable the kind of “locking-in” effect described earlier to occur as a con-
sequence of the mutual interaction between themes and Workspace activity (rather
than only from interactions between themes). Another approach involved letting only

dominant themes influence processing, but this did not work very well either.

In all of these cases, the top-down pressure exerted by themes seemed to hin-
der Metacat’s progress more often than it helped. The reason for this is that such
pressure, being automatically applied whenever themes attained sufficient activation,
often “distracted” the program by causing it to focus too soon on specific ideas—and
usually on too many specific ideas at one time. Instead, an additional mechanism
was needed that would allow top-down thematic pressure to be selectively turned on
or off, according to the situation at hand. Themespace activations by themselves are
not sufficient for achieving the kind of focused and directed behavior that Metacat

needs in order for it to gain insight into what it is doing.

Most of the time, therefore, themes behave as passive representational structures,
influenced by activity occurring in the Workspace (and by the activations of other
themes), but having no return effect on this activity. However, under certain circum-
stances (which will be explained more fully in subsequent sections), thematic pressure
can be turned on by the program itself, strongly influencing subcognitive processing
activity in the Workspace, as outlined earlier in Chapter 2. When thematic pres-

sure is turned on, positively-activated themes encourage the building of Workspace

140 An Architecture for Self-Watching

structures that are compatible with the ideas represented by the themes. Negatively-
activated themes, on the other hand, discourage the building of such structures; in-
stead, they promote the building of structures that are incompatible with themselves.
A negatively-activated Object-Type: identity theme, for instance, would promote the
creation of bridges between different types of objects (i.e., between a letter and a
group), rather than between objects of the same type, such as two letters or two

groups.

Top-down thematic pressure in Metacat is realized in three ways. The first (and
least focused) way is that whenever thematic pressure is turned on, themes spread
activation to their constituent Slipnet concepts (i.e., to the category and relation
nodes making up the themes), which may in turn cause top-down codelets to be

added to the Coderack, as in Copycat.

Secondly, themes directly influence the strengths of Workspace structures in a
dynamic, continuous fashion, as a function of the thematic compatibility between
themes and structures. (In the current version of Metacat, only the strengths of
bridges and descriptions can be influenced by themes, although in principle other
types of structures, such as bonds or groups, could also be affected.) A structure’s
thematic compatibility is determined by how well the structure “resonates” with the
ideas represented by the set of currently-active themes in the Themespace. For ex-
ample, in the problem “abc= abd; xyz=- ?”, a vertical bridge between a and z
would be incompatible with a vertical String-Position:identity theme, due to the
leftmost = rightmost slippage underlying the bridge. On the other hand, the vertical
themes String-Position: opposite and String-Position: different would both support
the bridge, as would the theme Alphabetic-Position: opposite. The equivalent top
themes, however, would all be indifferent to the bridge (since it is not a top bridge).

In general, the thematic compatibility of a bridge with respect to a particular set of

4.1 Themes and the Themespace 141

themes depends on the concept-mappings underlying the bridge. In the case of de-
scriptions, thematic compatibility is determined by the presence or absence of themes
of the same category as the description. For example, String-Position descriptions
are compatible with String-Position themes, but are indifferent to Alphabetic-Position

themes.

A positively-activated theme that is incompatible with some particular Work-
space structure dynamically reduces the strength of the structure in proportion to
the theme’s level of activation. If the theme supports the structure, the structure’s
strength is enhanced. If the theme is indifferent to the structure, the strength is
not affected, regardless of the theme’s level of activation. Conversely, a negatively-
activated theme that is incompatible with a structure enhances its strength—the
idea being that since the negative theme represents the absence or inappropriate-
ness of some idea, structures incompatible with that idea should be promoted, as
described earlier. Likewise, a theme that is compatible with a structure decreases its
strength when negatively activated. And, like positively-activated themes, negatively-

activated themes have no effect on structures to which they are indifferent.

Thus, themes act like a set of “knobs” that can be used to smoothly vary the
strengths of Workspace structures, “skewing” them away from their “resting strengths”
(i.e., the strengths the structures would normally have in the absence of thematic
pressure) according to the structures’ compatibility with the set of currently-active
themes in the Themespace. Through the “twisting of knobs” (i.e., varying the pat-
tern of Themespace activations), Metacat’s subcognitive perceptual processing can
be steered in different directions, guided by the ideas explicitly represented by the

themes.

As a simple example, suppose that in the problem “abc=- abd; iij3kk= 27, a
bridge with a resting strength of 60 exists between the a in abc and the 2z group in

1iggkk. Figure 4.4 shows the way in which the bridge’s strength would be affected in

142 An Architecture for Self-Watching

Wor,:i'space Srm;cryre :Srrengrh

- =& PR -0 30 -0 30 - - O w10 420 430 A0 +30 #6070 480 +50
Theme Activation

Figure 4.4: The effect of theme activation on Workspace structure strength. The curve
shows the influence of a single theme on a structure of strength 60. (The shape of the
response curve differs slightly for negative and positive theme activations.)

the presence of a single String-Position: identity vertical theme with thematic pressure
turned on. This particular theme supports the bridge (on account of the bridge’s
leftmost = leftmost concept-mapping), so positively activating the theme causes a
corresponding increase in the bridge’s strength. Likewise, negatively activating the
theme drives the bridge’s strength toward zero, since in this case the theme represents
the inappropriateness of seeing objects as corresponding on the basis of identical string
positions. As can be seen from the graph, a relatively small amount of negative theme
activation quickly undermines the bridge’s strength, while a small amount of positive
theme activation quickly boosts it to near-maximum strength. In the absence of any
theme activation, the bridge’s strength reverts back to its original value of 60.

This example illustrates the effect of a single theme on structure strength. In

general, however, many themes may be active at any given moment, some of which

4.1 Themes and the Themespace 143

may be compatible with a given structure, and some of which may not be. For ex-
ample, the vertical themes String-Position:identity, Letter-Category: different, and
Object-Type: identity might all be active in the above example. Assuming positive
theme activations, String-Position: identity and Letter-Category: different would both
support the a—¢ bridge, while Object-Type: identity would be incompatible with it.
In such a case of mixed thematic compatibility, the incompatible themes will tend to
“drown out” the compatible themes, even if the latter outnumber the former. The
a—1t bridge will therefore remain very weak because of the active and incompatible
Object-Type: identity theme, in spite of the other two compatible themes. This re-
flects the idea that only interpretations consistent with all highly-activated themes

at any given moment should be pursued.

The third way in which themes exert top-down pressure is through Thematic-
bridge-scout codelets. When thematic pressure is turned on, these codelets explicitly
seek to propose bridges that would be compatible with positively-activated themes
in the Themespace. For example, if the top themes Letter-Category:identity and
String-Position: different are both active, thematic-scout codelets will tend to look for
potential bridges between objects in the initial string and the modified string having
the same letter-category but different string positions. On average, the more strongly
activated a theme is, the more urgently thematic-scout codelets will tend to look for
structures compatible with the theme. Thus, in the problem “abc=- cab; k= 27,
with the above two themes strongly activated, the top bridges a—a, b—b, and c—c
will tend to quickly get proposed by thematic-scout codelets (and subsequently built,
since the themes will also strongly boost the strengths of the bridges in the manner
described earlier, thereby increasing the likelihood that Bridge-evaluator codelets will
decide in favor of building the bridges). In the absence of thematic pressure, these

bridges are much less likely to be built.

In contrast to positively-activated themes, negatively-activated themes do not

144 An Architecture for Self-Watching

exert pressure via thematic-scout codelets—which pay attention only to positively-
activated themes in the Themespace. Rather, negatively-activated themes exert pres-
sure only by strengthening or weakening Workspace structures on the basis of the-
matic compatibility, as described earlier. The reason for this is to prevent thematic-
scout codelets from proposing large numbers of spurious bridges on the basis of neg-
ative themes. For example, with a negative Letter-Category: successor top theme
strongly activated, codelets would end up proposing bridges between any two objects
that were not related by letter-category successorship, which would result in a tangle
of proposed bridges between the initial string and modified string, most of which
would contribute little or nothing to the emergence of a coherent mapping between
the strings.

Finally, Thematic-bridge-scout codelets can also encourage new descriptions of
existing Workspace objects to be built, if such descriptions would subsequently enable
bridges consistent with positively-activated themes to be proposed. For example,
in the problem “abc=- abd; ryz=- ?”, suppose that the special alphabetic-position
status of the letters @ and z has not yet been noticed—that is, Alphabetic-Position
descriptions have not yet been attached to a or z. If a vertical Alphabetic-Pos-
ition: opposite theme becomes active in the presence of thematic pressure, thematic-
scout codelets will be on the lookout for objects in the initial string or target string
that can be described in terms of their alphabetic-position. If they happen to focus on
an object that lacks such a description, they will try to propose one for the object, if
possible. Thus the active Alphabetic-Position: opposite theme encourages alphabetic-
position descriptions to be attached to @ and z, which in turn paves the way for the
creation of an a—z bridge supported by the slippage first = last. This reflects the
idea that situations tend to be perceived in terms of the features that one is actively
paying attention to.

In a similar fashion, new relationships between objects linked by a bridge cre-

ated under thematic pressure can sometimes be noticed “in retrospect”. Returning

4.2 Patterns 145

to the previous example, if an a—z bridge is created under pressure from a verti-
cal String-Position: opposite theme, supported by the slippage leftmost = rightmost
(but not by first = last, due to the absence of an active Alphabetic-Position: opposite
theme), there is still some chance that the alphabetic-position symmetry between
a and z will be noticed as a result of the new bridge, on account of the symmet-
ric leftmost = rightmost slippage having been made under thematic pressure. The
active String-Position: opposite theme spreads activation to the opposite concept in
the Slipnet, which in turn makes other slippages based on this concept more likely.
Furthermore, the concepts leftmost and rightmost are linked to the concepts of first
and last in the Slipnet. Thus a thematic-scout codelet may notice the “parallel”
first = last relationship between a and z, in which case the new slippage would then
be added to the bridge’s concept-mappings. This idea is related to the notion of
“coattail slippages”, discussed in Chapter 3.

4.2 Patterns

The foregoing discussion explains the mechanisms through which top-down thematic
pressure is applied in Metacat, but does not address the circumstances under which
this occurs. However, a few examples illustrating the application of thematic pressure
have already been outlined in sections 2.4.4 and 2.4.5 of Chapter 2. As will be recalled,
one situation in which top-down thematic pressure may be turned on arises when
Metacat has “fallen into a rut” by trying to apply the same set of ideas to a problem
over and over, without success. Repeatedly hitting the same snag may eventually
cause Metacat to clamp the themes characterizing the snag with strong negative
activation, which in turn may nudge the program out of its unproductive cycle of
behavior, toward alternative ways of looking at the problem. Another such situation

arises when Metacat runs in justify mode, attempting to make sense of an answer

146 An Architecture for Self-Watching

provided to it. As a result of comparing different rules for describing string changes,
the program may clamp a particular set of themes with strong positive activation, in
an attempt to discover a globally consistent interpretation of the given problem that
leads to the given answer. In both of these cases, the clamping of theme activations
in the Themespace automatically turns on thematic pressure, and can be thought of
as Metacat’s way of explicitly focusing on a particular set of ideas in order to explore
their implications.

The ability of the program to clamp theme activations, however, is actually just
one manifestation of a more general ability, in which various types of patterns can be
clamped by the program in response to different situations. In addition to patterns
of theme activations, patterns of concept activations in the Slipnet and patterns of
codelet urgencies in the Coderack can also be clamped, depending on the circum-

stances.

4.2.1 Theme-patterns

In general, a theme-pattern may consist of any number of themes of a particular
type, along with an optional positive or negative activation value for each theme (in
the absence of a specific value, full positive activation is assumed). For example, a

possible vertical theme-pattern is shown below:

(vertical-themes
(String-Position: opposite 100)
(Direction: opposite 100)
(Group-Type: identity 100))

Clamping this theme-pattern automatically turns on thematic pressure, strongly
encouraging the creation of a “crosswise” mapping between the initial string and
target string—especially between groups of the same type within these strings. For

example, Figure 4.5 shows the Workspace and Themespace after Metacat found the

4.2 Patterns 147

[®] Top Themes

iden swee iden iden
Letter Category String Position Object Type

[®] Vertical Themes

iam @ Workspace

(Codaiets i 656)

ar @

Letter Cgy. || Lengih

» @ a = a d
String Pos. || Growp Type ¢ % Pt || Chonge letver govy of i letrer to ”
e
three=>three
iden @) ecespred
LetiCtey=>Letiliey
whole=>whele
sucogrp=>prederp
Divection >3 & \
k J) == k J J
o @
1 - _ R ; -
I ost=rmost 2}1’3{;’;3}?};’;3 3?;;5;55>1Z§;‘:ﬂe || Chomge latter gory of leter to ”

Object Type

Figure 4.5: The answer kjj to the problem “abc=- abd; kji= 2?7, showing the state
of the Themespace at the time the answer was found.

148 An Architecture for Self-Watching

answer kjj to the problem “abc=- abd; kji= ?” (in the absence of thematic pres-
sure). In this particular run, Metacat saw abe and kji as groups of different types
going in the same direction. To demonstrate the effect of thematic pressure, the
above theme-pattern was then manually clamped (by me), along with a top theme-
pattern consisting of the themes String-Position: identity and Object-Type: identity,
and the run was continued. Under the influence of the clamped patterns, Metacat
quickly reorganized its way of looking at kji (but maintained the same interpreta-
tion of abe = abd), resulting in the answer lji approximately 100 codelets later (see
Figure 4.6). Normally, however, Metacat itself is responsible for clamping and un-
clamping patterns of themes as it sees fit, rather than relying on a human to tell it

specifically which ideas to “think about”.

Theme-patterns are associated with various types of structures and processing
events in Metacat, including snags (as was mentioned earlier), answer descriptions,
slippages, and rules. These associations will be spelled out more clearly later in this
chapter (and illustrated in sample runs of the program in the next chapter), but
to take just one example here, consider the rule Change letter-category of rightmost
letter to successor from the earlier run shown in Figure 4.5. This rule is based on
seeing abc and abd as going in the same direction, represented by the horizontal
bridges a—a, b—b, and ¢c—-d. When this rule gets created, the two top themes String-
Position: identity and Object-Type: identity are dominant, since they are supported
by all three bridges. This pattern of dominant themes can be thought of as ab-
stractly characterizing the “background of similarity” that exists between abc and
abd, against which the differences between the strings are perceived.®> Consequently,
this top theme-pattern (shown clamped in the upper window of Figure 4.6) is perma-

nently associated with the newly-created rule.

3The idea of a “background of similarity” between strings and its relationship to rule creation
was discussed in section 3.1 of Chapter 3.

4.2 Patterns 149

[®] Top Themes

[®] Vertical Themes

Workspace

(Codaiets e 753)

A
EILLQF 2fj || Chonge letver govy of i letter to ”

SrouprEroup
wigb == I
three=>three

SHOC=IRHEE

LebClgy=>Letiliey
whole=rwhele
SUCCEFP=ERUCCEFP

Tt ost=>rmost Smost=xImost | Chomge latter vy of laftr letrer to ”
lehter==leler leter==letler oy of

Figure 4.6: The answer ly, found as the result of manually clamping the theme-
patterns shown. This run is a continuation of the run from Figure 4.5.

150 An Architecture for Self-Watching

4.2.2 Concept-patterns

A concept-pattern is similar to a theme-pattern, except that it specifies a set of Slipnet
concepts (along with an activation value for each concept) instead of a set of themes.
Like theme-patterns, concept-patterns can be clamped by the program in various sit-
uations, and are associated with several types of structures, including theme-patterns,
rules, slippages, and Workspace objects. The concept-pattern below, for example, is

associated with the vertical theme-pattern shown earlier:

(concepts
(String-Position 100)
(Direction 100)
(Group-Category 100)
(opposite 100))

Clamping a theme-pattern causes its associated concept-pattern to be clamped in
the Slipnet, further strengthening the effects of top-down pressure. Other examples
of concept-patterns are displayed graphically in Figure 4.7. The upper pattern in the
figure is associated with the rule Change letter-category of rightmost letter to succes-
sor, and consists of the concepts making up the rule. The lower pattern is associated
with the right-directed predecessor group kji created in the example discussed ear-
lier, and consists of the concepts making up the group’s descriptions. (The pattern

specifies an activation of zero for the concept of three because the group’s length

description happened not to be relevant at the time the group was created.)

4.2.3 Codelet-patterns

In addition to patterns of themes and concepts, Metacat can also clamp codelet-
patterns, which specify sets of codelet types and urgency values. Clamping a codelet-
pattern dynamically alters the urgencies of codelets in the Coderack according to their
type, effectively overriding the urgencies that were individually assigned to codelets

at the time of their creation. Furthermore, any new codelets added to the Coderack

4.2 Patterns 151

[s]]
Oppostte Shinglos Imost middie rmest wrhale sngle ObjeciCizy latter growp AlphaFPos first last
Idenkty Direchon left right Bondlizy pred sice same Groupllgy predsrp scogrp samegrp Lelterligy

a] 2 o 2 i g h i 7 3 i m
n o - q » 5 t 3 o 2] x r z
Length ane koo thres Four five BondFacet

[s]]
Opposite StingPos Imost midedle rmest whols single ObjectCizy lstter group Alphales {irst last
Idenkty Direchon left right Bondlizy pred sice same Groupllgy predsrp scogrp samegrp Lelterligy

a] 2) 2 f g h) 7 E i m
n o - q » 5 t 3 o 2] x r z
Length ane koo thres Four five BondFacet

Figure 4.7: Two examples of concept-patterns. The upper pattern is associated with
the top rule shown in Figure 4.5, while the lower pattern is associated with the kjt
predecessor group.

152 An Architecture for Self-Watching

automatically assume the urgencies specified by the codelet-pattern, for as long as
the pattern remains clamped.

For example, Figure 4.8 shows the effect of clamping a pattern that specifies high
urgencies for Bottom-up-bridge-scout, Important-object-bridge-scout, Bridge-evaluator,
Bridge-builder, Rule-scout, Rule-evaluator, and Rule-builder codelets, and low urgen-
cies for all other types of codelets. (In general, the urgency levels of a clamped codelet-
pattern are indicated by shades of grey in the Coderack.) The left image shows the
probabilities for selecting codelets of each type from the Coderack before clamping
the pattern. The actual frequency of each type of codelet in the current codelet popu-
lation is also shown. As can be seen, clamping the codelet-pattern significantly alters
the selection probabilities of codelets (although not their frequencies). This dramat-
ically speeds up the search for new bridges and rules. Thus, codelet-patterns can be

used to effectively “channel” the parallel terraced scan in very specific directions.

4.3 Answer Justification

Metacat’s ability to clamp various types of patterns plays a crucial role in its ability
to make sense of answers provided to it when running “backwards” in justify mode.
This process, outlined earlier in section 2.4.5, will now be described in detail. (Several
complete sample runs of the program illustrating the ideas described here will be
presented in the next chapter.)

Justifying a given answer involves essentially the same mechanisms used by Meta-
cat when searching for answers on its own, except that four strings exist instead of
just three—the extra one being the answer string provided by the user. Accordingly,
all four strings are examined by codelets looking for potential structures to build (i.e.,
bonds, groups, or descriptions). Furthermore, a third string mapping is created (the

“bottom mapping”), consisting of horizontal bridges between the target string and

4.3 Answer Justification 153

[) [o]
Coderack Coderack
Codelet Type Selection Probability Codelet Type Selection Probadility
9 pom o feEmw
o 9 emirs
T dounEond E Tg-dounfond
2 Bondevaliaton
1 Bord buitders

7 TR ol

O Srous evalators

R

(oRtepory) Foouts (CRtEpORY) BOONS
T — i oM Top— oW o

7 { ; m:'l?:om@ 7 I '“?:M

4 Wehonde — s2ing 4 Wl - g
R SO SR SO

0 Eroue evatiators

I Groun Ruiksons 3 GSRoup Baissers
St - [aleere v B
5 Seidne ot 5 iae soomes
20 e seouts 20 e scouts
B =
0 s 0 Shides
[oteerrl Bl Sorha—
4 desere :oqgfm 4 dercrie :oqgc.@
4 Top—down
RO, SO
Pert
3 ev;tms
3 Desorption
11 Ruke seowts 11 R soous
O Ruke evabiatons 0 R evalatons
1 Rk uikders 1 Rk Buikders
O Answer s 0 Arswer findees
O Ansuser justifiors 0 Answerjustiteors
beidpe sooumts Beldige soowmts
1 Progress watohers 1 Proess watchors
1 dootsars 1 whootsses
3 Greafirs 3 Breafors
100 Total 100 Total

Figure 4.8: The effect of clamping a codelet-pattern on the selection probabilities of
codelets in Metacat’s Coderack. Clamped urgency levels are indicated by shades of
grey, with lighter shades corresponding to higher urgencies. Codelet frequencies are
also shown. Selection probabilities are a function of both urgencies and frequencies.
(The differences between the types of codelets that exist in Metacat and in Copycat
can be seen by comparing this figure with Figure 1.5 on page 31.)

154 An Architecture for Self-Watching

the answer string, as well as “bottom rules” based on this mapping that describe how
the target string changes into the answer string.

In order to make sense of an answer, Metacat must discover three things: (1) a way
of describing the change from the initial string to the modified string; (2) an analogous
way of describing the change from the target string to the answer string; and (3) a
way of seeing the target string as being similar to the initial string that is consistent
with (1) and (2). That is, the objects that change in the target string (as described
by the bottom rule) must be seen as playing the same roles in the target string that
the objects described by the top rule as changing play in the initial string. In other
words, vertical bridges linking the target-string objects to their corresponding initial-
string objects must exist, based on concept-mappings (perhaps including slippages)
between the ideas inherent in the top rule and those inherent in the bottom rule.

For example, suppose that in the problem “abc=- cba; ppgqq=- qqpp”, a top rule
describing abe = cba as Swap positions of leftmost letter and rightmost letter (based
on horizontal bridges a—a and ¢—¢), and a bottom rule describing ppgq = qgpp as
Swap positions of leftmost group and rightmost group (based on bridges pp—pp and
gq—qq) have been created, along with vertical bridges a—pp and ¢—gqq (supported by
letter = group slippages). Taken together, these structures serve as an explanation for
how the answer ggpp arises: the leftmost and rightmost letters in the top situation are
viewed as swapping their positions; the leftmost and rightmost groups in the bottom
situation are viewed as the counterparts to the top situation’s letters; therefore, doing

“the same thing” in the bottom situation amounts to swapping the positions of the

groups, yielding qgqpp.

4.3.1 Answer-justifier codelets

In Metacat, Answer-justifier codelets are responsible for examining structures in the

Workspace to see if they meet the above three criteria. Justifier codelets first choose

4.3 Answer Justification 155

either a top or bottom rule (as a function of rule strength) and attempt to trans-
late the chosen rule based on the vertical mapping that exists between the initial
string and target string. If the resulting translated rule matches some existing rule,
and if this rule and the chosen rule are both currently supported,* then a consistent
way of interpreting both the top and bottom string changes has been found that
yields the answer string. The program therefore pauses to report the new interpreta-
tion, displaying the top and bottom rules along with the accompanying bridges and
concept-mappings.

For instance, in the previous example, a justifier codelet might choose the bottom
rule Swap positions of leftmost group and rightmost group for translation. In the pres-
ence of letter = group slippages underlying the vertical bridges, this rule translates
to Swap positions of leftmost letter and rightmost letter, which matches the existing
top rule, indicating that a consistent interpretation has been found. (As this example
shows, rule translation can occur in either direction when Metacat runs in justify
mode—from top rules to bottom rules, or from bottom rules to top rules.) On the
other hand, if the letter a in abc happened to correspond to the leftmost letter in
PPqq, instead of to the leftmost group (or if ¢ were seen as corresponding to the right-
most letter q), then the resulting translated rule would not match the top rule, since
both letter = group slippages are necessary for the translation to yield a matching

rule, and thus no answer justification could occur.

Another possibility is that the translated version of a rule may not match any
existing rule but may in fact work correctly (i.e., it may correctly describe the way
in which a string changes). For instance, suppose that only the top rule in the
previous example exists at the time the justifier codelet runs. The codelet would thus

choose the top rule, translating it as Swap positions of leftmost group and rightmost

*As was explained in section 3.4 of Chapter 3, a rule is supported if all of the horizontal bridges
on which the rule was originally based currently exist in the Workspace.

156 An Architecture for Self-Watching

group (assuming the existence of the vertical letter = group bridges). Although the
translated rule in this case does not match any bottom rule (since no bottom rules
have yet been built), it nevertheless describes the ppgqg = ggpp change correctly, and
is therefore added to the Workspace as a new bottom rule. Together with the top

rule and vertical bridges, this new rule provides a coherent justification for the answer

qqpp.’

Justifying answers via top-down pressure

In a sense, the foregoing examples represent the easiest cases of answer justification,
because all of the Workspace structures needed to justify an answer exist (or can be
easily created by translating a rule, as in the last example) at the time the Answer-
gustifier codelet runs. All the codelet needs to do is recognize that, based on the
existing vertical mapping, a pair of existing rules will in fact produce the given an-
swer string. A more interesting situation arises, however, if the current configuration
of Workspace structures almost provides a consistent interpretation of the answer,
but falls short in some way. This inconsistency may suggest a way of reorganiz-
ing structures under top-down pressure, so that a consistent interpretation can be
achieved. Depending on the type of inconsistency detected, a justifier codelet may
clamp various types of patterns in order to force this perceptual reorganization to
occur.

There are several different types of inconsistent situations that can trigger the
clamping of patterns by justifier codelets. In the first case, one of the rules may be
unsupported. In other words, the horizontal bridges that exist at the time the justifier
codelet runs may no longer accurately reflect the relationship between the strings as

described by the rule. For example, Figure 4.9 shows the problem discussed earlier,

5This example assumes that the newly-created rule is supported—in this case by bridges pp—pp
and ggq—qq. The next section explains what happens if this is not the case.

4.3 Answer Justification 157

Workspace

(Cogeiets . 563)

—————————————————————————————————————
most=>Imost Sumost=>rmost | Swop positions of leftmost group and rightmost gro !
I?Jew>gﬂup Ie!:er=>g"x‘;lp :__ _ _Cip_p_ o _:f ______ S_T_l?_ L _ig__ o j‘?_- _1'?-_7'__:

Figure 4.9: An example of an unsupported bottom rule.

in which both the top and bottom strings are viewed as swapping their leftmost
and rightmost objects (letters in one case and groups in the other). The vertical
bridges support this interpretation, since they map letters to groups; likewise, the
top horizontal bridges are consistent with the notion of the letters @ and ¢ swapping
positions. However, the bottom gg—gq bridge is inconsistent with the bottom rule. To
be consistent (i.e., for the rule to be supported), the two gg groups must be seen as
corresponding to one another. A similar type of inconsistency may arise if a justifier
codelet creates from scratch a new rule that works correctly (by translating some

existing rule, as described at the end of the previous section), but which happens not

158

An Architecture for Self-Watching

[¢] Bottom Themes

iden app iden
Letter Category String Position Obfect Type
iden
Group ype

Figure 4.10: The theme-pattern associated with the bottom rule of Figure 4.9.

to be supported by the appropriate horizontal bridges.

In both of these cases, the justifier codelet responds to the inconsistent situa-

tion by clamping a set of patterns that focus top-down pressure on the problematic

horizontal mapping, encouraging its reorganization in a manner consistent with the

unsupported rule. Equally important, these patterns also exert pressure to preserve

those structures that already form part of a consistent interpretation of the answer.

Specifically, the following patterns get clamped:

e The theme-patterns associated with the top and bottom rules. The effect of

clamping a rule’s theme-pattern depends on whether or not the rule is sup-
ported. If it is, then the pressure exerted by the themes will tend to hold
the current set of bridges in place, since the concept-mappings underlying these
bridges are compatible with the clamped themes. However, if the rule is not sup-
ported, the clamped themes will weaken the incompatible bridges, encouraging
the creation of new bridges supporting the rule. For example, the theme-pattern
associated with the bottom rule in Figure 4.9 is shown in Figure 4.10 (the top
rule’s theme-pattern is similar, except that it lacks a Group-Type theme, since
the top mapping involves only letters). Under pressure from these themes—
the Object-Type: identity theme in particular—the gg—gq bridge is likely to be
replaced by a gqgq—qq bridge, while the existing pp—pp bridge is likely to be

4.3 Answer Justification 159

preserved, resulting in a mapping consistent with the bottom rule. In contrast,
the top mapping already supports the top rule, so clamping this rule’s theme-
pattern just reinforces the existing bridges, locking in the current interpretation

of abe = cba.

e The current dominant vertical theme-pattern. Clamping this pattern reinforces
the existing vertical bridges, so that the concept-mappings relating the top rule
to the bottom rule will be preserved while the inconsistent horizontal mapping
is reorganized. Since the dominant vertical themes represent the ideas that
are most likely to be of central importance to the vertical mapping, clamping
these themes locks in the current way in which the initial and target strings are

viewed as being similar.

o The unsupported rule’s concept-pattern. The pattern of Slipnet concepts mak-
ing up the unsupported rule also gets clamped, in addition to the rule’s theme-
pattern. The top-down pressure exerted by these concepts (through spreading
activation and the spawning of top-down codelets, as in Copycat) “comple-
ments”, in some sense, the pressure exerted by themes, by promoting the cre-
ation of other types of structures besides bridges that may be useful in reorga-
nizing the inconsistent mapping. For example, the concept-pattern associated
with the bottom rule in Figure 4.9 consists of the concepts String-Position,
leftmost, rightmost, and group. If the gqq group in ggpp did not exist at the
time of the clamp, this pattern would encourage its creation, which is necessary

in order to create the gg—qq bridge.

o A codelet-pattern accentuating the urgencies of top-down codelets. Whenever a
justifier codelet clamps a set of theme- and concept-patterns in response to in-
consistencies in the interpretation of an answer, it also clamps a special codelet-

pattern that heightens the effect of the other clamped patterns by speeding up

160 An Architecture for Self-Watching

the processing performed by top-down codelets. In a sense, this serves to further
catalyze the reorganization of structures in the Workspace, in order that a con-
sistent interpretation of the answer might be discovered more quickly, before the
clamp period expires.® Specifically, this codelet-pattern imposes very high ur-
gencies on top-down Bond-scout, Group-scout, and Description-scout codelets,
on their associated Evaluator and Builder codelets, and on Thematic-bridge-

scout codelets. (Other codelet types are not affected.)

Justifying answers via rule unification

Another type of inconsistency that can trigger pattern-clamping by justifier codelets
arises if the vertical mapping does not reflect the relationship between the initial string
and target string as expressed by the top and bottom rules. One example of this was
outlined earlier in section 2.4.5 of Chapter 2. To take another example, the two rules
in Figure 4.9 require that the leftmost and rightmost [letters of abe correspond to
the leftmost and rightmost groups of ppgq. A vertical mapping that does not meet
this requirement makes no sense in conjunction with these two rules. However, faced
with an inconsistent vertical mapping, a justifier codelet may be able to induce a
reorganization of the mapping by clamping a pattern of vertical themes that can be
derived by comparing the rules to each other. For instance, comparing the rules in
Figure 4.9 implies the need for vertical bridges based on the slippage letter = group,
an idea that can be captured by a vertical Object-Type: different theme. Clamping
this theme would promote the creation of vertical bridges between letters and groups,
leading to a mapping compatible with the rules in question.”

In general, if a justifier codelet is unable to find a pair of top and bottom rules

6 As might be expected, patterns do not remain clamped forever. How and when Metacat decides
to unclamp a set of clamped patterns will be described in section 4.5.1.

"In Figure 4.9, of course, the vertical mapping is already consistent with the rules, but suppose
that the bridges mapped letters to letters, rather than letters to groups.

4.4 The Temporal Trace 161

that match, under translation, with respect to the concept-mappings underlying the
current vertical bridges, it will look for a pair of rules that can potentially match
with respect to some set of concept-mappings. For many rule-pairs, of course, this
is not possible. For instance, in the earlier example, the abc = cba change might
also be described by the top rule Reverse direction of string. This rule cannot be
translated to yield the bottom rule Swap positions of leftmost group and rightmost
group under any circumstances, because the rules are not structurally similar. To
be “inter-translatable”, a pair of rules must share the same internal structure and
differ only by pairs of concepts that are potentially slippable (i.e., the concepts must
be linked in the Slipnet). For example, the rules Change letter-category of rightmost
letter to successor and Change letter-category of rightmost letter to ‘d’, though struc-
turally similar, are not inter-translatable, because no slippage is possible between the
concepts of successor and d.

The process of analyzing a pair of rules in order to determine if there is a set of
slippages that will make the rules match under translation is termed rule unification.
If a justifier codelet identifies a pair of existing rules that can be unified, it creates a
vertical theme-pattern based on the set of unifying slippages, which it then clamps
along with the other theme- and concept-patterns associated with the rules. Clamping
the vertical theme-pattern encourages the creation of a vertical mapping that supports
translating the top rule into the bottom rule, while clamping the other patterns has
the effect of either maintaining the existing horizontal mappings if they support the

rules, or reorganizing them if they don’t (as in the cases described earlier).

4.4 The Temporal Trace

Metacat’s ability to revise its perception of a problem by clamping patterns of themes

and concepts in response to various situations affords it a very powerful degree of

162 An Architecture for Self-Watching

Memory of recent past experiences and ideas

Temporal Trace
eee XX @ XX @ (cognitive Ievel)
Currently active ideas Theme level
influencing perception

abc —>abd Workspace

Current perceptual (subcognitive level)
interpretation of the problem

(CING)
pattern of @
@ themes®

x

yz - ?

Figure 4.11: The three levels of processing that exist in Metacat.

self-control. Patterns—especially patterns of themes in the Themespace—act as a
“medium” through which the program is able to wield control over its own behav-
ior, forming a kind of intermediate level sitting above (and strongly influencing) the
subcognitive processing level, while remaining below the cognitive level (see Fig-
ure 4.11). Metacat’s cognitive level is represented by the Temporal Trace, which can
be thought of as a short-term memory for storing recent past experiences during a
single run of the program. (In contrast, a set of patterns at the intermediate level can
be thought of as reflecting the program’s immediate experience or “state of mind”.)
Structures and patterns representing several different types of subcognitive-level and
intermediate-level processing events (to be described shortly) are stored in the Trace.
As was sketched in Chapter 2, codelets can examine these structures—possibly clamp-
ing new intermediate-level theme-patterns as a result—allowing the program to “see”

what it is doing and to respond accordingly. The cognitive level thus exerts control

4.4 The Temporal Trace 163

over the intermediate level, which in turn guides processing at the subcognitive level,
establishing a chain of causality that flows from a highly-chunked representation of
the program’s behavior down to the myriad constituent micro-events out of which
that behavior emerges. From a theoretical standpoint, however, the structures stored
in the Trace are no different from other types of perceptual structures stored in the
Workspace, since they are all subject to processing by codelets, so in an important
sense, the Temporal Trace and the Workspace can be identified with each other—
implying a kind of “level collapse” between Metacat’s cognitive and subcognitive
levels (see [Hofstadter, 1979], especially Chapter 20, for an extensive discussion of
multi-leveled hierarchical systems that twist back on themselves in a similar fashion).
Thus, conceptually, the same set of general processing mechanisms is responsible for

perception, for self-perception (i.e., self-monitoring), and for self-control in Metacat.

One way to appreciate the abstract, chunked nature of the information stored in
the Temporal Trace is to consider the number of “steps” that occur during a typical
run of Metacat. At a very fine-grained level of description, where each step corre-
sponds to an action performed by a single codelet, a run consists of many hundreds
or thousands of steps. At this level of description, no two runs are ever ezactly the
same, even if they involve exactly the same letter-strings.® On the other hand, at the
level of description of the Trace, a typical run consists of a few dozen steps. At this
level of granularity, each step corresponds to a “macroscopic” processing event—each

one of which may itself comprise the actions of many codelets.

For example, Figure 4.12 shows the contents of the Trace after a run of the problem
“abc=- abd; Tyz= ?”, in which the program, after trying unsuccessfully a couple
of times to take the successor of z, answers xyd. The events that occur during the

run appear in the Trace in chronological order, from left to right. Although this

8Unless, of course, both runs start out with exactly the same random number seed (in addition
to the same letter-strings).

164 An Architecture for Self-Watching

[¢] Temporal Trace

[aic] [s5-2] [T] (swe) [Tormte | [a-t-c] [0

Figure 4.12: The temporal record of a run of the problem “abc= abd; xyz= ?”.

run involves a total of 1,558 codelets, the high-level picture of the run represented
in the Trace consists of just twelve events, which represent the “major milestones”
encountered along the way in the program’s search for an answer. Such events include
the activation of abstract concepts in the Slipnet; perceiving entire strings as single,
chunked wholes; creating new rules for describing string changes; hitting a snag; and

discovering a new answer.

For instance, as can be seen from the figure, the concept of identity gets activated
early on in this particular run (due to the creation of a horizontal b—b bridge between
abc and abd). This is followed by the perception of both abe and xyz as whole-
string predecessor groups going in the same direction (to the left). The next event
records the creation of the rule Change letter-category of rightmost letter to successor
for describing abe = abd, which, given the previous two events, leads inexorably to a
snag. In the aftermath of the snag, another rule is created (Change letter-category of
rightmost letter to ‘d’), and abc and xyz are reperceived as successor groups (again
going in the same direction—only this time to the right). However, the program
again attempts to use the first rule, resulting in another snag. Finally, after creating
a third rule (Change letter-category of letter ‘c’ to ‘d’) and again perceiving xyz as

a successor group, the program finds the answer xyd.

As another example, Figure 4.13 shows the history of a run of the same problem
in justify mode, in which the answer wyz has been provided to the program. (This

particular run, which involves a total of 953 codelets, was used as the example of

4.4 The Temporal Trace 165

[®] Temporal Trace

|x—y—z| |a—b—c | || Top Rule || || Top Rule || || Bottom Rule || X-y-% |n§g‘ht=>leﬁ| |succg?p=>pmdgrp |

[#] Temporal Trace

dgrp | rmost=>lmost | | first=zlast | | Imost=>rmost |

Figure 4.13: The temporal record of a justification run of the problem “abc= abd;
xyz= 2?7, in which the program was given the answer wyz. (The lower image is a
continuation of the upper image.)

“working backwards” discussed in section 2.4.5 of Chapter 2.) As in the previous
case, this run’s “story line” is clearly discernible from the high-level trail of events
in the Trace. After perceiving both xyz and abc as successor groups and creating a
few rules, the program clamps a set of patterns (as a result of unifying one of the top
rules with the bottom rule). This causes the opposite concept to become activated,
followed by the reinterpretation of xyz as a predecessor group. The next two events
record slippages made when a bridge is created between the right-directed successor
group abc and the left-directed predecessor group xyz. This is followed by three
more slippages that subsequently arise from the bridges a—z and ¢~z (including

first = last), which leads to a coherent interpretation of the answer wyz.

These two runs illustrate all of the different types of events that can be recorded in
the Temporal Trace during a run. Each event, whether occurring in the Workspace,
the Themespace, or the Slipnet, has an importance value associated with it, and only
those events with an importance value above some threshold get explicitly represented
in the Trace, allowing Metacat to effectively filter out the “background noise” of a
run. Specifically, builder codelets responsible for creating new Workspace structures

monitor the importance of the structures they create, adding a new event to the Trace

166 An Architecture for Self-Watching

whenever a sufficiently important group, slippage, or rule is built. Likewise, codelets
that clamp patterns or attempt unsuccessfully to apply a rule (thus hitting a snag)
also note these events in the Trace. In addition, nodes in the Slipnet monitor their
own levels of activation, adding new concept-activation events to the Trace whenever
sufficiently large changes occur in the activations of deep concepts. Furthermore, all
events stored in the Trace, regardless of their type, record the time of occurrence of
the event (as measured by the number of codelets run), along with the Workspace
structures and Themespace patterns that exist at the time of the event. This auxiliary
information can then be referred to later by codelets monitoring the progress of a run.

The list below summarizes the various types of Temporal Trace events that are

possible:

e (Concept-activation events record changes in the activation levels of Slipnet
nodes. The importance of this type of event is a function of a node’s conceptual
depth and of the magnitude of its activation change, with larger changes to

deeper concepts being more important.

e Group events record the creation of important groups in the Workspace. The
importance of this type of event is a function of a group’s strength and size,

with single-letter groups and whole-string groups being particularly important.

e Slippage events record important slippages that occur in support of bridges
built between objects in the Workspace. The importance of this type of event
is normally a function of the conceptual depths of a slippage’s concepts, and
of the size of the Workspace objects involved. As a special case, however, if
a slippage is made under the influence of thematic pressure and is compatible
with the set of clamped themes, it is deemed to be of very high importance,

regardless of the concepts or objects involved.

e Rule events record the creation of important rules in the Workspace. The

4.5 Self-Watching 167

importance of this type of event is a function of the relative quality of a rule
with respect to all other rules that already exist, with comparatively higher-

quality rules being more important.

e Answer events record the discovery of new answers, and are always included in
the Temporal Trace whenever they occur (i.e., this type of event is deemed to

be of maximal importance).

e Snag events record the occurrence of snags in the Workspace, and are always

included in the Temporal Trace.

e Pattern-clamp events record the clamping of theme-patterns, concept-patterns,
or codelet-patterns in response to various situations, and are always included

in the Temporal Trace.

4.5 Self-Watching

This section explains in detail how Metacat uses the information in the Temporal
Trace to monitor its own behavior, and how it can alter its behavior by clamping
(or unclamping) various types of patterns in response to this information. Two types
of codelets in Metacat are responsible for examining and responding to the events

unfolding in the Temporal Trace.

4.5.1 Progress-watcher codelets

The first type of codelet, called a Progress-watcher, has two principal functions. First,
it is responsible for deciding whether or not to unclamp a set of clamped patterns. If
a Progress-watcher codelet runs during a clamp period, it examines the most recent
event in the Trace (which may or may not be the most recent clamp event) in order to

determine how much time has elapsed since the event occurred. Generally speaking,

168 An Architecture for Self-Watching

the purpose of clamping a set of patterns is to precipitate a series of events that
reorganize the perceptual configuration of the Workspace in some way (i.e., by causing
the creation of new structures). It is therefore better to wait until the structure-
building activity occurring in the wake of a clamp has settled down a bit before
concluding that the clamp has “run its course”. Accordingly, if the amount of elapsed
time since the most recent event in the Trace is less than some minimal “settling
period”, then the codelet simply fizzles, leaving the clamped patterns still in effect.
On the other hand, if enough time has passed without any new important events
having transpired, the codelet unclamps the patterns and then determines the amount
of progress that was made since the clamp occurred. Depending on the amount of
progress achieved, the codelet may decide to post a follow-up Answer-finder codelet
(or an Answer-justifier codelet if the program is running in justify mode) in order to

see whether a new answer can be made based on the newly-created structures.

The criteria for judging the “success” of a clamp depend on the nature of the
clamp itself. Sometimes, the purpose of clamping a set of patterns is to promote
the creation of specific types of Workspace structures (rules, for example). Most
of the time, however, the purpose is to encourage the creation of structures of any
type, so long as they are compatible with the clamped patterns. For example, the
pattern-clamping that occurs during the answer-justification process described in the
preceding section is intended to force the creation of mutually-consistent horizontal
and vertical mappings, which may depend on building new bridges and groups, mak-
ing new slippages, and creating new rules. The progress achieved by such a clamp
can thus be measured by observing the strengths of the most important Workspace
structures that get built in the aftermath of the clamp (since in general the strength
of a structure reflects its compatibility with the set of clamped patterns). This in-
formation is recorded in the Temporal Trace, in the form of group events, slippage

events, and rule events. The progress achieved by the clamp shown in Figure 4.13,

4.5 Self-Watching 169

for example, can be determined by examining the subsequent group and slippage
events. Since these events all represent the creation of structures compatible with the
clamped patterns, the degree of progress achieved by this particular clamp is quite
high.

In general, associated with every clamp event is a progress-evaluator function,
which Progress-watcher codelets use to evaluate the events in the Trace following the
clamp event in order to determine the overall progress achieved by the clamp. Since
the progress is evaluated at the end of the ensuing clamp period, only events that
occur during this period are considered. In the case of an answer-justification clamp,
the evaluator function pays attention to subsequent group events, slippage events,
and rule events (in particular to the strengths of the new structures created), but
other types of clamps may involve different measures of progress, through the use of

different evaluator functions.

In fact, the second principal task performed by Progress-watcher codelets involves
clamping patterns that focus on the creation of a single type of Workspace structure,
rather than on a number of different types, as in the answer-justification process.
If no patterns are clamped when a Progress-watcher codelet runs, then instead of
checking on the progression of events in the Trace, the codelet checks on the current

rate of structure-building activity taking place in the Workspace.

The Workspace activity, like temperature, is a simple numerical measure ranging
from 0 to 100. However, rather than reflecting structure quality, the activity level
provides a quick estimate of the “freshness” of the current Workspace structure con-
figuration. More precisely, it is an inverse function of the average age of the most
recently created structures. Thus, the activity level tends to remain high as long as
new structures are being built, but eventually drops to zero in the absence of new

structures.

If the activity level is zero, indicating that nothing much is happening in the

170 An Architecture for Self-Watching

Workspace, then Metacat may have arrived at an impasse in its search for answers to
the current problem. This is not quite as bad as hitting a snag, but it still ought to
prod the program into trying something different. However, in the case of an impasse,
there is usually no clear set of “offending” structures or themes on which to pin the
blame, unlike in the case of a snag. Indeed, the impasse may well arise from a lack
of appropriate structures, rather than from the existence of the “wrong” structures.
Therefore, in the absence of Workspace activity, Progress-watcher codelets check
to see whether particular types of new structures are needed. In the current version
of Metacat, these codelets only check to see if new rules are needed, but in principle,
they could also assess the need for other types of structures, so long as a way of
estimating this need could be defined. In the case of rules, the codelets examine the
quality of all of the top rules and bottom rules that have been built so far.? If either
the best top rule or the best bottom rule is still of poor quality, the codelet may
try to encourage the creation of better rules by clamping a special codelet-pattern
that heightens the urgencies of Rule-scout, Rule-evaluator, and Rule-builder codelets,
while simultaneously lowering the urgencies of all other codelet types. Since this
type of clamp is only “interested” in the creation of new rules, its progress-evaluator
function pays attention only to subsequent rule events in the Trace. The amount of
progress achieved is judged solely according to the quality of the rules that get created
in the wake of the clamp. Eventually, other Progress-watcher codelets will turn off
the clamp once enough time has passed without any more events (of any type) being

added to the Trace.

4.5.2 Jootser codelets

The second type of codelet in Metacat that “watches the action” from the high-level

vantage point of the Temporal Trace is called a Jootser. These codelets are responsible

Tf the program is not running in justify mode, then only the top rules are considered.

4.5 Self-Watching 171

for noticing—and breaking out of—repetitive patterns of behavior that the program
has fallen into. (See [Hofstadter, 1985b] for a discussion of the notion of jootsing, or
“jumping out of the system”, especially as it relates to the idea of a self-watching
computer program.) One example of such behavior, discussed earlier in Chapter 2,
involves the program hitting the same snag over and over again. As was sketched in
section 2.4.4, a series of identical (or very similar) snag events in the Trace may cause
patterns to be clamped in response, which may lead to a new way of looking at things
that avoids the snag. However, in addition to snags, Jootser codelets are sensitive to
other types of repetitive behavior as well. In particular, it is possible for Metacat to
become “fixated” on some set of ideas, such that it ends up clamping the same set of
patterns over and over again, without making any significant progress. In this case,
too, Jootser codelets may notice the series of recurring events in the Trace and take

action.

Jootsing from repeated snags

As was mentioned earlier, every time an event is recorded in the Temporal Trace,
a set of theme-patterns characterizing the event gets recorded along with it. This
thematic information can be used as the basis for judging similarity between different
events of the same type, such as snags. In the case of snags, however, similarity also
depends on whether the snag events involve the same set of Workspace structures
(for example, the letter z and the rule Change letter-category of rightmost letter to

successor in the problem “abc=- abd; xyz=- 7).

In order to detect repetitive behavior arising from snags, Jootser codelets con-
tinually scan the Temporal Trace looking for snag events that share the same set
of snag structures and have thematic characterizations that overlap to a significant
degree. The presence of several such events indicates that the program has run into

the same problematic situation several times. To be more precise, the same rule has

172 An Architecture for Self-Watching

been translated and then applied unsuccessfully to the target string each time. Since
the rule-translation process depends on the way in which the initial string and the
target string are perceived as being similar, a new way of looking at these strings (i.e.,
a new vertical mapping) may be needed in order for Metacat to break out of its rut.
Accordingly, if enough similar snag events are detected, a Jootser codelet may try
to force a reorganization of the vertical mapping by clamping an appropriate vertical
theme-pattern. This decision is made probabilistically, depending on the number of
snag events and the degree of overlap of their accompanying themes. Unfortunately,
how to reorganize the vertical mapping so that further snags can be avoided is not
clear, unlike in the case of answer-justification, where comparing a pair of rules can
provide clues as to which ideas might be useful to try. The best that can be done is
to focus on ideas other than those that currently characterize the initial-target string

similarity.

Consequently, once a Jootser codelet has decided to respond to a recurring snag,
it creates a vertical theme-pattern consisting of negatively-activated themes, based
on the themes associated with the snag events, which it then clamps in the Theme-
space. In general, however, not all of these associated themes are necessarily “bad
themes”. For example, the snag in the problem “abc=- abd; xyz=- ?” arises mainly
from viewing the z in xyz as corresponding to the ¢ in abc. This idea is character-
ized by the vertical themes String-Position: identity (based on the concept-mapping
rightmost = rightmost) and Object-Type: identity (based on the concept-mapping
letter = letter). Both of these themes are associated with the ensuing snag events, but
the source of the problem lies in seeing the components of abe and xyz (in particular,
c and z) as occupying identical positions in their strings, not in seeing them as being
identical types of objects. Negatively clamping the String-Position:identity theme
is thus more likely to remedy the situation than negatively clamping the Object-

Type: identity theme. In fact, negatively clamping the latter theme may actually in-

4.5 Self-Watching 173

terfere with the creation of a new mapping, since any new vertical bridges are likely to
be between objects of the same type (i.e., letters), and will thus be severely weakened
by the negative Object-Type: identity theme. In general, therefore, Jootser codelets
decide probabilistically which themes to include in the negative theme-pattern that
gets clamped in response to a recurring snag.'’

Once clamped, this theme-pattern exerts negative thematic pressure on codelet
processing, encouraging the creation of new Workspace structures incompatible with
the themes involved in the snag. In order to expedite this process, a special “bottom-
up” codelet-pattern is also clamped along with the theme-pattern. This codelet-
pattern specifies very high urgencies for all types of bottom-up scout codelets, as well
as for their associated evaluator and builder codelets. The effect of this pattern is to
accelerate bottom-up exploratory processes, in the hope that a viable alternative to

the initial snag-prone interpretation of the problem can be discovered.

Jootsing from repeated clamps

Repeatedly hitting a snag is not the only type of “loopy” behavior to which Metacat
is susceptible. Under certain circumstances, it is also possible for the program to
fall into a repetitive cycle of pattern-clamping. For example, this can occur during
answer-justification if clamping a set of patterns in response to unifying a pair of rules
fails to produce a vertical mapping supporting the rules. The same set of patterns

may end up getting clamped over and over again in a futile attempt to find a coherent

0For each theme, this decision is a function of the number of snag events involving the theme
(since the more often a theme is associated with hitting a snag, the more likely it is to reflect the
source of the problem), and of the conceptual depths of the descriptions related to the theme that
are attached to objects directly involved in the snag (since themes that reflect deeper aspects of the
snag objects are more likely to be important in characterizing the snag). For example, the snag
object in the “abc= abd; xyz=> ?” problem (i.e., the letter z) may be described both in terms
of its string position (i.e., rightmost) and its object type (i.e., letter). Since the conceptual depth
of rightmost is greater than that of letter, the String-Position theme has a greater chance of being
negatively clamped than does the Object-Type theme.

174 An Architecture for Self-Watching

interpretation of the problem based on these rules. Likewise, if an analogy problem
happens to involve a string that changes in some difficult-to-describe way, the program
may end up repeatedly clamping codelet-patterns in a futile effort to spur the creation
of new (or better) rules for describing the change. Repetitive clamping behavior can
even arise from unsuccessful attempts to break out of a cycle of snag events. That is,
negatively clamping theme-patterns in response to a recurring snag may prove to be
ineffective, leading only to further snags and more theme clamping, rather than to a
new interpretation of the problem.

Thus, in addition to watching for snag events, Jootser codelets also look for re-
curring clamp events in the Temporal Trace. If enough similar clamp events are
noticed, the codelet may decide to respond in a way that depends on the type of

clamp involved. Essentially three types of clamps are possible in Metacat:

e Justify clamps arise from clamping theme-patterns in response to unifying pairs

of rules in justify mode.

e Rule-codelet clamps arise from clamping codelet-patterns in an effort to stimu-

late the creation of new rules.

e Snag-response clamps arise from clamping negative theme-patterns in response

to a series of recurring snag events.

In the current version of the program, the similarity of clamp events is judged only
according to whether or not clamps are of the same type, and whether, in the case
of justify clamps, they involve the same pair of rules. The similarity of the patterns
involved is not taken into account, although it probably should be, at least in the
case of snag-response clamps, since responding to the same snag in different ways
by clamping different negative theme-patterns should not be seen as doing the same

thing over and over again.!!

1 Taking the clamped patterns into account is not really necessary for rule-codelet clamps, since

4.5 Self-Watching 175

In any case, faced with several similar clamp events, a Jootser codelet decides
probabilistically whether or not to “joots” based on the number of clamp events
and the average amount of progress that has been achieved by the clamps. (As
will be recalled, the progress resulting from a clamp is determined at the end of
the ensuing clamp period by Progress-watcher codelets, using the progress-evaluator
function associated with the clamp.) Generally speaking, the more clamp events there
are, the more likely jootsing is to occur, especially if the average amount of progress
resulting from the clamps is low. However, in judging the average progress made by
a series of similar clamps, the amount of time since each clamp occurred is also taken
into account. Thus, if recent clamps seem to be making more progress than earlier
clamps, then jootsing is less likely to happen. Conversely, if the clamps appear to be
making less and less progress as time goes on, indicating that the ideas represented
by the clamped patterns may have exhausted their potential, then the likelihood of

jootsing increases.

Unlike jootsing from snags, jootsing from a series of recurring clamp events does
not involve the clamping of any new patterns in response. Instead, in the case of re-
curring rule-codelet or snag-response clamps, Metacat simply “gives up” in a graceful
manner and stops.'? In the case of justify clamps, however, the program’s unsuccess-
ful attempts to find a coherent justification for an answer may be due to an inability
to make the necessary slippages, even in principle, that are required in order to justify
the answer.

For example, if the program is given the problem “xqc= xqd; mrrjjy= ?” and
asked to justify the answer mrryjjs, it may end up repeatedly clamping patterns in

a futile attempt to make a Letter-Category = Length slippage, which is required in

these clamps always involve exactly the same codelet-pattern.

12Upon quitting, the program politely excuses itself with the message “Excuse me—1I think I’ll go
get some more punch”, as any tactful person might do in order to escape from an interminable bore
at a party. See [Hofstadter, 1985b].

176 An Architecture for Self-Watching

order to relate the rule describing &qc = xqd (i.e., Change letter-category of rightmost
letter to successor) to the rule describing mrrijj = mrrjjgg (i.e., Increase length
of rightmost group by one'®). Unfortunately, no such slippage is possible because
xgc cannot be seen as a single group based on letter-categories, and thus no bridge
can be made between xgc and mrrjyy as a whole. The other required slippage,
letter = group, presents no problem, however, since a bridge can easily be made
between the letter ¢ of xge and the j99 group of mrrjjy. Thus, in translating the
top rule, the closest Metacat can come to matching the bottom rule is Change letter-
category of rightmost group to successor—just one slippage away from a successful
justification of mrryggg .

In general, once the program has recognized that it has fallen into a repetitive
cycle of justify clamping, it may decide to settle for an unjustified interpretation of
an answer, depending on how close it can come to justifying it legitimately. Thus,
if rules supported by the appropriate horizontal mappings exist for describing both
the top and bottom string changes, and if these rules are almost the same under
translation, differing by at most a few concepts, then the program will “throw in
the towel”, reporting its repeated failure to understand how the unjustified slippages
arise. The more unjustified slippages that remain, however, the less likely jootsing
is to occur. Furthermore, there is always the possibility that the program will give
up on an answer too easily, reporting it as unjustified when in fact it could be fully
justified with further effort, but in practice this does not happen very often. On the
other hand, of course, it is impossible for Metacat to know which answers in principle
since this would require a type of self-knowledge far beyond the capability of the

present program (for example, Metacat would have to know that it is not capable of

13 Another way of expressing this rule in English is Change length of rightmost group to successor,
which brings out the differences between the rules a little more clearly.

4.5 Self-Watching 177

seeing xgc as a group based on letter-categories). In any case, the program is at least
aware of the fact that it has settled for an unjustified answer, and notes this fact,

along with the slippages that it failed to justify, in its memory.

One last point is worth mentioning. Metacat’s ability to eventually give up in
response to recurring justify clamps or to recurring rule-codelet clamps in a sense
represents first-order jootsing, because in both cases the recurring clamp events arise
from circumstances in the Workspace—in the former case, from pairs of rules that
can be unified, and in the latter case, from a lack of sufficiently high-quality rules.
In other words, these types of clamp events arise from patterns of activity at the
subcognitive processing level. Likewise, snag events also arise from subcognitive pro-
cessing activity. Accordingly, Metacat’s ability to respond to recurring snag events
(by clamping a negative theme-pattern, rather than just giving up) also represents
first-order jootsing—or at least attempted first-order jootsing, since clamping the

pattern may not in fact help to avoid further snags.

In contrast, the program’s ability to respond to a recurring sequence of inef-
fective snag-response clamps (by giving up) represents higher-order or meta-level
jootsing (i.e., jootsing from repeated unsuccessful jootsing), because the recurring
snag-response clamps arise from activity in the Temporal Trace—that is, from se-
quences of recurring snag events. In other words, snag-response clamps arise from
patterns of activity at the cognitive processing level, or, said another way, from view-
ing subcognitive processing activity at an appropriately abstract level of description.
The important point is that the same general mechanisms (i.e., Jootser codelets and
the explicit representation of processing events in the Trace) are responsible for both
first-order and meta-level jootsing in Metacat. This reflects the belief that no fun-
damental distinction should be made between the different levels of a self-watching
system. That is, all levels of such a system should be fused, rather than being or-

ganized into a rigid hierarchy, with each level distinct from the rest and responsible

178 An Architecture for Self-Watching

only for watching and responding to activity occurring at the level immediately below.

(See [Hofstadter, 1985b] for a full discussion of these ideas.)

4.6 The Comment Window

As Metacat works on an analogy problem, watching its own behavior in the process,
it displays a running commentary in English of its ideas and observations about the
problem and about its own “train of thought”. This narrative, which appears in
Metacat’s Comment Window, is not an event-by-event transcription of the informa-
tion appearing in the Temporal Trace, although it does, of course, correspond closely
to the chain of events recorded there. Rather, it simply consists of messages generated
by codelets under a variety of different circumstances as they go about their business.
Essentially, this amounts to the program “thinking out loud” while it works on a
problem. When Metacat encounters a snag, for instance, it reports this fact in the
Comment Window and briefly explains why the snag has occurred. Upon discovering
a new answer, it states its opinion of the answer’s quality, and mentions any other
answers that happen to “come to mind” as a result.!* The program also mentions
when it is getting “frustrated” by a lack of progress. Furthermore, if it hits on some
new idea to try, it gives a brief assessment of the progress achieved, in retrospect, as a
result of focusing on the idea. As will be explained in section 4.7.3, the program can
also comment on the similarities and differences between various answers, if asked to
do so by the user.

Figure 4.14 illustrates the type of commentary typically generated by the program
during a run. The first example shows a run of the problem “abc=- abd; xyz= ?”
in which the program hits the usual z snag a couple of times and then answers xzyd.

(In fact, this same run was shown earlier in Temporal Trace form in Figure 4.12.) As

MMetacat’s ability to be reminded of other answers will be discussed in section 4.7.5.

4.6 The Comment Window

179

[¢] Commentary

Okay, if "abe” changes fo "abd”, what
does "we"” change to? Hi...

Lih—oh, | seem fo have run inlo a fittle
problem. Changing the
fetter—calegory of the lefler z io #s
siecessor is not possibie in xye.

Lih—oh, | seem fo have run inlo a fittle
problem again. Changing the
fetter—calegory of the lefler z io #s
siecessor is not possibie in xye.

The answer "xvd"” oceurs o me.
think this answer is prefiy mediocre.

This answer stronglv reminds me of
the answer xvi lo the problem "rst —=
st xyeE —= P27

The answer "xyz" afso occurs o me,
but that’s prefiy bad.

let’s see.

The onfy essential difference between
the answer xyz and the answer xyd o
the probient "abc —= abd, gz —= P"is
that the change from abe 1o abd is
viewed in a more fiteral way for the
answer x\z than it is in the case of
xyd. Both answers refy on seeing twe
Strings (abe and xyz in both cases) as
groups of the same vpe going in the
same direction. Alf in aff, 'd sav xyd
is the beler answer, since it involves
seeing the change from abe io abd in
a more abstract way.

LI

[#] Commentary

let’s see... "abe” changes to "abd’, and
" changes fo Tdvz”. Hmm...

I'm getting frustrated. | still don’t see a good
way fo describe how "xyz" changes fo "dyz".

Pl just have To vy a little harder...

Well, my latest effort 1o think up new rufes
resufted in some progress. Guess it was an
okayv effort, in retrospect.

Afial { have another idea...

Looks fike that fast briffiant idea | had
resufted inr a ot of progress. Guess fwas a
pretiy good idea, in retrospect.

Ahal | see why this answer makes sense. |
think it's a prefly mediocre answer.

Let’s see...

The answer dvz to the problem "abe —= abd,
xwz —> 7" is based on seeing abe and xe as
symmetric predecessor and suceessor
groups going in oppoesite directions, and on
seeing alphabetic—position symmelry
betweern the strings, whife the answer xvd is
based on seeing abec and Xy as grodps of
the same vpe geing in the same direction. In
xved’s case, the idea of seeing
aiphabetic—position svmmetry between abe
and xyz does not arise. The ahswer dyz,
however, seems incoberent o me, since it
invelves seeing abstract similarities between
abe and we (seeing abe and xyz as svmmeltric
predecessor atd successor groups going in
oppasile directions, and seeing
aiphabetic—position symmetrny between the
strings), while at the same time viewing the
change from abe to abd in a more fiteraf way.
Alf in aff, F'd sav xvd is the belter answer,
since it is more coherent.

LI

-1

Figure 4.14: Metacat’s running commentary for a run of the problem “abc=- abd;
xyz= 2?7 in which it found the answers xyd and xyz (left), and for a justification
run of the same problem in which the program was given the answer dyz (right).

180 An Architecture for Self-Watching

it happens, the answer xyd reminds the program of a similar answer to a different
problem that it has already encountered. Continuing on, the program then finds the
“do-nothing” answer xyz (based on the rule Change letter-category of letter ‘c’ to
‘d’). At this point, prompted by the user'®, the program compares the answer zyz
to the answer xyd, expressing a preference for the latter answer.

The second example shows Metacat justifying the answer dyz for the same prob-
lem. In this run, the program encounters some difficulty at first in building a rule
for describing how xyz changes to dyz. Its comment about “trying harder” arises
from clamping a codelet-pattern in order to stimulate the creation of new rules. As
it turns out, three new rules get created in the wake of this clamp. The program
therefore regards the amount of progress made by the clamp as satisfactory. In fact,
this enables the program to subsequently unify a pair of rules, which leads to a sec-
ond round of “brainstorming” (i.e., a justify clamp). This clamp spurs the creation
of many new structures, leading to the re-interpretation of abc and xyz as “mirror
images” of each other, which in turn leads to a successful justification of dyz. The
program thus considers the progress achieved by the clamp to be very high, even
though it considers dyz itself to be a pretty mediocre answer. Finally, the program
is asked to compare this answer to the answer xyd, which it judges in the end to be
of higher quality than dyz.

From these examples, it may appear that Metacat possesses a sophisticated lin-
guistic ability. However, it must be stressed that this is not the case. In fact, the
program possesses no genuine linguistic ability whatsoever; its ability to “speak” is
purely an illusion arising from a flexible set of phrase-templates, rather than from
a flexible command of English. These phrase-templates get filled in and combined
in complicated but purely mechanical ways, according to the circumstances at hand.

For example, in the first run shown in Figure 4.14, the explanation of the snag is

W

15The program prints the phrase “Let’s see...” whenever it is prompted to compare two answers.

4.6 The Comment Window 181

generated on the basis of the concepts and Workspace structures involved in the
snag—namely, the Slipnet concept Letter-Category, the letter z, the Slipnet concept
successor, and the Workspace string xyz. As an added touch, the second time the
program hits the snag, it inserts the word “again”, on account of the fact that a
previous snag event exists in the Temporal Trace. In addition, the program uses
prefabricated phrases to describe various numerical measures—such as the progress
achieved by a clamp—which are chosen from lists of possible alternatives on the basis
of the numerical values involved. For instance, in the second run shown, the phrases
“some”, “an okay”, “a lot of”, and “a pretty good” are all chosen on the basis of the
underlying numerical progress values associated with the clamps that occur during
the run. Other sentences are completely canned, such as “I'm getting frustrated” and

7

“I’ll just have to try a little harder...”, which the program prints out whenever it
clamps a codelet-pattern in search of better rules, or “Aha! I have another idea...”,
which it prints out whenever a justify clamp occurs. The commentary generated by
the program when comparing different answers is produced in a similarly mechanical
fashion. (The particular way in which the program generated its commentary about
the similarities and differences between dyz and xyd shown in Figure 4.14 will be
discussed in detail in section 4.7.4.) Furthermore, no type of linguistic interaction
with the program—in any form—is possible. For instance, “asking” the program to

compare two answers is accomplished simply by clicking on graphical icons associated

with the answers.

Metacat’s English-language veneer, although deceptive in a certain sense, is not
intended to deceive. Rather, it is intended simply to show the various things that hap-
pen during the course of a run, in a somewhat whimsical but also very user-friendly
fashion. In the case of comparing two answers, it is intended to show, in an easily-
understandable way, the various parallels and distinctions between the answers that

are recognized by the program. As will be discussed in the following sections, answers

182 An Architecture for Self-Watching

are compared on the basis of their underlying conceptual representations, which con-
sist mainly of themes and Slipnet concepts. Metacat’s ability to compare answers at
this representational level is what counts, not its ability to generate English-language
summaries of these comparisons.

That said, it is worth adding that not all of the words used by the program verge
on being completely devoid of semantic content. To be sure, most of them do (e.g.,

” and so on). However, a few of

“okay”, “frustrated”, “try”, “mediocre”, “I”, “me
them, such as “successor”, “opposite”, “direction”, “alphabetic-position”, “groups”,
and “letter”, reflect concepts that the program does understand—in a more genuine,
and quite defensible, sense—about its letter-string microworld.

In any case, as was indicated above, the chatty, colloquial tone of Metacat’s com-
mentary is meant to be humorous more than anything else. However, it is also
important at this point to acknowledge the potential dangers of the so-called “Eliza
effect” —which refers to the widespread tendency of people to read far more meaning
than is warranted into text generated by a computer program. (For a discussion of
Joseph Weizenbaum’s ELIZA program, from which the Eliza effect takes its name,
see [Weizenbaum, 1976].) Clearly, the output generated by Metacat might easily lead
(or mislead) a casual observer into falling for this effect. Therefore, in the interest of
transparency, the current version of the program can be run in two different linguistic
output modes.

When running in “Eliza mode”, Metacat generates the type of informal commen-
tary shown earlier. With this mode turned off, however, the program uses more
neutral language to describe the events that occur during a run. Figure 4.15 shows
the earlier output from the two runs of Figure 4.14, together with the more neutral

output generated during the same two runs with Eliza mode turned off.'® As can be

6Turning off Eliza mode, however, does not affect the commentary generated by the program
when comparing different answers. Thus the program’s descriptions of the similarities and differences
between xyd, xyz, and dyz are the same in each case.

4.6 The Comment Window

183

Okay, if "abc” changes te "abd’, what
does " change tof Hmm...

Lok, 1 seem fo have rirn inlo a fittle
problem. Changing the
lefler—calegory of the leller 7 to its
Successor is not possible in xe.

Uh—oh, } seem fo have run into a fittle
problem again. Changing the
lefler—category of the lefler z to its
Suecessor is not possible in xyz.

FThe answet "xyd” ocours to me. |
think this answer is pretty mediocre.

This answer strongly reminds me of
the answer xyu to the preblem "rst —»
s, e —= 27,

The answer "xyz" also occurs o me,
but that's prefty bad.

Beginning run: If "abe” changes to
“abd', what does "me" change to?

Hit a shag: Changing the
lefler—category of the lefterz fo fts
Successor is not passibie in xe.

Hit another snag: Changing the
lefler—category of the lefterz fo fis
Successor is not possibie in xe.

Found the answer "xyed”. Answer
quality = 73.

This answer is reminiscent of the
answer xvil to the problem "rst —=
rsu, e —= P Reminding strength =
80.

Found the answer "xg". Answer
quality = 57.

let’s see... "abe" changes to "abd’, and
" changes fo "dve”. Hmm...

'm gelting frustrated. ! stifl don’t see a good
way to describe how "xyz " changes to "dvz "

il just have to try a fittle harder...

Well, my latest effor? io think up new rules
resufted in some progress. Guess it was an
akav effort, in refrospect.

Afral | have another idea...

L ooks fike that fast brilliant idea | had
resufted in a lot of progress. Guess it was a

prefiv good idea, in refrospect.

Ahal | see why this answer makes sense. |
think it's a prefly mediocre answer.

Beginning justify run: “abe” changes to
“abd", and " changes to "dyz"...

MNe satisfactory rirles vet exist for describing
how " changes to "dyz".

Clamping rile-codelet pattern...

Unelamping patterns. Progress achieved by
rife—codelet clamp = 75.

Clamping theme palferns...

Unefamping patterns. Progress achieved by
frstify clamp = 92,

Successiully justified answer. Answer
quality = 73.

Figure 4.15: Metacat’s commentary for the same two runs shown in Figure 4.14,
but with “Eliza mode” turned off for comparison. Comments on the right correspond
to comments on the left on a one-to-one basis. The program’s explanations of the
differences between answers are the same as before, and thus are not shown.

184 An Architecture for Self-Watching

seen from the figure, Metacat generates exactly the same number of paragraphs in ei-
ther mode, which emphasizes the fact that the commentary produced by the program
when running in one mode is isomorphic to the commentary produced in the other
mode. In fact, a side-by-side comparison of the output generated in different modes
on a particular run is quite revealing in a way, because it brings out more clearly
which aspects of the program’s commentary are mere “window-dressing”, and which

aspects actually convey meaningful information about the run.

4.7 The Episodic Memory

The preceding examples convey the flavor of Metacat’s ability to “talk” about its
answers, and about its own behavior, in various ways. Clearly, much is going on
beneath the surface here. In particular, the program’s capacity to recall previously-
encountered answers, and to explain the similarities and differences that exist between
answers, relies on storing abstract representations of answers in long-term memory.
The remainder of this chapter describes these representations and how they allow

Metacat to compare and contrast its answers in an insightful manner.

4.7.1 Answer descriptions

When Metacat discovers a new answer, a considerable amount of information typically
exists—in the form of various types of structures—in the Workspace, the Themespace,
and the Temporal Trace. Usually, though, not all of this information is relevant to
the newly-created answer. For instance, extraneous groups, bridges, or rules, which
play no role in the creation of the answer, may exist in the Workspace. Likewise,
a number of partially-activated—or even dominant—themes characterizing ideas of
merely peripheral importance to the answer may exist in the Themespace. Further-

more, many of the processing events appearing in the Trace may have nothing to do

4.7 The Episodic Memory 185

with the answer, or may refer to structures that no longer exist.

Therefore, in order to create a representation of the answer suitable for storing in
long-term memory, Metacat must “distill” from this welter of information an abstract
answer description that captures the essence of the answer without including all of the
information that is available. This description must summarize the key factors that
led to the answer’s creation—namely, the ways in which the various strings involved
in the problem were perceived as being similar (and different). These factors can be
represented by a set of theme-patterns and rules. Specifically, an answer description

is composed of the following structures:

e The Workspace structures directly involved in creating the answer. This in-
cludes groups, bridges, and concept-mappings, as well as the letter-strings them-

selves.

e A vertical theme-pattern representing the similarity perceived between the top
situation and the bottom situation (i.e., between the initial string and the target

string).

e A top theme-pattern representing the similarity perceived between the initial

string and the modified string.

e A top rule representing the way in which the initial string is perceived as chang-

ing to the modified string.

e A bottom theme-pattern representing the similarity perceived between the target

string and the answer string (when running in justify mode).

e A bottom rule representing the way in which the target string is perceived as

changing to the answer string (when running in justify mode).

e An unjustified theme-pattern representing any unjustified slippages that the

186 An Architecture for Self-Watching

program failed to come to terms with in trying to make sense of an answer

provided to it (when running in justify mode).

The top and bottom theme-patterns of an answer description are just the theme-
patterns associated with the top and bottom rules, which were created at the time
the rules were built. To create the vertical theme-pattern, Metacat examines the ac-
tivations of vertical themes in the Themespace, along with recent group and slippage
events appearing in the Temporal Trace. If slippages have recently been made—
especially slippages involving whole-string groups—the themes associated with these
slippage events will be included in the answer description, since the ideas they repre-
sent are likely to have played a central role in creating the answer.!” (Slippages that
do not appear in the Trace may also have occurred, but they can be safely ignored,
since they were not considered to be of sufficient importance in the first place to de-
serve explicit representation in the Trace.) Furthermore, identity concept-mappings
involving whole-string groups are also likely to be important, since they characterize
similarities between highly-chunked situations, so themes associated with any such
concept-mappings are included as well .*®

As an example, Figure 4.16 shows the full answer description created for the answer
wyz to the problem “abc = abd; xyz=- ?”. This particular example arises from the
answer-justification run described earlier in section 2.4.5 of Chapter 2. The final
Workspace configuration of the run appears in Figure 2.5, and the sequence of events

recorded in the Temporal Trace during the run is shown in Figure 4.13. In particular,

17In general, associated with every slippage event in the Trace is a theme consisting of the concepts
involved in the slippage. For instance, a vertical Alphabetic-Position: opposite theme would be
associated with a vertical first = last slippage.

8However, a few caveats are in order here. In the current version of the program, only certain
types of vertical themes are allowed to appear in answer descriptions. Specifically, only vertical
themes of the category String-Position, Alphabetic-Position, Direction, Group-Type, or Bond-Facet
are permitted. Furthermore, in the case of Bond-Facet, no identity themes are allowed (i.e., only
Bond-Facet: different themes are permitted). These constraints make it easier for the program to
compare and contrast its answers, but they are essentially artificial and thus unsatisfactory. This
point will be discussed further in Chapter 6.

4.7 The Episodic Memory 187

[e] Top Themes

String Posidon

[®] Vertical Themes (sl

Answer Description

M T
w @ @ b <
String Pos. || Group Type iL‘Il(2/

|| Change letter gory of g letrer to ”

succgrp==prederp
whe e=>w%ol'e
swco=>pred
LettCigy=>LetiCley
right=-Ieft
EFoup=rgroup

w» @) @

o e P
Tims o, [P e —comgry of ot s o |
letter==lebber

[®] Bottom Themes

String Posidon

Figure 4.16: The full answer description created for the answer wyz to the problem
“abc= abd; xyz=- 2?7, showing the themes, rules, and other structures involved.

188 An Architecture for Self-Watching

the vertical theme-pattern appearing in the answer description is abstracted from the
series of slippage events recorded in the Trace.

Finally, in the case of an unjustified answer, an additional theme-pattern is created
from the answer’s unjustified slippages representing those aspects of the answer that
remain “unsupported by the evidence”. For example, the answer description for the
unjustified answer mrrjjjj to the problem “xqec= xqd; mrrjjj= ?” (discussed ear-
lier in section 4.5.2) would include an unjustified vertical Bond-Facet: different theme,
reflecting the failure of the program to make the required Letter-Category = Length
slippage between the top string xqge and the bottom string mrrjjy. This theme-
pattern, like the other patterns of an answer description, serves as a basis for judging
the relative quality of an answer as compared with other answers the program has

encountered.

4.7.2 Snag descriptions

In addition to remembering its answers, Metacat also remembers the snags that it
encounters while solving problems on its own. On hitting a new snag for the first time,
the program creates an abstract snag description that characterizes the situation (in
addition to creating a new snag event in the Temporal Trace), which it then stores in
memory. Like answer descriptions, snag descriptions consist of themes and Workspace
structures (i.e., those directly responsible for causing the snag), and are used by the
program in comparing and contrasting answers with one another. Specifically, a snag

description consists of the following structures:

e The Workspace structures directly involved in the snag, including groups, bridges,

and concept-mappings, as well as the letter-strings themselves.

e A wvertical theme-pattern characterizing the way in which the objects directly

responsible for the snag in the bottom situation are perceived as being similar to

4.7 The Episodic Memory 189

their counterpart objects in the top situation. This theme-pattern is based on

the concept-mappings underlying the bridges associated with the snag objects.

e A top rule representing the way in which the initial string is perceived as chang-

ing to the modified string.

e The translated rule leading to the snag itself.

Unlike answer descriptions, snag descriptions do not include any top or bottom theme-
patterns.

Storing snag descriptions in long-term memory gives Metacat the ability to “ap-
preciate” certain answers in ways that otherwise would not be possible. For example,
consider the problem “ege = geq; abbbe = ?” [Hofstadter and FARG, 1995, pp. 305—
306]. In this problem, ege gets, in a sense, turned inside-out, an idea that can be
captured—at least approximately—by the rule Swap letter-categories of all objects in
string. However, it is not so easy to do “the same thing” to abbbc, since three differ-
ent letter-categories are involved, instead of just two. One particularly elegant way
out of this quandary is to reperceive abbbc as 1-3-1 and then swap the group-lengths
rather than the letter-categories, yielding the answer aaabcce. Unfortunately, Meta-
cat is unable to get this answer on its own, because it cannot see eqe and abbbc as
single chunks based, respectively, on the ideas of letter-category and group-length,
and is thus unable to make the required Letter-Category = Length slippage. Instead,
it ends up repeatedly hitting a snag in trying to “swap” the letter-categories of a,
bbb, and c. On the other hand, if given this answer at the outset, it can almost make
sense of it—save for the unjustified Letter-Category = Length slippage.

The same goes for the answer aaabaaa to the problem “ege=- geq; abbba= ?”.
Metacat can (almost) justify this answer, but cannot get it on its own. However, there

is a crucial difference between aaabaaa and aaabcee. In the problem “eqe= gqeq;

190 An Architecture for Self-Watching

abbba= ?”, no good reason exists to see abbba as 1-3—1, since swapping letter-
categories is perfectly feasible. That is, no snag arises in this problem. In a sense,
then, the answer aaabccc is “justified” after all (since seeing abbbe as 1-3-1 avoids
a snag), while aaabaaa is not (since seeing abbba as 1-3-1 is unnecessary). As will
be seen in the next chapter, Metacat can make this observation, but it can only do
so if it knows that the problem “eqe=- geq; abbbc=- ?” normally leads to a snag.
If it has tried this problem on its own, it will know this, because the appropriate
snag description will exist in memory. (Conversely, if it is asked to justify the answer
aaabcece without having first attempted the problem itself, it will remain unaware of
the possibility of a snag arising, since snags never arise during answer-justification.)
In this way, snag descriptions enrich the program’s capacity for understanding its

answers.

4.7.3 Comparing and contrasting answers

When Metacat is asked to compare two answers it has encountered, it retrieves the ab-
stract descriptions of the answers from its Episodic Memory and analyzes the themes
and rules contained in these descriptions. In general, two answers may have identical
themes in common (called common themes), they may have themes which share the
same category but differ by relation (called differing themes), or one or both an-
swers may have themes that are not shared by the other answer at all (called unique
themes). Furthermore, some of these themes may be unjustified for one of the answers
but not for the other. Of course, various combinations of these types of themes are
also possible for an answer.

For example, referring back to the answer descriptions shown in Table 2.1 on
page 67, it can be seen that the answers xyd and xyu share a common String-
Position: identity vertical theme. On the other hand, zyu and uyz are based on the

differing themes of String-Position:identity and String-Position: opposite. Finally,

4.7 The Episodic Memory 191

in the case of the two wyz answers, the first answer involves a unique Alphabetic-
Position: opposite theme.

Another possibility, discussed at the end of the preceding section, is that an unjus-
tified theme underpinning an answer may in fact turn out to be “justified” in a certain
sense, if the theme represents an idea that enables a snag to be avoided. Some of an
answer description’s unjustified themes may therefore be reclassified as snag-justified
themes. For example, when Metacat gives up on justifying the answer aaabcce to
the problem “egqe=- geq; abbbc = ?”, it includes an unjustified Bond-Facet: different
theme!'? in its description of aaabcce, on account of its failure to make the necessary
Letter-Category = Length slippage. Likewise, it includes the same unjustified theme
in its description of the answer aaabaaa to the problem “ege=- geq; abbba=- 27,
for the same reasons. However, upon comparing these two answers, it considers the
Bond-Facet: different theme to be justified by the possibility of a snag in the case of
the former answer—provided that it has encountered this snag on its own before—but
to be unjustified in the case of the latter answer.

To be more precise, the presence of a snag description in memory involving exactly
the same letter-strings and rule as some answer description indicates that the program
has tried this problem on its own before—using exactly the same rule—and run
into a snag. Thus the differences between the themes involved in the snag and the
themes involved in the answer provide a strong clue as to how, in the case of the
answer, the snag is avoided, since everything else about the two descriptions is the
same. To bring this out more clearly, Table 4.1 shows the answer descriptions for
aaabaaa and aaabcce, as well as the snag description that arises from trying to

swap the letter-categories of abbbc in the problem “eqe=> qeq; abbbc= 272 In

19A Bond-Facet: different theme represents the idea of viewing the components of two strings
(or groups) as being bonded together differently—on the basis of letter-categories in one case and
group-lengths in the other.

20A few themes unnecessary for the purposes of the example have been omitted from this table
for the sake of clarity.

192 An Architecture for Self-Watching

Problem/Answer Vertical Theme Unjustified Theme
ege = geq; abbba= aaabaaa | String-Position: identity —Bond-Facet: different
ege = geq; abbbc = aaabcce | String-Position:identity —Bond-Facet: different
eqge = geq; abbbc= SNAG String-Position: identity

Rule: Swap letter-categories of all objects in string

Table 4.1: Two answer descriptions and one snag description for the problems
“‘ege = geq; abbba= ?” and “eqe=- qeq; abbbc=- ?”, showing the various themes
involved. The same rule is included in all three descriptions.

each case, the vertical String-Position:identity theme arises from aligning the target
string with ege in a straightforward way. Likewise, the same “swapping” rule is
involved in each case. By comparing the answer description for aaabecc with the
snag description, the key to avoiding the snag in this problem becomes clear: it is
the idea of seeing ege and abbbe as being “glued together” in different ways (i.e.,
according to letter-categories in one case and group-lengths in the other), represented
by the Bond-Facet: different theme. Therefore, instead of considering this theme to
be unjustified, Metacat considers it to be “snag-justified”. In contrast, this theme
remains unjustified for the answer aaabaaa, since no corresponding snag description
exists for the problem “eqe = qeq; abbba=- ?”. In this way, Metacat can perceive the
critical difference between aaabaaa and aaabcce, even though the themes associated
with each answer are identical.

In addition to comparing the themes associated with answers, the program also
compares the accompanying rules, both structurally and in terms of their overall levels
of abstractness.?! Essentially, comparing two rules involves “aligning” them in order
to highlight any differences that may exist in their internal structure, or between
the various concepts making up the rules. (This is similar to the process of rule

unification described in section 4.3.1.) Furthermore, the coherence of an answer can

21Rule abstractness is discussed in section 3.3.5 of Chapter 3.

4.7 The Episodic Memory 193

| Problem/Answer | Vertical Themes

abc= abd; xyz=- dyz | String-Position: opposite Direction: opposite
Group-Type: opposite Alphabetic-Position: opposite
abc= abd; ryz= xyd | String-Position: identity Direction: identity
Group-Type: identity

Table 4.2: The vertical themes associated with the answers dyz and xyd to the problem
“abc= abd; xyz= ?7.

be checked by comparing the abstractness of the answer’s rule with the abstractness
of the themes associated with the answer, as determined by the average abstractness
of the themes’ constituent concepts. For example, the answer dyz to the problem
“abc = abd; xyz=- ?” involves themes based on the abstract concept of opposite, but
depends on a literal-minded interpretation of abe = abd. This “dissonance” is the
reason that Metacat considers dyz to be incoherent, as the program itself explained

(in a somewhat convoluted manner) in Figure 4.14.

4.7.4 Generating commentary in English: An example

The precise way in which Metacat generated its commentary about the similarities
and differences between dyz and xyd shown in Figure 4.14 will now be described in
detail. The starting point for comparing dyz to xyd is the set of vertical themes as-
sociated with each answer (see Table 4.2).?2 The answer description for dyz includes
the three differing themes String-Position: opposite, Direction: opposite, and Group-
Type: opposite, while that of xyd includes the differing themes String-Position: iden-
tity, Direction:identity, and Group-Type:identity. In addition, a unique Alphabetic-

Position: opposite theme is also included in dyz’s answer description. These themes,

22Tn the current version of Metacat, neither top themes nor bottom themes are used to compare
answers. Ideally, of course, answers should be compared on the basis of all of their associated themes.
Nevertheless, as will be seen in the next chapter, many answers can be insightfully contrasted on
the basis of their vertical themes alone.

194 An Architecture for Self-Watching

together with the rules associated with each answer, are used by the program in de-
ciding which phrase-templates to include in its commentary, and how to fill them in.

The first such template is shown below:

The answer 1 s based 2 3 , while the answer 4 is based 5 &6

This particular template is chosen because differences exist between the themes. Both
dyz and xyd include themes that are not present in the other answer, so the general
form “The answer ..., while the answer ...” 1is used, in order to contrast their
differences. In general, the first time an answer is mentioned, its full description
is used, so slot 1 gets filled in with “dyz to the problem ‘abc = abd, xyz= ?"".
Furthermore, if common themes exist for an answer (in addition to the themes being
described), then the phrase “in part” is added in slot 2. However, in dyz’s case, no
such themes exist, so this slot is left blank. Slot 3 is more complicated. This slot gets
filled in with a phrase describing all of dyz’s differing and unique themes. In general,
since an answer may have more than one such theme (as in dyz’s case), any number
of subphrases may appear here, separated by commas. These subphrases are in turn
constructed from various templates, which are chosen on the basis of the themes being
described. In the present case, two such templates are involved—one for describing
the themes String-Position: opposite, Direction: opposite, and Group-Type: opposite,
and one for describing the theme Alphabetic-Position: opposite. The first of these

templates is shown below:

1 _see 2 3 _as_4 5 6

In general, slots 1 and 2 take various prepositions and verb endings, chosen accord-
ing to circumstances, in order to yield grammatical English. In the present example,
these slots are used to construct the phrase “on seeing”. Next, the phrase “abc and
xyz” appears in slot 3, which describes the initial string and target string associated

with dyz. The Group-Type: opposite theme itself is described using the stock phrase

4.7 The Episodic Memory 195

“symmetric predecessor and successor groups”, which appears in slot 4. Likewise, the
Direction: opposite theme is described with the phrase “going in opposite directions”
in slot 5, which makes explicitly mentioning the String-Position: opposite theme un-
necessary. The last slot is reserved for various caveats that may need to be included
as well. For example, in the case of unjustified themes, the phrase “(although there
is no good reason for doing so)” would be added. In the case of snag-justified themes,
the phrase “(which avoids a snag that would otherwise arise from the fact that ...)”
would be added, with an explanation of why the snag occurred inserted in place of
the ellipsis, such as “changing the letter-category of the letter z to its successor is not
possible in zyz”. In dyz’s case, however, no unjustified themes exist, so no caveats
are necessary.

The template used to describe dyz’s Alphabetic-Position: opposite theme is sim-

ilar to the above template, and is shown below:

1_see_2 alphabetic-position _3 _ between _4 _5

As before, the first two slots are used to create the phrase “on seeing”. Since the
theme is based on the concept of opposite, the word “symmetry” is inserted in slot 3.
(The word “sameness” would be used for an identity theme.) Slot 4 describes the
initial string and target string, but in this case, the phrase used is simply “the strings”,
since abc and xyz have already been explicitly mentioned in the earlier template.
The last slot, as before, is reserved for caveats.

This completes the description of the themes associated with dyz. Let us now shift
back to the original top-level template, whose slots 4, 5, and 6 get filled in according
to xyd’s themes in a similar fashion. The phrases “groups of the same type” and
“going in the same direction”, however, are used here, on account of the identity
themes involved. Furthermore, the answer xyd itself is described in an abbreviated
form, since the full problem has already been mentioned in the description of the rival

answer dyz.

196 An Architecture for Self-Watching

The next sentence appearing in the commentary points out the uniqueness of dyz’s
Alphabetic-Position: opposite theme. In general, if an answer has unique themes, a

sentence of the form shown below is included:
In _1 , the idea 2 does not arise.

In this example, the phrase “axyd’s case” appears in slot 1, followed by the description
of the theme in slot 2. The latter phrase is constructed in the same manner as before,
except that here “of seeing” is used instead of “on seeing”. (If several unique themes
exist, descriptions for all of them are constructed and included in slot 2, separated
by commas.)

As was explained earlier, Metacat considers the answer dyz to be incoherent. To
express this fact, another sentence is added to the commentary, based on the following

template:

The answer _1_, however, seems incoherent to me, since it involves seeing _2
between _3_ (_4_), while at the same time viewing _5_ in a more literal way.

Phrases for the names of the strings involved go in slots 1 and 3 (“dyz” and “abe and
xyz”, respectively). The phrase appearing in slot 2 is either “an abstract similarity”
or “abstract similarities”, depending on the number of themes associated with the
incoherent answer. In dyz’s case, the plural phrase is used. Slot 4 contains essentially
the same phrases used earlier to describe dyz’s themes, although here the word
“on” is omitted. This phrase makes clear which types of abstract similarities are
being referred to, although this may make the English sound slightly redundant and
unnatural. The phrase appearing in the last slot refers to the initial string and the
modified string, and is constructed by inserting the names of these strings (“abe”
and “abd”) into the template “the change from ... to...”.

Finally, the program states its overall “preference” for xyd by filling in the fol-

lowing template:

4.7 The Episodic Memory 197

All'in all, I'd say _1_is the better answer, _2

In general, the name of the preferred answer appears in the first slot, followed by a
phrase describing the program’s reason for preferring this answer. In this case, the
phrase is “since it is more coherent”. Other phrases, however, are possible under
different circumstances. For example, if one answer involves unjustified themes while
the other does not, the program will express a preference for the latter answer with
the phrase “since it involves no unjustified ideas” in slot 2. On the other hand, if
no unjustified themes exist, but one answer involves more themes than the other,
the program will prefer the latter answer, expressing this preference with the phrase
“since it is based on a richer set of ideas”.

And so on. In short, many phrase-templates exist, not all of which are described
here (as can be seen from the program’s commentary on xyz and xyd shown in the
first run of Figure 4.14). These templates can be combined in many intricate ways
to yield quite plausible-sounding English commentary. From a theoretical stand-
point, however, this surface-level expressive capacity of the program is fundamentally
uninteresting. What s interesting is Metacat’s deeper capacity to recognize subtle
similarities and differences between answers on the basis of the common themes, the
differing themes, the unique themes, the unjustified themes, the snag-justified themes,
and the rules that constitute answer descriptions. This analysis is carried out at an
abstract representational level, not at a linguistic level—a distinction that must be

kept in mind when judging the output of the program.

4.7.5 Reminding

Closely related to the issue of answer comparison is the phenomenon of reminding,
in which one answer may trigger the spontaneous retrieval from long-term memory
of other answers that are in some way similar to the current answer. In Metacat, this

may happen whenever a new answer is discovered (or justified) by the program.

198 An Architecture for Self-Watching

Every answer description stored in memory has an associated activation level
ranging from 0 to 100. Whenever a new answer event occurs in the Temporal Trace,
each answer description computes the distance between itself and the new answer
description created from the information in the Trace, updating its level of activation
according to the distance. If the activation level exceeds some threshold, Metacat
will be reminded of the answer, to the extent that the threshold is exceeded. In other
words, the activation level of an answer reflects how strongly the program is reminded

of it.?3

For example, Figure 4.17 shows Metacat’s memory upon discovering the answer
wyz to the problem “rst=-rsu; xyz= ?”, after having encountered several other
answers to this problem and to the problem “abc=- abd; xyz= ?” (in addition, a
snag description for the latter problem also exists). The activation levels of answers
are indicated by shades of grey, ranging from white for the most strongly-activated
answers to dark grey for dormant answers—so that more weakly-activated answers
appear to “fade into the background” of Metacat’s memory. In the present case, the
wyz answer just found is the most strongly activated answer (not surprisingly). As
can be seen, this answer reminds the program somewhat of the other wyz answer. In
addition, it also reminds the program of uyz, although to a lesser extent. The other
answers, however, lie “too far away” from wyz to be recalled.?*

Determining the distances between answers involves essentially the same issues
discussed earlier in the context of answer comparison. Distance is a numerical mea-

sure computed on the basis of the rules and various types of themes (i.e., common,

23Unlike the activations of Slipnet concepts, however, the activations of answer descriptions do
not decay over time in the current version of the program. They change only when the program
discovers a new answer. This shortcoming should eventually be remedied.

24Tn the current version of the program, it is not possible for snag descriptions to become activated.
However, there is no reason in principle why this should be the case. Hitting a snag in one problem
could remind the program of similar snags it has encountered in other problems in the same way
that it is reminded of other answers—by comparing the description of the just-encountered snag
with other snag descriptions in memory.

4.7 The Episodic Memory 199

[®] Episodic Memory

rst —= FSU, XUZ —= WIE

Figure 4.17: Siz answer descriptions (and one snag description) stored in Meta-
cat’s Episodic Memory. The answer wyz to the problem “rst=-rsu; xyz=- ?” has
Just been found, which reminded the program of the same answer to the problem
“abc= abd; xyz=- ?”. The program was also reminded, to a lesser extent, of the
answer uYz.

differing, unique, unjustified, or snag-justified) that exist for a pair of answer descrip-

tions. Specifically, distance is a function of:

1. The number of differing themes and unique themes that exist (the more such

themes, the greater the distance between the answers).

2. The number of structural and conceptual differences that exist between the

rules involved (the more such differences, the greater the distance).

3. The difference in abstractness of the rules involved (with distance increasing

with the degree of disparity).

200 An Architecture for Self-Watching

4. The number of themes that are justified—in one way or another—for one answer

but unjustified for the other (the more such themes, the greater the distance).

5. The coherence of the answers (the distance between a coherent and an incoher-
ent answer being greater than the distance between two coherent answers, or

two incoherent answers).

One final point deserves to be emphasized. Like Copycat’s Slipnet, Metacat’s
Slipnet serves as the program’s ultimate repository for its knowledge of concepts per-
taining to the letter-string microworld. These concepts acquire their meanings (i.e.,
their semantics) solely by virtue of the ways in which they can become activated
in response to certain situations arising in this world.?> Accordingly, they represent
the “stuff” out of which the program’s understanding of its answers—in any genuine
sense—arises. Therefore, it is important to emphasize the fact that answer descrip-
tions, which serve as the basis for Metacat’s ability to talk about its answers in an
insightful manner, are ultimately just organized patterns of Slipnet concepts, since
they are composed of themes and rules (which in turn are composed of Slipnet con-
cepts). Thus the English-language commentary generated by the program about its
answers, although just a surface-level “gloss” in many ways, nevertheless rests on a

deeper foundation of conceptual representation.

25See [Hofstadter and FARG, 1995], particularly Chapter 6, for a fuller discussion of this point.

CHAPTER FIVE

Performance of the Model

The previous chapter explained in some detail Metacat’s mechanisms that allow it to
observe and control its own behavior, and to compare and contrast its answers. This
chapter shows these mechanisms in action by presenting a series of annotated runs of
the program on a number of different analogy problems. These problems, and their
answers, are grouped into several related families for the purposes of comparison,
and they serve to illustrate, in various ways, Metacat’s ability to perceive abstract

similarities between answers that, on the surface, would appear to be quite different.

The first section discusses these analogy problems, although most of them have
already been discussed to some extent in earlier chapters. This is followed by com-
plete runs of the program, illustrated by screen dumps, showing its behavior on these
problems in detail. In a sense, the runs presented here represent Metacat “acting on
its best behavior”, because they demonstrate the kinds of things that the program is
able to do successfully. In contrast, the “darker side” of Metacat is presented in the
concluding section—namely, examples that point out a number of serious shortcom-

ings that remain in the current version of the program.

201

202 Performance of the Model

5.1 Three Families of Analogy Problems

5.1.1 The zyz family

The first family of analogies involves the pair of problems “abc= abd; xyz= ?”
and “rst= rsu; xyz= ?” (see the top of Figure 5.1). These problems have been
discussed at length already, particularly in section 2.4.6 of Chapter 2. To recap briefly,
the answers xyd and xyu represent fundamentally identical ways of doing “the same
thing” to xzyz as was done to abc or rst, and are both based on a literal-minded
interpretation of the problem. In contrast, a more abstract approach, in which xyz
is viewed as the mirror image of abc or rst, yields wyz in each case. However, this
really makes sense only for abc, given the lack of a—z symmetry between xyz and
rst. These two analogies, therefore, are quite different in character, even though
they both involve exactly the same answer. Finally, a blend of abstract and literal-
minded approaches is responsible for the answers dyz and uyz, making both of these
answers seem a bit incoherent. However, it could be argued that since abc and xyz
are symmetric in every way, while rst and xyz are not, changing the x to d seems
even sillier in the former case than changing it to w seems in the latter, making dyz
more incoherent than uyz. In other words, a subtle but key difference exists between
these analogies, on account of the additional alphabetic-position symmetry in the first

problem, just as in the case of the two wyz analogies.

5.1.2 The mrryyy family

The second family of analogies consists of the answers mrrkkk and mrryjsy to the
pair of problems “abc=- abd; mrrjjj= ?” and “zqc= xqd; mrrijj= ?” (see the
middle of Figure 5.1). Each of these analogies relies on seeing the target string
mrrjjy in terms of the three components m, rr, and j39—which correspond to the

three letters of the initial string—and on viewing the rightmost letter of the initial

5.1 Three Families of Analogy Problems

203

The xyz family

abc = abd abc = abd abc = abd
ryz = xyd TYz = WYz ryz = dyz
rst = rsu rst = rsu rst = rsu
TYz = TYU TYz = wyz TYz = uUYz

The mrryy; family

abc = abd abc = abd
mrrjj) = mrrkkk mrryj; = mrrigg
xqc = xqd xqc = xqd
mrrjj) = mrrkkk mrrjjj = mrrijg

The ege family

eqe = qeq eqge = qeq
abbba = baaab abbba = aaabaaa
eqe = geq eqe = geq
abbbc = geeeq abbbc = aaabcce

Figure 5.1: Three families of letter-string analogies.

204 Performance of the Model

string as changing to its successor. Accordingly, the rightmost component of mrryj;
(i.e., the gjg group) also changes to its successor, yielding either the answer mrrkkk if
mrrjjj is viewed in terms of letter-categories (i.e., as m-1—j), or the answer mrrjjjj
if it is viewed in terms of group-lengths (i.e., as 1-2-3).

In the case of the problem “abc=- abd; mrryjy= 2”7, the answer mrryjyy rep-
resents a stronger analogy than mrrkkk, because viewing mrryyy as 1-2-3 reveals
an abstract similarity between this string’s structure and the parallel a—b—c structure
of the initial string. On the other hand, the answer mrrkkk makes for the stronger
analogy in the case of “xqc= xqd; mrrjjy= ?”, for similar reasons. That is, un-
like abc, the string xgc possesses no internal structure, so viewing mrrjjy in an
unstructured way, as m-r—j, more closely parallels xgc than does seeing it as 1-2-3.
In a sense then, paying attention to group-lengths in this problem amounts to “being
too clever”. (Likewise, not paying attention to group-lengths in the other problem
amounts to “being too obtuse”.) The two mrrkkk answers, therefore, are actually

quite different in character, as are the two mrrjjjy answers.

5.1.3 The eqge family

The third family of analogies involves the pair of problems “eqge=- qeq; abbba= ?”
and “ege=- geq; abbbc=- ?” (see the bottom of Figure 5.1). In these two problems
(which were discussed earlier in section 4.7.2 of Chapter 4), ege can be viewed as
turning itself “inside-out” by swapping the letter-categories of its constituent letters
to yield geq. If abbba is viewed as consisting of the three components a, bbb, and
a—corresponding to the three letters of ege—then a natural way of doing “the same
thing” to abbba is simply to swap the letter-categories of the components, yielding
baaab. In contrast, this approach won’t work for abbbe, because here there are three
distinct letter-categories involved, hence “swapping” them makes no sense. One way

around this difficulty is simply to abandon the idea of swapping altogether, seeing

5.1 Three Families of Analogy Problems 205

the letters of ege as instead changing individually to g, e, and q. Changing abbbc
in the analogous way thus amounts to changing its three components, one by one, to

g, eee, and q, yielding the answer geeeq.

A more elegant approach, however, is to reperceive abbbc as 1-3-1 and then
swap the lengths of the components instead of the letter-categories, yielding aaabccc.
This is reminiscent of the answer mrryjj3 to the problem “abc=- abd; mrryjy= 2"
(although in the latter problem, no snag is involved). On the other hand, it is
possible to take this approach with abbba as well, swapping lengths instead of letter-
categories to yield aaabaaa. However, as with the earlier answer mrryjj; to the
problem “xgqc=-xqd; mrrjjy= ?”, this amounts to “overkill”. That is, there is
no good reason to view abbba as 1-3-1, since swapping letter-categories works just
fine. Thus the difference between the answers baaab and aaabaaa to the problem
“ege=- geq; abbba=- ?” is just like the difference between the answers mrrkkk and
mrrjjjj to the problem “xqc= xqd; mrrjjy=- ?”, because in both cases viewing
the target string in terms of group-lengths—although perhaps seeming like a clever

thing to do—actually makes for a weaker analogy.

In contrast, viewing the target string in terms of group-lengths in the problems
“ege= qeq; abbbc=- ?” and “abc= abd; mrrjjy= ?” makes for a stronger analogy
than would otherwise be possible in each case—although not for precisely the same
reasons, since doing so in the former problem enables a snag to be avoided, while in
the latter problem no snag arises. In other words, the answer aaabcce to the first
problem is a strong answer for both “pragmatic” and aesthetic reasons, while the
answer mrrjjjj to the second problem is a strong answer for aesthetic reasons only.
Likewise, the answer aaabccc to the first problem represents a stronger analogy than
the answer aaabaaa to the problem “ege= qeq; abbba= ?”, even though both
analogies involve seeing the target string as 1-3-1, precisely because of the fact that

paying attention to group-lengths is warranted in the former case (due to the potential

206 Performance of the Model

for a snag) but not in the latter.

5.2 Sample Runs of the Program

This section presents a selection of sample runs of Metacat on several of the above
problems, in order to illustrate more clearly the mechanisms discussed in Chapter 4.
For each of these runs, a series of “snapshots” of the Temporal Trace and Workspace
is shown, giving a sense of how the run evolves over time. These snapshots, taken
directly from the screen, are intended to highlight the most interesting aspects of a
run. Unfortunately, though, they do not show the many different colors that are used
to color-code various structures for clarity, especially in the Workspace. However, one
particular feature of the program can be used to compensate for this, at least to some
degree. In general, every event appearing in the Temporal Trace can be displayed
by clicking on its graphical icon with the mouse. When this is done, the structures
associated with the event are highlighted against a faded grey background consisting
of the Workspace structures that existed at the time the event occurred. (In addition,
the event’s icon is also highlighted in the Trace.) This method of displaying events
helps to improve the clarity of the examples, and is thus used whenever possible in

the following runs.

5.2.1 Examples of answer justification
Run 1: abc = abd; mrriy= mrrimy

The first run demonstrates Metacat’s ability to justify the answer mrrjjy to the
problem “abc = abd; mrrjjy= ?” through the application of top-down pressure gen-
erated by clamping patterns. The run begins in the usual way, with codelets building

bonds, groups, bridges, and other Workspace structures among the letter-strings. By

5.2 Sample Runs of the Program 207

about 500 codelets®, sameness groups have been built in both mrrjjj and mrrijjs,
but their lengths have not yet been noticed by the program. (A Length description
has been attached to the rr group in mrryjyy, but this description is irrelevant,
because the Length concept in the Slipnet is not activated.) In addition, the acti-
vation of the concept of identity has been recorded in the Trace, as a result of the
creation of bridges involving identity concept-mappings such as leftmost = leftmost

and letter = letter (see Panel 1-a).

Soon after this, the top rule Change letter-cateqory of rightmost letter to successor
is built, based on the horizontal bridges between abc and abd. The next important
event occurs when the program perceives the letter m in mrrjjj as a sameness group
of length one, due to the top-down pressure exerted by the sameness-group concept
in the Slipnet, which has become activated by the presence of the other sameness

groups in mrrjjj and mrrijjj (see Panel 1-b).

ceived as a single-letter group, the entire initial string is perceived as a successor group,
and another top rule is created for describing abe = abd (Change letter-category of
letter ‘¢’ to ‘d’). At time step 1187, the bottom rule Increase length of rightmost group
by one? gets built, paving the way for unification to occur with the original top rule
Change letter-category of rightmost letter to successor (see Panel 1-¢). Accordingly,
when an Answer-justifier codelet runs a few time steps later, it picks the bottom
rule and translates it as Increase length of rightmost letter by one, a rule which nei-
ther exists nor works for abe. Upon examining the existing top rules, however, the

codelet discovers that the bottom rule can be unified with the first top rule on the

!Generally speaking, more codelets are required for a typical run of Metacat than for a typical
run of Copycat, since in Metacat, bonds and groups can be built in all of the strings, and horizontal
bridges can be built between the top strings (as well as between the bottom strings when running
in justify mode).

20r, equivalently, Change length of rightmost group to successor.

208

Performance of the Model

1-b

[®] Temporal Trace

1]

Workspace
(Cogeiets e 5713)
a ﬁ/ == a b
; 2;
% J R:
m o \r ri|j j j| = m |r rjJjji
lrmost=rrmost most=>Imost
letter=>Icher
[#] Temporal Trace
[=]
Event 3: Built sameness-group
(Coeiets rure: 57E)
a K = a b
; é
M—f R R2
M roor||j j == m |r Fl|J]

Lmest=rrmost itmost=>Imost
lelter=>lehter

5.2 Sample Runs of the Program 209

[®] Temporal Trace

[TepRute]| [m] [m] [abc] [Fop Reie || [[Botwom Rue |

Event 7: Built rule

(Cooeiets i T187)

o
AN
J
1]
Ll
j

.
2
/

=3 i

J4

R 1 Rz
mirori\j jj - moror\jJjoJji
mEEm mash [nerense engthof righamase group by e |

basis of the slippages Length = Letter-Category and group = letter.> (The codelet
discovers this by probabilistically picking a top rule of roughly the same strength as
the bottom rule, and then comparing its internal structure to that of the bottom
rule.) Consequently, it creates a vertical theme-pattern based on these slippages (and
on the identity concept-mappings rightmost = rightmost and successor = successor),
which it then clamps in the Themespace, along with the theme-patterns associated
with each of the rules. In addition, it clamps a concept-pattern in the Slipnet con-
sisting of concepts associated with the rules and themes.* These patterns are shown
in Panel 7-d. In the case of the vertical theme-pattern, the three identity themes

arise from the concept-mappings rightmost = rightmost and successor = successor,

3As this example shows, slippages that move upwards from the bottom situation to the top
situation are possible when Metacat runs in justify mode, contrary to the usual top-to-bottom
slippages that arise when the program looks for answers on its own.

4This pattern is actually a composite of the individual concept-patterns associated with each of
the rules and each of the theme-patterns.

210 Performance of the Model

1-d

[®] Temporal Trace

(] [m] [wtc] [Topruie]| [otmmtut | -

[#] Top Themes [«] Bottom Themes

[#] Vertical Themes
Event 8: Clamped patierns

{(Coaaicts e 115945)

el pare| | T | T g gy e |
(o]
Concept Patiern
@
Opposite ShingPos buost middle ot whele single Objectllzy lefter greup AlphaPos first last
@
Identity Direction ieft right BondCizy pred ELE] same Groupllsy predsrp wmucogrp seamegrp LedterCizy
a L] a 4 Fl f g L] H 7 3 ! m
n o P q & B t u w w ar » =
@
Length one oo three Four fioe BeondFacet

5.2 Sample Runs of the Program 211

while the Object-Type: different and Bond-Facet: different themes arise from the slip-
pages group = letter and Length = Letter-Category. The top and bottom theme-
patterns reflect the identity concept-mappings underlying the top and bottom hori-
zontal bridges. Additionally, a codelet-pattern is clamped that enhances the urgencies
of top-down bond, group, and description codelets. This codelet-pattern (not shown
in the figure) works in tandem with the clamped concept-pattern to promote the

creation of other types of Workspace structures besides bridges.

The effect of the resulting top-down pressure is twofold. First, the clamped theme-
patterns essentially hold the existing string mappings in place, since none of the
bridges are incompatible with the clamped themes. Second, the clamped concept- and
codelet-patterns increase the likelihood that a Length description will get attached to
the rr group in mrrjjy, on account of the clamped Length concept and the enhanced
urgencies of Description-scout codelets. In fact, this occurs approximately 250 time
steps later—still well within the clamp period. Furthermore, once this description has
been attached to rr, mrrjyy is more likely to get chunked into a high-level successor
group on account of the clamped successor and Length concepts in the Slipnet and

the enhanced urgencies of Bond-scout and Group-scout codelets.

As it turns out, the clamp period ends before this happens. Approximately 200
codelets later, at time step 1826, the program again tries to unify the same pair of
rules as before. This effort again results in a justify clamp, because no bridge yet exists
between abc and mrrjjy as a whole. By the end of the second clamp period at time
step 2371, the program has perceived mrr as a 1-2 successor group in both mrryj;
and mrrjjjj, but as yet no whole-string group exists (see Panel 7-e). By time step
2506, the program has managed only to create another bottom rule, Change length of
rightmost group to four, which doesn’t help the situation very much. A third justify
clamp thus ensues, based on the same pair of rules as before. This time, however, the

1-2-3 successor group gets created approximately 130 codelets into the clamp period.

212

Performance of the Model

[®] Temporal Trace

[rarre | [m] [m] [ab-c | [T o | [[ommmme |

Workspace

(Cogeiets wrn £377)

\\
S
BN
|
o -

ba
j~%

]
v]

-
-
b

F—e2=Rz 43 1)
M - Al i 7 = [lAliiio

lrmost=rrmost most=>Imost ‘middle==middle
Lelter=—group felter=>group letter=>group
[#] Temporal Trace

j El El [e8] [For Rute || [Bottom Rute)| [Bottom Ruze | [1-2-3 | [zenciyrLonsen |

Event 13: Made LetiClgy=>Length slippage

(Cogeiats rin: 2688)

L o e 4

g‘_f‘ou =>mup
y}_g.hg> it
three==three

SRCC=FSUCE

Tomost=>rmost “Imost=>Emost Imiddle=>middle V Tnerecse lengeh of righrmost group By one
Tottar—group Tottor—gronp Totor=gronp H

5.2 Sample Runs of the Program 213

Soon afterwards, still under pressure from the vertical theme-pattern, a bridge is built
between the two whole-string successor groups abc and mrrjjy at time step 2688,
based in part on the slippage Letter-Category = Length. Because this slippage is
compatible with the clamped Bond-Facet: different theme, it is considered important
enough to be recorded in the Trace (see Panel I-f).

Finally, just a few time steps later, an Answer-justifier codelet runs, this time suc-
cessfully unifying the rules on the basis of the existing vertical mapping. A coherent
interpretation of the problem yielding the answer mrrjjyy has thus been discovered.

At this point, the codelet creates an abstract description of the answer (shown in

Figure 5.2) from the themes associated with the slippage event in the Trace, the

[¢] Top Themes [*] Bottom Themes E
iden iden iden iden iden
Stwing Positon Object Type Leter Cotegory Swing Posidon Object Type
iden
Group Type

..
Answer Description

j

T\J\,\’\"\’\/\"\’a

Swing Pos. || Group Type

| Change letter—category of rightmost letter to successor |

Eroup=rgroup
: hi= Rt
iden . ;igme:}! roe
SUCC=FSUCT
Direcion 5y 3 12
M1 R I3 T
m I I J J J = m ¥ r \j 1 I I
« @
1 - 3 - i ddle=>mi ;
st Fo go:&ﬂ’;;;n;:; S?e?g;i{g?:;; 5?;;5;5‘1;3};?;:&& || Increase length of rightmost group by one ”

Figure 5.2: The answer description for mrryjyy created at the end of Run 1.

214 Performance of the Model

whole-string bridge in the Workspace, and the top and bottom rules, which it then

stores in the Episodic Memory.

Run 2: xzqc= xqd; mrrjy) = mrrkkk

In Run 1, the clamped theme-patterns serve to lock in the existing string mappings
so that they will not be inadvertently destroyed while the program is waiting for
other types of structures to be built, such as descriptions and groups. By contrast,
Run 2 illustrates the use of thematic pressure to reorganize a mapping in support
of a particular rule. In this run, the program is given the answer mrrkkk to the
problem “xgc=-xqd; mrryjs= ?” and asked to justify it. Because this answer does
not require seeing mrrjj) as a single group, it is easier for the program to justify

The beginning of the run is similar to that of Run 1. At time step 743, the
program builds the top rule Change letter-category of rightmost letter to successor
(see Panel 2-a). By time step 1525, the program has built up strong top and vertical
string mappings, but the bottom mapping is not quite uniform, since the 337 group of
mrrjjj is seen as corresponding to the rightmost letter k of mrrkkk (see Panel 2-b).
Shortly thereafter, at time step 1550, an Answer-justifier codelet runs, picking the
top rule and translating it as Change letter-category of rightmost group to successor.
As it turns out, this translated rule works correctly for mrrjjs, so the codelet adds it
to the Workspace as a new bottom rule, since no such rule yet exists. Unfortunately,
however, this new rule is not currently supported by the mapping between mrrjj

5

and mrrkkk, on account of the jjj—k bridge (see Panel 2-¢).” Consequently, the

codelet clamps the theme-patterns associated with each of the rules, together with

5The darker jjj—kkk bridge shown in the panel does not yet exist in the Workspace. Existing
Workspace structures are shown in grey. In general, whenever a rule event is displayed by the user,
the bridges required to support the rule are also shown, whether or not they currently exist. This
brings out more clearly any inconsistencies with the current set of Workspace bridges.

5.2 Sample Runs of the Program 215

2-b

[#] Temporal Trace

Caontiy) [m] [7o 0t |

L]

Event 3: Built rule

(Craeiets mar 743)

T L, Yy
/

2" || Change letter y of letter 2o H
P J

x q ¢
R v

m|r i i = mor ek k&
“tmost=rTmost

Yrmost=rrmost
letter=>letter letter==Ictter

[¢] Temporal Trace

Claentt) [m] [Pt] [m

L]

Workspace

(Cogeiets run 7523)

~

- 8 R = \I
m| (r r|l|j J J == m||\r rl|k k k
lrmost=rrmost hmost=rImost ‘middle=>middle
Lelter=rgroup letter=>group Letter=rgroup

216 Performance of the Model

[#] Temporal Trace

Crarni) [m] [T | [| [] crame |

L]

EFvent 5: Built franslated rule

(Cogeiats min: 1558)

il

2 3 i || Chewnge lottar 1y af v lexver to ”

hamosi=rrmost “Imost=>Emost Imiddle=>middle | latter aof oup 1o ”
Teltor=group fottor==group leHer=>group Chang y of Eroup

the current pattern of dominant vertical themes in the Themespace (see Panel 2-d).
Clamping the bottom theme-pattern greatly weakens the existing 377 —k bridge, due
to the incompatible Object-Type: identity theme, and strongly promotes the creation
of a bridge between the two groups 737 and kkk. All other existing bridges are
compatible with the clamped themes, so their strengths get reinforced by the clamp.
The net effect is that the bottom mapping gets “cleaned up” while the other two
mappings are held in place. By time step 1665, approximately 100 codelets into the
clamp period, the bottom mapping is consistent with the bottom rule (see Panel 2-¢).
The two j= k slippage events appearing in the Trace are associated with the newly-
created bridges 777 —kkk and j—k, each of which is compatible with the clamped
bottom themes. This new mapping supports the bottom rule, which in turn paves

the way for a successful justification of mrrkkk at time step 1747 (see Panel 2-f).

5.2 Sample Runs of the Program 217

[®] Temporal Trace

(Craontity”) [m | [Top bote || [m | [ot ote |

)

[«] Top Themes [*] Bottom Themes

den den
String Position Object Type

[®] Vertical Themes []

Event 6: Clamped patterns

{(Coaeiols fie 1558)

ar @ oL -

1 2 . N 1 ;
rmost=zrmost Tmost=>Imost imiddle=rmiddle Chorge letter—copegory of rightrost group to successor
letter==group letter==group letter==group :_ _____________ S_ iy_ ;f_zig _____ Si’ _uf _________ 0

Ohject Type

Concept Patitern
Opposite ShinglPos Imost middle rmost whole sngle Objectlizy latter group Alphalos first last
@

Identiy DivecHon left right BondCizy pred ErEE) same Groupllgy predsry sucogrp somegrp Letterllzy
E L] a S Fl f g L] H 7 3 ! m
n o P q & B i u w wr ar » =

@
Length one B thres four five BondFacet

218

Performance of the Model

[®] Temporal Trace

Gramis) [n] [T | [] [t | (clam) [7o2] [ror]

Workspace

(Cogeiats rin: 1665)

oo e e A
1 2 : — i ; I
ymost=>rmost Tmost=>Emost Smiddle=>middle Change latter of 1 oup 1o
Iettar=>group febtar=>group letter=>group e T :‘y_ :f _______ Sf _uf _________]

[¢] Temporal Trace

(it (] [][] [] (crom |] 1ot (amsver e

Event 9: Justified answer

(Cogeiats rin: T747)

i

E i || Change latter vy af leer to ”

m T = W e K

Tomost=>rmost “Imost=>Emost Imiddle=>middle | latter aof oup 1o ”
Teltor=—group fottor==group leHer=>group Chang y of Eroup

5.2 Sample Runs of the Program 219

Run 3: rst= rsu; zyz= uyz

The next example demonstrates the program’s ability to spur the creation of new
rules by clamping codelet-patterns. For this run, the program is asked to justify the
answer uyz to the problem “rst=-rsu; xyz=- ?”. This answer hinges on mapping
rst and xyz onto each other in a crosswise fashion, and on viewing both ¢ and
x as changing literally to w. Initially, however, the program sees rst and xyz as
going in the same direction. By time step 850, it has built a strong same-direction
mapping between these strings, and has created the top rule Change letter-category
of rightmost letter to successor to describe the rst = rsu change. The two bottom
rules Change letter-category of leftmost letter to ‘v’ and Change letter-category of
letter ‘z’ to ‘u’, describing the xyz = uyz change, are created at time steps 949 and

1101 (see Panel 3-a).

[#] Temporal Trace

[t | [FewRete]| [53-2 | [BotiomRate]| [Botiom Rue |

Workspace

{(Coderets mirn T1T8)

! 2 3

SO = FUCC;

who e=>wbol’em

SUOO=ERNO

LeltCigy=>Lettllgy

right=>right

Eroup=rEroup
L c \\\"‘
x y. oz = ¥ ly z.
e Y T

most=>Imost Smiddle=rmiddle ‘rmost=rymost
letter==lebter letter=>lctter

220 Performance of the Model

After this, however, the program “runs out of steam”, because the existing rules
and string mappings do not support the answer uyz, and neither bottom rule can
be unified with the top rule. Almost 400 time steps later, the situation has not
changed, prompting the program to comment that it is “frustrated” (since by now
the Workspace activity has dropped to zero). More precisely, at time step 1495,
a Progress-watcher codelet notices the lack of Workspace activity and consequently
examines the quality of the rules that have been created so far. As it happens, both
bottom rules are of low quality, since they both describe the xyz = uyz change in a
literal rather than an abstract way.5 The codelet therefore decides to accelerate the
process of rule discovery by clamping the codelet-pattern shown in Panel 3-b (the
left image shows the Coderack just before the Progress-watcher codelet runs). In a
sense, however, the codelet makes the right decision for the wrong reason, because the
current impasse is due not to a lack of good bottom rules, but rather to the absence
of a top rule that can be unified with one of the existing bottom rules.

As it turns out, the clamp period ends before any new rules are created, resulting
in zero progress achieved by the clamp. At time step 2000, however, the program
tries again. This time, the top rule Change letter-category of rightmost letter to ‘u’
gets built just 60 codelets into the clamp period (see Panel $-¢), paving the way for
unification to occur with the bottom rule Change letter-category of leftmost letter
to ‘u’. The latter event happens at time 2656, and results in the clamping of the
vertical themes String-Position: opposite and Direction: opposite, on account of the
rightmost = leftmost slippage arising from unification, which immediately activates
the concept of opposite in the Slipnet (see Panel 3-d). The reinterpretation of rst as

a left-directed predecessor group quickly follows, leading to a successful justification

of the answer uyz at time 3163 (see Panels 3-e and 3-f).

60f course, the program is incapable of describing this change in a more abstract way, but it does
not know this about itself.

5.2 Sample Runs of the Program

221

[*] Temporal Trace

(ot [Tk]| v | [Boombate] [BomomEe | -

=)

Coderack

Codelet Type Selection Probability

oI OO
Tr— dhor T o
{Msm
Whele— sthing I
ROUR SO

Ol @) | o

GO SRRt

G Benibgers

Bttt
beiape sooits

Beddipe soouts

Elabtanrs

Bottont—up
JESOHR. O

Ty — oy
d’g.fa‘ép. SO .

Deseription
VR

e
buikgees

[I N O O (N) o e)

23 R sooums

0 R evalbators

1 R boiders

Answer findses

ARy jutifers

P rage s Watofeors I

ooty

a

0

[Thematic
Bl soouts

3

a

2

Ercaiors

93 Total

Codelet Tupe

92 Total

Coderack

Selection Probability

222

Performance of the Model

[®] Temporal Trace

[roe] [Teprue | [s5| [BomomPuic | [Bomommae |

R

&
X

ke v
y Z

most==Imost
lelter=>lcler

zmiddl'e?-midd'le

letter==lelter

Event 9: Built rule

{Conaiars rur: 2064)

|| Chomge letter—coregory of rightmost leter 1o ' ||

SUCCEFP=ESUCCEFP
whole==whole
SUCO=FFCC

LeitClgy==LehClgy

right=rright
EFOUP=TEroup
= " y z
‘omost=rrmost
letter=>lelter

[®] Temporal Trace

()) i) o)] e | o) L) ()

Event 10: Clamped patterns

{Conaiars rur: S656)

N
N

= r) [
P -
| Change letter—category of rightmost letter 0w’)
g A
SUCC) =S OL
awfeo e=>wbol’em

SUCOSFFUCC

LetiClgy==LettCley

I
x y

7
Z

most=>bmost
letter==IcHer

“piddle=>middie
lefler=>lebler

right=rright
Eroup==group
\ \ \
rmost=>rmost | Change letter—category of lefrmost letter to u' |

letter=>lelter L e 4

5.2 Sample Runs of the Program 223

L]

[#] Temporal Trace

Tep Rule [r-s-t| [to=sright | [predgrp=>sucagrp |

Workspace

(Cogaiats rin: £745)

1
1
1
'
1
'
1
re = SUCK,
o+ fvbo e=>wboi’em
1 Nﬂdc:}m“f. e
I € =>Lelhligy
' Ieﬂ=>‘§t,}?gbl
\ Eroup=>group
1
1

[®#] Temporal Trace

|r—s—t| [tefe=sright | | predgrp=>succgrp | [most=srmost | [rmost=>imost |

Event 17: Justified answer

{Comeiets rin: 3T63)

|| Change letter—cogegory of rightmost letter to W’ ||

e =R,
fvbo e=>whofem
Emfde:}mCCL siCtey

& =xLe;
Ieﬂ=>%£gbl
Eroup=rgroup

/

"middle=cmiddle ‘Imost=>vmost rmost=>Inost
letber=>lcller letber=>lchler Ielter=rleler

|| Cleange latter —cotegory of leftmost latter to w0’ ”

224 Performance of the Model

5.2.2 Examples of jootsing

Run 4: abc = abd; xyz= dyz

As Run 3 demonstrated, clamping the rule-codelet pattern shown in Panel 3-b can
facilitate the creation of new rules, but it is not guaranteed to do so every time.
The next run is similar to the previous run, except that here the program is unable
to justify the given answer, even after repeated clamping. Eventually, after three

unsuccessful clamps, the program gives up.

In this run, the program attempts to justify the answer dyz to the problem
“abc=- abd; xyz=- ?”. 1t begins, as before, by building a same-direction mapping
between the initial string and target string. By time step 1150, the two top rules
Change letter-category of rightmost letter to successor and Change letter-category of
letter ‘c’ to ‘d’ have been created to describe abc =- abd, and the two bottom rules
Change letter-category of letter ‘x’ to ‘d” and Change letter-category of leftmost letter

to ‘d’ have been created to describe zyz = dyz (see Panel 4-a).

None of these rules, however, can be unified. Consequently, the program is un-
able to make any more progress. The situation remains essentially unchanged until
time step 1882, when a Progress-watcher codelet notices the lack of Workspace ac-
tivity and, in response, clamps the rule-codelet pattern shown earlier (see Panel 4-b).
Unfortunately, as before, no new rules are discovered, so the program tries again at
time step 2354 (see Panel 4-c¢). This second clamp again results in no progress, so
a third clamp ensues at time step 2892 (see Panel /-d). This time, the new bottom
rule Change string to “dyz” is discovered (see Panel 4-¢), but this does not help the
situation very much. The top rule required for unification to occur remains elusive

(i.e., Change letter-category of rightmost letter to ‘d’).

By time step 3228—approximately 300 codelets later—the program has still not

5.2 Sample Runs of the Program 225

[®] Temporal Trace

[ab-c | [Botam Rute || [Top Rute | [Bottom e]| [y | [Fep e |

Workspace

(Coaeiets rui 1T56)

2 ! g
e = ngw
fvbo e=>w£ol’e
red=>pred
ettCtey==LetClay
lefi==left
Eroup==group
. \ ~
é/ ?/ §/ A
X y z == d y z
Yiddle=rmiddle Imost=>Imost Smost=>rmost
letter=>letber Petber==lclter leHer=>letter

[®] Temporal Trace

4-b (b c | [Bottom o || || Top R || [[Bottom Ruts || [-3 | || Top o | -

)

[*] Temporal Trace

4-6 (aoc | [Bomombate] [Tk | [[Bowomate] 5oz | [Torreae]

=)

[®] Temporal Trace

4 -d [eb-c | [ottun Pt || [Zop Rt | [otiam R | [5-9¢] [Top e | (‘ctams |

]

226 Performance of the Model

discovered this rule. At this point, a Jootser codelet notices that the three rule-
codelet clamp events in the Temporal Trace have all achieved little or no progress, so
it decides to end the apparently futile cycle of clamping, at which point the program
stops. Panel 4-f shows the program’s commentary from the time of the third clamp
to the end of the run. As in the previous example, the clamps in this run actually
arise from a lack of high-quality (i.e., abstract) bottom rules, even though the real
reason for the program’s impasse is the lack of a top rule that can be unified with

one of the existing bottom rules.

[®] Temporal Trace

[t | [otoom Rude]| [T Rete]| [[Botoom Reude]| [y | [[Top Ree | [Chxmpj [C!umpj [Clampj

Event 11: Built rule

(Coaeiets r 292E2)

B i §
lbme:}tb}mem
B
E?ﬂdggﬁzeﬂcggy
lefi==lcft
group=>group
3 \ .
7 e
b y b4 = d y Z

iddle=rmiddle Umost==Imost Symost=>rmost _ Change string to “dyz”
leler=>leler letber==letter letber==lctber g &

5.2 Sample Runs of the Program 227

F'm ge#ing frustrated. | stiff don’t see a good way o describe fiow "ne”
4 f changes to "dvz’.

Fif just have to vy a fittle harder...

Well, my latest effort fo think up new riles resifted in very fittle
progress. Guess it was not such a great effort, in refrospect.

}just can’t seem fo come up with any better ries.

Excirse me —— Fihink Vi go get some more pinch,

Run 5: xzqc = xqd; mrrjjy = mrrig

The next example illustrates jootsing from repeated justify clamping. In this run,
the program is asked to justify the answer mwrrjjyy to the problem “xqc= xqd;
mrrijy = ?”. At the outset, the run proceeds in much the same way as Run 1
discussed earlier. The sameness groups rr, 337, and 3337 are quickly created in mrryjy
and mrrjyy37, leading to the perception of m as a single-letter group in both strings.
Strong vertical and horizontal same-direction mappings are created between all of
the strings, giving rise to the top rules Change letter-category of rightmost letter to
successor and Change letter-category of letter ‘c’ to ‘d’; and the bottom rule Change
length of rightmost group to four. Moreover, by time step 2245, Length descriptions

have been attached to most of the groups in mrrjjj and mrrjjjj (see Panel 5-a).

Soon afterwards, the bottom rule Increase length of rightmost group by one is
built, which leads almost immediately to a justify clamp involving this rule and the
first top rule (see Panel 5-b). By the end of the clamp period at time step 2506,
a Length description has been attached to the rr group in mrrjjyy, but the 1-2-3
structure of the string as a whole has not yet been noticed. The program thus tries
again at time step 2637, clamping the same pair of rules as before in an effort to
induce a Letter-Category = Length slippage, which is needed in order to make the

rules inter-translatable (see Panel 5-c¢).

228

Performance of the Model

[#] Temporal Trace

(] [] [Zov Reie] [op e | [t e |

Tympost=rrmost
letter=>group

most=>Imost
Letter=>group

Workspace

(Codeiets i 22435)

— M{mii}f

‘middle==middle

letter=>group

[#] Temporal Trace

[m] [m] [Terrte)| [Tenkte | [Boompete]| [Bottomete | -

Temost=xrmost
Fetter—rgroup

Fvent8:

Clamped patterns

(Codeiets fure: FESE)

“bmosi=xTmost
Ietterrgroup

imiddle=>middle
IeBter=>group

5.2 Sample Runs of the Program 229

[®] Temporal Trace

(| [] [Crem e]| g et || [[otom e || oo o | -

Event 9: Clamped patterns

(Codeiels fur: F637)

Temost=xrmost “bmosi=xTmost imiddle=>middle \ Increcse lengeh of righrmost group by one
Tettor—group fottorgronp Tettor=grotep v

The program perceives mrrjjj as a successor group during this second clamp pe-
riod, at time step 2975 (see Panel 5-d). However, as was discussed in Chapter 4, no
Letter-Category = Length slippage is possible between xgc and mrrjjy, since xqc
cannot be seen as a successor group under any circumstances. Nevertheless, the pro-
gram keeps trying. It continues to clamp the same pair of rules until, after two more
unsuccessful clamps, it notices its own pattern of repetitive behavior. Consequently,
at time step 4493, it decides to give up on trying to make sense of the answer (see
Panel 5-€). At this point, it creates an unjustified answer description for mrrjjjj con-
taining an unjustified Bond-Facet: different vertical theme (in addition to a justified

String-Position: identity theme), which it then stores in memory in the usual way.”

"The unjustified vertical themes Group-Type: identity and Direction: identity are also included,
since the Bond-Facet: different theme implies that xqgc and mrrjjy are both groups. This facilitates
the generation of English-language commentary when comparing the unjustified answer mrrjjj; to
other answers in memory.

230

Performance of the Model

5-d

[®] Temporal Trace

Craensn) [m] [] [t | (gt | [ot | [t e | | ctam | (‘ctame | (8]

Event 10: Built successor-group

(Cogeiats rin: 2975)

—

Mzu J3] Rz N
IR A A e L N I PR A A

Tomost=>rmost “Imost=>Emost Imiddle=>middle
Teltor=group Iettar=>group leter=>group L

[*] Temporal Trace

|]) [t () (o) 5] o) () i

Event 13: Setiled for unjustified answer

(Cogeiats rin: 4433)

E i || Change latter vy af leer to ”

M ke Js : J—
moror|iogd jododoi

Tomost=>rmost “Imost=>Emost Imiddle=>middle || Increase lengeh of rightmost group by one H
Tottar—group Tottor—gronp Totor=gronp

5.2 Sample Runs of the Program 231

Looks fike that last briffiant idea | had resulled in zero progress. Guess
5- f it was a prefly useless idea, in retrospect.

Afal | have another idea...

Looks like that fast brilliant idea ! had resufted in zero progress. Guess
it was a prefly useless idea, in refrospect.

Okav, F'm stumped. This answer makes no sense lo me. | see no way lo
make the necessary lefter-calegory === length sfippage here.

Panel 5-f shows the program’s commentary regarding its final two clamp attempts

(both of which achieved no progress) and its subsequent failure to justify mrrjjjj.

Run 6: eqe= geq; abbbc = aaabccce

The next example is similar in flavor to Run 5. In this run, the program tries to
justify the answer aaabcce to the problem “eqe=- qeq; abbbc = ?” in two different
ways, but eventually gives up after trying unsuccessfully several times to make a
Letter-Category = Length slippage between eqe and abbbc.

By time step 1650, the program has perceived the letters @ and ¢ in abbbc, and
the letter b in aaabccece, as single-letter groups, and has attached Length descriptions
to all of the groups in the strings, including the sameness groups bbb, aaa, and ccc.
The program’s first attempt at describing the abbbc = aaabccec change, however,
results in a somewhat odd bottom rule (see Panel 6-a).

During the next 1100 time steps, abbbc and aaabcec are both perceived as suc-
cessor groups (on the basis of letter-categories rather than group-lengths), and several
other top and bottom rules are created (see Panels 6-b through 6-¢). Eventually, at
time step 2740, the bottom rule Swap lengths of leftmost group, middle group, and
rightmost group is created, which can be unified with the top rule shown in Panel 6-b.
Accordingly, at time step 2874, the program clamps a set of patterns based on these

rules in an attempt to induce a Letter-Category = Length slippage between ege and

232

Performance of the Model

6-b

[®] Temporal Trace

Cramnsiy) [c] [o] [o] [[Borom i]

{i—r
<!

lmest=rrmost
eRer=>group

Event 5: Built rule

(Codeiats mun: 1653)

= 1 B.1
bgbw = aaabcc\c

“Emost=>Imost “middle=—middie Change length of Iz frmost group to three
Ielter=>leller leBer=>group Swap lengths of middle group end righmmost group

[¢] Temporal Trace

[a] [2] [(Bewomete]| [a-5-c | [TorRete |

Temost=srmost
Ietter=sgroup

Fvent 7: Built rule

(Cogteiets min: T766)

3 b Swep letrer—cozegories of lafimost letver,
weiddle letter, and rightmost letter

—

b[bué aaarccc

Famort=xTmost Spiddle=zmiddle
Fetter==letier Tetter=—rgroup

5.2 Sample Runs of the Program

233

6-d

[®] Temporal Trace

E| E E [Bowom Rute]| | a-B-c| [Tap Rete || | Bottom Rute || [Battom rezs |

Event 9: Built rule

(Cogaiats min: 1838)

At B3

a b
lrmost=rrmost Emost=>Imost
letter==group Tetter==growup

‘middle==middle
Ietter=group

i
Az B

aaabccc

Change lengeh of keftmost group to three
Change length of middle group to one
Change langth of rightmost group to three

[¢] Temporal Trace

[«] [2] [BeemEde]| [a-5-c| [TorTe]| [BommBer]| [BomomRate]| [Ton Rete |

Event 10: Buiit rule

(Cogteiets min: 2046)

Change letter—category of lefomost letver to g’
Change letter—copegory of middle letter 20 '’
Change lemer—cozegory of rightmost lewwer 10 g’

4l

Temost=srmost
Ietter=sgroup

“most=>Imost
Tetter=sgroup

ppiddle==middle
Tetter=—rgroup

234 Performance of the Model

[®] Temporal Trace

[e] [«] [#] [(omomRets || [a-B-c] [FonReio || |[Bottwn Rute | [Bostom Ruts || [T Rute | [a-B-C | [[7op i |

Fvent 12: Built rule

(Codeets muin: £457)

T o -
/A

t || Swap lexver—cotegories of el objects in string ”

q € q

¥ e P Y
4’[/ (;_{/ ,Iw
Mb B = a a a c ¢ ¢

lymost=>rmost imost=>Tmost ‘middle=>middle
Tetter="group Tebter==group Tetter=—group

v}

&'\g

abbbce (see Panel 6-f). This attempt is unsuccessful, so the program tries again at
time steps 3379 and 3889. In the meantime, however, another rule for describing
abbbc = aaabceee gets created in between clamp periods (see Panel 6-g). This rule,
which can be unified with the top rule shown in Panel 6-e, offers the program a poten-
tial alternative route to justifying the answer aaabcec. Therefore, it tries a few more
clamps based on this pair of rules (see Panel 6-h). Unfortunately, however, this effort

fails too, leading the program to finally give up at time step 6196 (see Panel 6-7).

Consequently, the answer description created for aaabcce includes the same set of

Facet: different, Group-Type:identity, and Direction:identity), as well as the same
justified String-Position:identity theme. These two answers are thus quite similar at

an abstract level of description.

5.2 Sample Runs of the Program

235

6-f

[#] Temporal Trace

Tup Rade || [A-B-C | |[Top Rude || [Bottom Ruie | -

Event 14: Clamped patterns

(Conaiats min: 2874)

T \ Swop letter—copegories of keftmost letrer, |
weiddle letter, and rightmost letter H

i B 2;/ 3 A s e
A f S S
a|| b b | |c = a a a c ¢ ¢
1 5 e et T tno Dot o o Fores erenims 1 o
mﬂ;;m::; szgg—;;ge::;’ Si'gsfsﬂe;g}y?;gﬂe ! Swap lengths of leftmost group, middle !
I I

Froup, and rightmost group

[*] Temporal Trace

Top Rele || [4--c | [[TopRete || [[Botwom Rete |

o

Fvent 15: Built rule

(Codatets i 3248)

w

—

&I/ A3

B B1 R
a @CCC

S
y
&

53
o~
o~
=
\
2
]

Yrmost=>rmost “bnost=>Imost ‘middle=>middle || Swap lengths of oll objecrs in whole group ||
Lelter=rgroup Lefter=rgroup fetter=rgroup

236

Performance of the Model

[®] Temporal Trace

e (][] e =

Event 18: Clamped patterns

(Codatets i 4.363)

Yrmost=>rmost “bnost=>Imost ‘middle=>middle Swap lengths of oll objects in whole group |
letter==letter Letter==group letter=>group R n

P - Bl
|
'

[®] Temporal Trace

) L] (co) e) (s) (con))i) (cm

Event21: Settled for unjustified answer

(Cogeiets i G796)

ey

/ | - T

2 3 | || Swap letrer—cazegories of all objects in string H
+ n f—“?’_ I
AT -3 crl A3 B 3

a a a|lbllc ¢ ¢

o3
b

lmost=samost most=oImast iddle=>middle | Swap langths of ail ebjects in whols group ||
Tottersgrosp Tofters gy Tettersgrowp

5.2 Sample Runs of the Program 237

Run 7: abc= abd; xyz= ?

The next run demonstrates Metacat’s ability to recognize when it is hitting the same
snag over and over again, and to then try something different instead. In this run, the
program is asked to come up with an answer on its own to the problem “abc=- abd;
xyz= ?”. Initially, the program perceives both abc and xyz as predecessor groups,
and views the abc =- abd change abstractly, according to the rule Change letter-
category of rightmost letter to successor, which quickly leads to the usual snag involv-

ing the letter z (see Panel 7-a).

[#] Temporal Trace

[oe] [eic] [Twh]

7-a

Event5: Snag

(Codetats wun: TEE)

e e

c == a b d

|| Chawege letter—cozegory of rightmost letter to successor ”

il 2 3

e =, mdg}p

fvbo e=>wﬁol’e
T

=2
:eemfg’ﬁ ettlisy
Eroup=-group
X y z = 22?
Emost=>Imost “middle=rmiddle ‘rmost=>rmost || Change letter—category of rightmost letter to successor ||

letter=>lelter letter==Iekter letter==lctter

In the aftermath of the snag, the temperature shoots up to 100, various Workspace
structures get broken, and the new rule Change letter-category of rightmost letter to
‘d’ is created. However, the program soon rebuilds the same structures as before,

clinging to the view that the letter z in xyz corresponds to the letter ¢ in abc, and

238 Performance of the Model

ignores the newly-created rule. Consequently, it hits the snag again at time step

904—and then again at time step 1031 (see Panel 7-b).

[#] Temporal Trace

(e [cie][] [Tk

7-b

Event 8: Snag

(Codetats e TG3T)

Oy N

a c == a b d

|| Chawege letter—cozegory of rightmost letter to successor ”

Ehreg=r=ithree
pre =>ﬁm-isw
==whole

whole

h i .
=2
:eemfg’ﬁ ettlisy
Eroup=-group
2.
-3
Emost=>Imost rmost==rmost || Chamge letter—caregory of rightmost latter to successor ||

letter=>lelter letter==lctter

In general, associated with each snag event in the Temporal Trace is a verti-
cal theme-pattern that characterizes the way in which the target-string objects di-
rectly responsible for the snag are seen as corresponding to their counterpart objects
in the initial string. In the present example, this pattern consists of the themes
String-Position: identity and Object-Type: identity, based on the concept-mappings
rightmost = rightmost and letter = letter underlying the ¢—z bridge. Thus all three
snag events in the Trace involve exactly the same set of vertical themes—as well as
the same rule—which eventually draws the attention of a Jootser codelet at time step
1197. In response to these identical snag events, the codelet probabilistically decides

to negatively clamp the recurring String-Position: identity theme, in an effort to elicit

5.2 Sample Runs of the Program 239

[®] Temporal Trace

7-c ere] [oie] [Tmre] (o) [Tome] =

[@] Vertical Themes]

Event 9: Clamped patterns

(Codaiats v 7137)

three=rthree

pre =>predery
awfre e=>wﬁofe
S

€ ==Letiligy
.r.;ﬁ:ﬁ.?ﬂ
Eroup=rEroup

S

tmost=>Imost ‘rmost=>rmost
Eedter=>Ilctler fetter==Tebter

a reinterpretation of the problem that does not involve this idea (see Panel 7-c).®

As a consequence, the a—x and c—z bridges are soon replaced by the new bridges
a—z and c—x, causing the concept of opposite in the Slipnet to become highly acti-
vated (see Panel 7-d). Thus a new interpretation of abe and xyz begins to crystallize
around the idea of oppositeness. However, even though a and z are now seen as corre-
sponding to each other, their alphabetic symmetry remains unnoticed by the program,
because Alphabetic-Position descriptions have not yet been attached to both of these
letters.

As it turns out, the clamp period ends at time 1718 without much further progress

having been achieved. In fact, the c—a bridge is broken shortly thereafter, threatening

8Negatively-clamped themes appear in red on the screen, although this is hard to see from the
figure.

240 Performance of the Model

[®] Temporal Trace

(x5 [ocive | [zt | (o) [e |

Workspace

(Covatededs rire: T475)

most=>rmost Zrm ost=x Invost
letter==lolter leler=>lcHer

to undo the progress made so far. Fortunately, however, at time step 2001, another
Jootser codelet clamps the same negative theme-pattern as before, giving the program
another push in the right direction—that is, away from the ideas associated with the
snag (see Panel 7-e).

This time, the program notices the alphabetic symmetry between a and z, because
by now Alphabetic-Position descriptions exist for both letters (the most recent such
description having been attached to the letter a at time step 1982). Accordingly,
the program adds a first = last slippage to the a—z bridge at time step 2031. Soon
afterwards, it perceives xyz as a successor group, paving the way for the creation of
a fully symmetric mapping between abc and xyz based on the slippages left = right
and predecessor-group = successor-group, which leads in turn to the discovery of the

answer wyz at time step 2170 (see Panel 7-f).

5.2 Sample Runs of the Program 241

[#] Temporal Trace

(o))] o) i) o) o)) o) D

L]

Event 11: Clamped patterns

(Codelets v 200 17)

T Lo

R

Emost==rmost
Ietter==leler

[®] Temporal Trace

Fvent 16: Found new answer

(Coaaiets e ZT170)

'
Hl.il*r 2; || Changs lotter—category of r fetter to ”

pre =ESnccEy
Role==whole
mﬂ%=>mccl Hi
€ ==Lettligy
Ieﬂ=j§1ygbl
Eroup==group

x y b4 = w y b4
tmost==rmost Srmost=xImost || ¢ letter—cotegory of keftmost latter to predecessor ”
I?f?eF>?$¥er Iel'?er:>f?f¥er Chang gory of ke frme b

first=rlast

242 Performance of the Model

Run 8: eqe= geq; abbbc= ?

The next example demonstrates the idea of “meta-jootsing”. In this run, Metacat is
asked to come up with an answer on its own to the problem “eqe=- qeq; abbbc=- ?”.
The program begins by perceiving the string abbbc as a successor group composed of
the letter a, the group bbb, and the letter c. It also creates the two top rules shown

below to describe the eqe = geq change:
e Swap letter-categories of all objects in string

e Change letter-category of leftmost letter to ‘q’
Change letter-category of middle letter to ‘e’
Change letter-category of rightmost letter to ‘q’

At time step 1104, it attempts to apply the first rule to abbbc, which results in
a snag, since the idea of “swapping” the letter-categories of a, bbb, and ¢ makes no
sense (see Panel 8-a). Of course, if it had chosen to use the second rule instead of
the first, then it would have found the answer geeeq, but it strongly prefers the first
rule, since this rule is considerably more abstract (and succinct).

Over the next 3000 time steps, the program tries again and again to swap the
letter-categories of abbbe, often breaking various structures in the process, but al-
ways rebuilding them in the same way as before (see Panel 8-b). Eventually, at time
step 4280, a Jootser codelet notices the pattern of repeated snag events in the Tem-
poral Trace, all of which involve the vertical themes String-Position: identity, Object-
Type: identity, and Object-Type: different. These themes arise from the concept-
mappings underlying the vertical bridges associated with the three snag objects
a, bbb, and c (i.e., leftmost = leftmost, middle = middle, rightmost=-rightmost,
letter = letter and letter = group). As it happens, the codelet probabilistically de-
cides to negatively clamp just the Object-Type: identity theme (see Panel 8-c).

In the aftermath of the clamp, abbbc is reperceived as a predecessor group, and

a new top rule, Swap letter-categories of leftmost letter, middle letter, and rightmost

5.2 Sample Runs of the Program 243

8-b

[#] Temporal Trace

[z | [ooc] [p e

Event5: Snag

(Codaiats man: T154)

e € == q e q
o 3 % || Swep letter—cozegories of all objects in string ”
‘B
L
a b b c - 227
Yemost==rmost “Imost=>Emost ‘middle=>middle || Swap lerrer—cozegories of ol objects in whole groyp ”
lefter=rictler felter==lclter felter==group

[®] Temporal Trace

(o) [optee] [] Coue] fou) o] 2] () @)

Event 9: Snag

(Coaedets v 4738)

S E% % || Swep letter—cozegories of ell objects in string ”
B
b

Tymost=>ymost “bmost=rImost middle=rmiddie || Swep letter-categories of ol objects in string H
letter=>Ietter letter=>Ietter lelter=>group

244 Performance of the Model

letter, is created. However, these new structures do not really change the basic
situation. In any case, at time step 5040, another Jootser codelet decides to negatively
clamp both Object-Type themes (see Panel 8-d), which essentially “paralyzes” the
program for the duration of the clamp, since any new vertical bridges created would
be incompatible with one of the clamped themes.’

At time step 5487, the program hits the snag again. This is followed shortly
thereafter by another snag-response clamp, this time involving the negative themes
String-Position: identity and Object-Type: identity (see Panel 8-¢).

This clamp, like the one before it, achieves no new progress, since no new struc-
tures are created in its wake. Therefore, after hitting the snag yet again at time step
5904, the program finally decides to give up. More precisely, at time step 5933, a
Jootser codelet notices the three clamp events in the Trace, all of which have theme-
patterns that overlap to some degree. Furthermore, neither of the two most recent
clamp events have resulted in any discernible progress. Consequently, the codelet
prints a final parting message and then ends the run. Panel 8-f shows the program’s

final commentary regarding its last unsuccessful clamp attempt.

9Negatively clamping more than one theme of the same category may sometimes be useful,
however, if several different theme relations are possible for the category.

5.2 Sample Runs of the Program 245

[#] Vertical Themes

8-d

[#] Vertical Themes

[®] Temporal Trace

(i) [t -] [T] (o] o] [<5-] o) o) (D

Event 10: Clamped patterns

(Codeiats rirr 42883)

[T v R Y]

a | b b| c =
Tonost=rrmost imiddle=rmiddle
Ielter=>letter lelter=>group

[¢] Temporal Trace

o)] o) o)] o)))) (0

Event 13: Clamped patterns

(Codeiats nirr 58286)

S

Tonost=rrmost Umost=>Imost imiddle=rmiddle
letter=>letter letter=>letter lelter=>group

246 Performance of the Model

[®] Temporal Trace

[¢] Vertical Themes

Event 15: Clamped patterns

(Codeiers ru 5575)

€ tg € = q € q
5 3 1%
2 b
B
a b b b c =
Vemost==1meost o= Ineost Spiddle==middls

letter=>letter letter==Ictter letter=>group

[®#] Temporal Trace

Al right, 've had enough of this! Let’s trv something different for a
change...

Looks fike | made zere headway in coming up with new fdeas.

Lifr—oh, | seem to have ran info a fittle problem again. No
letter—cateqgory swap is possible between the letter a, the bbb group,
and the letter ¢ in abbbe.

This is getting boring. | can’t think of amahing else fo v,

Excuse me — Fihink Fif go get some more punch.

5.2 Sample Runs of the Program 247

5.2.3 Examples of answer comparison and reminding

This section presents a sampler of Metacat’s explanations of the similarities and
differences between several of the analogies from section 5.1. To generate these ex-
planations, the program was first run (in justify mode) on each of the problems and
answers shown in Figure 5.3. (Some of these runs were discussed in detail in the
previous section.) In the figure, the lines connecting various pairs of answers indicate
which answers reminded the program of other answers during this process. A faint
dotted line indicates that Metacat was “vaguely” reminded of one answer by another,
a darker dashed line indicates that it was “somewhat” reminded of an answer, and
a heavy solid line indicates that it was “strongly” reminded of an answer.'’ For ex-
ample, the answer wyz to the problem “rst=-rsu; ryz= ?” reminded the program
“vaguely” of the answer uyz to the same problem, and “somewhat” of the answer
wyz to the problem “abc=- abd; xyz= ?” (as was shown earlier in Figure 4.17 of
Chapter 4).

In the case of the answer aaabcce to the problem “eqe=- qeq; abbbc=- 2”7, how-
ever, the degree of activation of other answers depends on whether or not Metacat
has tried this problem on its own before, and therefore knows that it leads to a
snag (as was discussed in sections 4.7.2 and 4.7.3 of Chapter 4). The program was
thus run twice on this answer. The first time around, it was given aaabcec to jus-
tify before it had ever tried to swap the letter-categories of abbbec on its own. In
this case, the program was strongly reminded of the answer aaabaaa to the prob-
lem “ege=- qeq; abbba= ?”, and somewhat reminded of the answer mrrjjy to
the problem “xqc=- zqd; mrrjjj= ?” (both of which it had seen before). These
remindings are marked with an asterisk (*) in Figure 5.3.

Next, the just-found answer aaabccc was manually deleted from memory, and

10These terms, which reflect the activation levels of answer descriptions, correspond respectively
to the numerical ranges 1-30, 31-70, and 71-100. No reminding occurs in the case of zero activation.

248 Performance of the Model

abc => abd abc => abd| abc => abd
xXyz => xyd Xyz => wyz Xyz => dyz
| |
| |
| |
1 1
rst => rsu rst => rsu rst => rsu
Xyz => Xyu Xyz => wyz Xyz => uyz
abc => abd abc => abd
/// mrrjjj => mrrkkk mrrijj => mrrjjjj [T~
/ : \\
/ \
/ \
| : \
,' xqc => xqd xqgc => xqd \\
! mrrjjj => mrrkkk mrrjjj => mrrijjjj [\ |
| I I \\ ||
| I I \ |
\ | | 1 |
\ 1 1 | |
] ede => qeq ege => qgeq]
abbba => baaab abbba => aaabaaa| | |
- [
+: * *| o+
: 1/
:)
ege => geq ege => geq v _/
abbbc => qgeeeq abbbc => aaabcce |

Figure 5.3: Schematic diagram showing the different degrees to which various answers
reminded Metacat of other answers it had encountered before. Heavy solid lines indi-
cate strong reminding, dashed lines indicate a somewhat weaker degree of reminding,
and dotted lines represent the weakest degree. Lines marked with * show remindings
that occurred in the absence of a snag description, while those marked with + show
remindings that occurred after the program had encountered a snag on its own.

5.2 Sample Runs of the Program 249

the program was given the problem “ege=- geq; abbbc=- ?” to work on its own.
In this particular run, it hit the snag a couple of times and then answered geeeq.
The program was then given aaabcce again. This time, on account of the existing
snag description, it was reminded only vaguely of aaabaaa, and not at all of the
answer mrrjjjj to the problem “xqc=- xqd; mrrijy= ?”. Instead, it was reminded
of the answer mrrjjyy to the problem “abc= abd; mrrjjy= 27, since seeing abbbc
as 1-3-1 and mrryyy as 1-2-3 both lead to stronger analogies in their respective
problems, while seeing abbba as 1-3-1 does not. These remindings are marked with
a plus sign (+) in the figure.

Once descriptions of all of these answers had accumulated in memory, the program
was asked to compare selected pairs of answers in the manner described in section 4.7.3
of Chapter 4.'' The following selection of commentary by the program, generated on
the basis of the abstract answer descriptions stored in its memory, gives a sense of the

kinds of parallels and distinctions between answers that Metacat is able to recognize.

Comparing answers to the same problem

In the following examples, Metacat compares different answers with respect to a single

problem. This amounts to comparing answers “horizontally” in Figure 5.3.

abc/mrrkkk vs. abe/mrrjijy

The answer mrrifif to the probiem “abe —= abd, mrrjli —= 77 is based in
part on seeing abe and mrijfi as groups of the same ivpe by viewing
ane string in terms of letters and the other in ferms of numbers. In
contrast, in the case of the answer mrrkkk, the idea of seeing abc and
mifif as groups of the same ipe by viewing one string in terms of
fetters and the other in terms of mnnbers does not arise. Alf in afl, 'd

ftdeas.

11«Agking” Metacat to compare two answers simply involves clicking the mouse on the appropriate
answer description icons in the program’s Episodic Memory window.

250 Performance of the Model

xqc/mrrkkk vs. xqc/mrrjijj

fhe answer mriijfi fo the problem "xqge —= xgd, mirjlf —> 7" is based in
part on viewing one of xqgc and mrrfif in terms of letters and the other in
ferms of numbers (afthough there is ne good reason for doing so). In
contrast, in the case of the answer mrrkkk, the idea of viewing one of
xqe and mrrgff in ferms of lefters and the other in ferms of numbers
does not arise. All in aff, I'd say mrrkkk is the befter answer, since i
invelves no unjustified ideas.

abc/xyd vs. abe/wyz

The answer wve fo the problem "abe —» abd, xywe —> P" is based on
seeing abe and e as symmetric predecessor and SHccessor groups
going in opposite divections, and on seeing alphabetic—position
symmetry belween the sirings, whife the answer xwd is based on seeing
abe and e as groups of the same hpe going in the same direction. In
xwel’s case, the idea of seeing alphabetic—position svinmetry between
abe and vz does not arise. Another kev difference between the
answers is that the change from abe to abd is viewed in a more
absiract way for the answer wiz than it is in the case of xyd. Alf in afl,
Fd sav waz iz the belter answer, since if is based on a richer set of
ideas.

rst/wyz vs. rst/uyz

fhe only essential difference between the answer e and the answer
wiz o the problem "rst —= rsu, xyg —= 7" Is that the change from rst lo
rsi is viewed in a more fiteral way for the answer uye than it is in the
case of wivz. Both answers rely on seeing twe strings (rst and xye in
both cases) as symmetlric predecessor atd SUCCESSer Groups ot in
opposite directions. The answer g, however, seems incoherent io me,
since it invalves seeing absiract similatities between rst and xyz
{(seeing rst and xye as symmelric predecessor and Successor groups
geing in apposite directions), while at the same time viewing the
change from rst fo rsu in a more fiteraf wav. Alf in alf, P'd say we is the
better answer, since it is more coherent.

ege/aaabaaa vs. eqe/baaab

FThe answer aaabaaa io the problem "eqge —> qeq, abbba —> P is based
it part an viewing one of eqe and abbba in terms of leltters and the
other in terms of mumbers (afthough there is no good reason for doing
S3). In contrast, in the case of the answer baaab, the idea of viewing
one of eqe and abbba in lerms of fellers and the other in ferms of
numbers does not arise. Aff in aff, I'd sav baaab is the belter answer,
since it invelves no unjustified ideas.

5.2 Sample Runs of the Program 251

ege/qeeeq vs. eqe/aaabece (having encountered the snag before)

The answer aaabeee fo the probfem "eqge —> geq, abbbe —> 7" is hased
in part on seeing eqe and abbbe as groups of the same Hype by viewing
ane siting in ferms of lefters and the other in ferms of nimnbers (Which
avoids a snacq that would otherwise arise from the fact that no
letter—categoty swap is possibie between the lefter a, the bbb group,
and the felfter ¢ in abbbe). In contrast, in the case of the answer geeeq,
the idea of seeing eqge and abbbe as groups of the same tvpe by
viewitig one string in lerms of lefters and the other in ferms of numbers
does not arise. Another kev difference between the answers is that the
change from eqe 1o geq is viewed in a complelely different way for the
answer aaabeee than it is in the case of geeeqg. Aff in aff, Fd sav
aaabooe is the beffer answer, since it is based on a richer set of ideas.

Comparing answers to different problems within a single family

In the next set of examples, Metacat compares different answers to different problems

within the same family. This amounts to comparing answers “vertically” in Figure 5.3.

abc/mrrkkk vs. xqc/mrrkkk

The answer mirkkk to the problem "abe —= abd, mrfif —= 7" is
essentially the same as the answer mrrkkk fo the problem "xge —= xgd,
mrellf —= 77 Both answers refv on seeing twe strings (abe and mrdfji in
one case and xqe and mrrfjif in the other) as going in the same
direction. Finthermore, the change from abc to abd is viewed in
essentially the same way as the change from xge fo xgd. Aff in alf, 'd
say the first mirkkk is verv good and the second mrrkkk Is prelly good,

abc/mrrijjy vs. xqe/mrrjizy

The answer mtrifif o the profiem "abe —> abd, mrrfff —= 77 is similar to
the answer mrijiff to the problem “xqge —= xgd, mrriff —= 77, since both
refy on seeing twe strings (abe and mriiif in one case and xqc and mrjif
in the other) as going in the same direction, and on viewing one of the
Slrings in terms of lellers and the other in ferms of numbers. However,
in the fatter case, there is no compeffing reason fo view one of the
strings in terms of lefters and the other in ferms of numbers, uniike in

the belfer answet, since It invelves ne unjustified ideas.

2

2

Performance of the Model

abc/xzyd vs. rst/ryu

Fhe answer xyd fo the problem "abe —> abd, wye —= 7" is essendially the
same as the answer xvu fo the probiem "rst —= rsu, xyz —= 7" Both
answers rely on seeing twe strings (abe and xvez in one case and rst
and xyz in the other) as groups of the same lvpe going in the same
direction. Furthermore, the change from abe fo abd is viewed in
essentiafly the same wav as the change from rst lo rsi.. Aff in all, F'd sav
thev're both prefiy mediocre answers.

abc/wyz vs. rst/wyz

FThe answer wyz lo the problem "abe —= abd, g —=> 7" is based in part
on seeing alphabetic—position symmetry between abe and e In
condrast, in the case of the answer wiz ¥o the probiem "rst —= rsu, e
—= 77, the idea of seeing alphabelic—position sywmmelry between rst
andd xyz does not arise. Aff in alf, F'd sav the first wyz is the belter
answer, since it is based on a rcher set of ideas.

abc/dyz vs. rst/uyz

The answer chz fo the profiem "abe —= abd, vz —= 7" is based in part
ot seeing afphabetic—position symmelry between abe and xz. In
contrast, in the case of the answer (Ve 1o the probiem "rst —= rsu, xye
—= P", the idea of seeing alphabetic—position symmetry between rst
and wyz does not arise. The answer dyz, however, seems inceherent to
me, since it invelfves seeing abstract simifarities beltween abe and xyz
(Seeing abe and xyz as svmmetric predecessor and successor groups
qoing in oppoesite directions, and seeing alphabetic—position s\yimmetry
between the strings), while at the same Hime viewing the change from
abe to abd in a more fileral way. The answer thvez alse seems incofrerent,
since it involves seeing abstract simifarities between rst and xyz
(Seeing rst and xyz as symmetric predecessor antd SUccessor Groups
Geing in oppoesite directions), while at the same time viewing the
change from rst fo rsi in a more liferal wav. Overall, though, I'd sav invg
iz the belter answer, becaurse i doesn’t seem Giiite as incoferent as

dyz.

5.2 Sample Runs of the Program 253

eqe/qeeeq vs. eqe/baaab

FThe anly essential difference belween the answer geeeg io the problem
“ege —= geq, abbbe —= P and the answer baaab to the probfem "ege
-= geq, abbba —= 7" is that the change from eqge o qeq is viewed in a
completely different way for the answer geeceqg than it is in the case of
baaab. Both answers refy on seeing twe strings (eqe and abbbe in one
case and eqe and abbba in the other) as going in the same direction.
Aff in all, I'd say geeeq is prefly bad and baaab is haffway decent.

ege/aaabaaa vs. eqe/aaabcee (not having encountered the snag)

fhe answer aaabaaa lo the problem "ege —= gee, abbba —-= 77 is
essentiaffy the same as the answer aaabooc fo the probiem "eqe —>
geg, abbbe —= P". Both answers rely on seging two strings (eqge and
abbba in one case ahd eqge and abbbe in the other) as going in the
same direction, and on viewing one of the strings in terms of leflers
and the other in ferms of numbers (aithough there is no good reason
for doing s0). Furthermore, the change from eqge fo geq is viewed in
essentiafly the same way in both cases. Aff in aff, F'd say aaabaaa is
haffwav decent and aaaboee is prefiy good.

ege/aaabaaa vs. eqge/aaabcee (having encountered the snag before)

The answer aaabaaa to the problem "ege —= geq, abbba —= 7" is simifar
i the answer aaabeec fo the problem "eqge —= qeq, abbbe —= 77, since
both relv on seeing twe strings (eqge and abbba in ane case and ege
and abbbe in the other) as going in the same direction, and on viewing
one of the sirings in terms of letters and the other in ferms of numbers.
However, in the former case, there is no compeffing reason to view one
of the strings in terms of letfers and the other in ferms of numbers,
uniike in the latter case with eqe and abbbe, where viewing one of the
Sirings in ferms of fetters and the other in terms of numbers aveids a
snag that would otherwise arise from the fact that no lefler—-category
swap is pessible between the lefter a, the bbb qgroup, and the letfer ¢ in
abbbe. All in aff, I'd sav aaaboeoe is the belter answer, since it invalves
no unfustified ideas.

254 Performance of the Model

Comparing answers to problems in different families

In the last set of examples, Metacat compares answers to problems from different

families. As before, this amounts to comparing answers “vertically” in Figure 5.3.

abc/mrrkkk vs. eqe/baaab

The only essential difference belween the answer mrrkkk o the
problem "abc —= abd, mrifii —= 7" and the answer baaalb o the problem
“ege -> qeq, abbba —= 7" is that the change from abe io abd is viewed

in & compietelyv different way for the answer mrrkkk than the change
from eqge to geg in the case of baaah. Both answers rely on seeing iwo
strings (abe and mrrijf in one case and eqe and abbba in the other) as
geing in the same divection. Alf in all, Fd sav mrrkkk is very good and
baaab is haffway decent.

xqc/mrrkkk vs. eqe/baaab

The anly essential difference between the answer mrrkkk to the
problem "xao —= xqd, mrejif —= P" and the answer baaab to the problem
“ege -> geq, abbba —> 7" is that the change from xqge fo xgd is viewed

in a completely different way for the answer mrrkkk than the change
from eqe fo geqg in the case of baaabh. Both answers relv on seeing two
strings (oge and mrefli in one case and eqe and abbba in the other) as
geing in the same direction. All in aff, F'd say mrrkkk is prefly good and
baaah is halfway decent.

xqc/mrrijjy vs. eqe/aaabaaa

The anfy essential difference between the answer mriffif fo the problem
"wgo —= xgd, mrifif —= P and the answer aaabaaa to the problem "ege
—= qeg, ablbba —= 7" is that the change from xqge o xqd is viewed in a
completely different way for the answer mrififf than the change from
eqe fo geq in the case of aaabaaa. Both answers refv on seeing two
strings (wgo and mrrfif in one case and ege and abbba in the other) as
going in the same direction, and on viewing one of the sirings in ferms
of lefters and the other in terms of numbers (although there is no good

is haffway decent.

5.2 Sample Runs of the Program 255

abc/mrrijjy vs. eqe/aaabece (having encountered the snag before)

FThe onfv essential difference between the answer mrifif fo the problem
“abe —= abd, mrrfif —= 7" and the answer aaabcee fo the probiem "ege
-= geq, abbbe —= P" is that the change from abe to abd is viewed in a
completely different way for the answer mrtiiif than the change from
edqe o qgeq in the case of aaabeco. Both answers refy on seeing twe
strings (abc and mrefif in one case and ege and abbbe in the other) as
groups of the same hipe going in the same divection, and onr viewing
ane of the strings in terms of letters and the other in terms of numbers.

xqc/mrrijjj vs. eqe/aaabeee (not having encountered the snag)

The only essential difference between the answer mrifif fo the problem
wqe —> xad, mirili —= P and the answer aaabeee 1o the problem "eqe
-= geq, abbbe —= P" is that the change from xage to xqgd is viewed in a
complefely different wav for the answer mrtiiif than the change from
eqe to geq in the case of aaabecc. Both answers refy on seeing two
strings (uge and mrriff in one case and eqge and abbbe in the other) as
going in the same divection, and on viewing ene of the strings in lerms
of fefters and the other in termms of numbers (although there is no good
reason for deing so). All in aff, 'd sav thev’re both prefiv good
ANSWers.

abc/wyz vs. abe/mrrjijy

FThe answer wiz io the problem "abe —= abd, xyz —= 7" is based on
seeing abe and xyz as symmetric predecessor and silccessor Groups
gaing in opposite directions, and on seeing afphabetic—position
summelry between the strings, while the answer mriiiif #o the problem
“abc —> abd, mrrjfi —= 7" is based on seeing abe and mrtiif as groups
of the same Npe going in the same direction, and on viewing one of the
Strings in terms of fetters and the other in ferms of numbers. In

abe and mrriji does not arise. In wvz's case, the idea of viewing one of
abec and xyz in terms of lefters and the other in ferms of numbers does
not arise. Alf in aff, F'd sav they’re both very good answers.

256 Performance of the Model

5.3 Problems with the Model

The sample runs presented in the last section demonstrated most of the capabilities of
Metacat’s self-watching mechanisms, and were chosen because they serve to illustrate
the current strengths of the program. In contrast, this section discusses some of the
weaknesses that remain in the current version of Metacat. The weaknesses to be
discussed here all pertain to various shortcomings of currently existing mechanisms,
rather than to the absence of mechanisms that would be desirable for the program
to have. (The next chapter outlines various capabilities that would be desirable to

incorporate into the program in any future work on the project.)

5.3.1 Implausible rules

One lingering problem with the program is its tendency to create overly complicated
and cumbersome rules for describing string changes. Although almost all of the
rules appearing in the earlier sample runs are quite reasonable (the exception being
perhaps the rule appearing in Panel 6-a), Metacat all too often comes up with rules
that describe string changes in very bizarre ways. Although these rules technically
“work”, they are quite implausible, in the sense that it is very unlikely that a human
would even think of describing the strings in question in such a convoluted fashion
(except perhaps as a joke).

As an example, consider the problem “eeqee=- qeeq; xxixxr= ?”. A natural
way to describe the eeqee = geeq change is with the rule Swap letter-categories and
lengths of all objects in string (assuming that the ee groups are perceived as single
units). Metacat can discover this rule without too much difficulty, but it also typically
comes up with a large number of other, quite outlandish rules for the eeqee = geeq
change when given this problem. A few such rules are shown in Figures 5.4 and 5.5,

along with the answers they yield. (For clarity, the corresponding bottom rules are

5.3 Problems with the Model

257

Decrease length of ke ftmeost group by one
Change letter—caregory of middle growp to e’
Chamge length of middle group 1o two

Change rightmost group to the lerrer ‘g’

Chonge lerer —cotegory of keftmozt group to g

—E2 01 —E2
el ol [

=

A R

Q1 —E2
o) []

X2 i1 X2
X X M X X

Chomge lerrer—cotegory of ke fmost group 1o g’
Decrense length of leftmost growp by one
Change lerter—category of middle group to &’
Tncreose lengeh of maddle group by one

Change length of rightmest group to one

C'sz?ge letter —copegory of rightmost group fo g7

S LS

')

3] [

Figure 5.4: Two convoluted rules created by the program for describing the
eeqee = qeeq change during runs of the problem “eeqee=- qeeq; xxixx=- ?". In
both cases, the translated rule (not shown) is identical to the top rule.

258

Performance of the Model

Q1 E2 Q1
’7q } e (4 q

Chosege letter—capegory of rightrost group fo g’
Decresse length of rightrozt group by one

Swop letter—cotegories and lengthe of kftmost group
and reiddls group

It X2 Q1
HEEREIR

—X2
X X

n

Change letter—category of kftmozt group 2o g7
Degrease longeh of kefnost group by one

Chenge letter—cozegory of maddls group 1o e’
Chemge letter—coregory of rightmost group o g7
Swep lengrhs of mdddle group ond rightmost group

=

P
HiosalE

Figure 5.5: Another pair of convoluted rules created by the program for describing the
eeqee = qeeq change in the problem “eeqee=- qeeq; xxixxr=- ?".

5.3 Problems with the Model 259

not shown, since they are identical to the top rules in each case, due to the absence

of any vertical slippages between eegee and xxirx.)

The first rule shown in Figure 5.4 specifies a rather haphazard mishmash of
changes to individual components of the string eegee. According to this rule, the left-
most ee group and the middle g group independently change their letter-categories to
q and e, respectively. Changes to their lengths, however, are described using different
levels of abstraction: as decreasing by one in the case of ee, and as changing literally
to two in the case of g. In contrast, the rightmost ee group is described as simply
changing into the letter g. The second rule spells out each individual letter-category
and length change explicitly, but does so in an inconsistent manner in the case of the
length changes, since the rightmost ee group’s length is described literally as chang-
ing to one, while the lengths of the other groups are described as either increasing or

decreasing.

The rules shown in Figure 5.5 are even more incongruous, since each one describes
the change to eeqgee partially in terms of swapping attributes of string components,
and partially in terms of individual changes to components. In the case of the second
rule, the changes to the letter-categories of the middle g group and the rightmost ee
group are not even described in the same way as the changes to the groups’ lengths
(i.e., the letter-category changes are described individually, while the length changes

are described as a swap).

Several other “monster rules” typically created by the program during runs of the

problem “eeqgee = geeq; xxirxr=- ?” are shown below:

e Change letter-category of leftmost group to ‘q’
Change length of leftmost group to one
Change letter-category of middle group to ‘e’
Change length of middle group to two
Change rightmost group to the letter ‘q’

260

Performance of the Model

Change leftmost group to the letter ‘q’

Change letter-category of middle group to ‘e’
Increase length of middle group by one

Change letter-category of rightmost group to ‘q’
Decrease length of rightmost group by one

Change letter-category of leftmost group to ‘q’
Decrease length of leftmost group by one
Change letter-category of middle group to ‘e’
Increase length of middle group by one

Change letter-category of rightmost group to ‘q’
Decrease length of rightmost group by one

Change letter-category of leftmost group to ‘q’
Change letter-category of middle group to ‘e’
Change letter-category of rightmost group to ‘q’
Swap lengths of all objects in string

Change letter-category of leftmost group to ‘q’
Change letter-category of middle group to ‘e’
Change letter-category of rightmost group to ‘q’
Decrease length of rightmost group by one

Swap lengths of leftmost group and middle group

Decrease length of leftmost group by one
Increase length of middle group by one
Decrease length of rightmost group by one
Swap letter-categories of all objects in string

Change letter-category of leftmost group to ‘q’
Decrease length of leftmost group by one
Increase length of middle group by one
Decrease length of rightmost group by one

Swap letter-categories of middle group and rightmost group

5.3 Problems with the Model 261

From a purely technical standpoint, each of these rules represents a valid way
of describing the eegee = qeeq change, since each one produces the string geeq as
required, when applied to eegee. People, however, are not likely to perceive eeqgee as
changing in such disjointed and convoluted ways. Indeed, any tendency for a person
to perceive situations in the world in a comparably disconnected and inconsistent
manner would probably constitute grounds for some concern. Unfortunately, the
tendency for Metacat to do so is uncomfortably strong, and consequently represents
a serious shortcoming of the model. Although the program—to its credit—judges
most of these rules to be of low quality, its propensity for creating such unwieldy
rules in the first place is not very psychologically realistic, since most of these rules

would not even occur to people.

In a way, the fact that seemingly simple string changes such as eegee = geeq can
potentially be described in so many different ways attests to the inherent subtlety
and complexity of the letter-string microworld. (In fact, the rules shown above for
eeqee = qeeq represent only a small fraction of the myriad possible ways in which
this particular string change can be described.) Furthermore, the fact that the more
“exotic” ways of describing changes to strings rarely occur to people attests to the
strong tendency of human perception to automatically filter out incoherent ways of
perceiving situations. On the other hand, the potential for perceiving situations in
unorthodox ways plays a critical role in human creativity. Accordingly, for Metacat
to be a more faithful model of human cognition, its “perceptual filters” need to be
strengthened so that it will be less inclined to describe string changes in bizarre ways,

while still retaining the potential for doing so.

Another problem with Metacat’s rule mechanisms is that sometimes two rules
that should really be considered to be equivalent are regarded as distinct by the
program. In particular, this tends to happen in the case of rules that involve letter-

to-group or group-to-letter changes. For example, Figure 5.6 shows two rules that the

262 Performance of the Model

7 /ﬁmq

Increase length of leftmost letter by one
Increase length of middle letter by one
Increase length of rightmost letter by one

((intrinsic ((letter String-Position leftmost))
((object Length successor)
(object Object-Category group)))

(intrinsic ((letter String-Position middle))
((object Length successor)
(object Object-Category group)))

(intrinsic ((letter String-Position rightmost))
((object Length successor)
(object Object-Category group))))

Increase length of leftmost letter by one
Increase length of middle letter by one
Increase length of rightmost letter by one
Change all objects in whole group to groups

((intrinsic ((letter String-Position leftmost))
(object Length successor)))

(intrinsic ((letter String-Position middle))
(object Length successor)))

(intrinsic ((letter String-Position rightmost))

(object Length successor)))

(group String-Position whole))

(

components Object-Category group))))

(intrinsic

AN AN AN AN AN N N N

Figure 5.6: Two structurally-distinct but essentially equivalent rules created by Meta-
cat for describing the change abc= aabbcc. As far as the program is concerned,
these rules represent utterly different ways of looking at abc = aabbcc.

5.3 Problems with the Model 263

program created to describe the string change abe = aabbee. (The internal structure
of each rule appears beneath its English rendition.) The only difference between these
rules is that the first rule describes the letters a, b, and ¢ as changing on a purely
individual basis, while the second involves a mixture of individual changes (in the
case of Length) and collective changes (in the case of Object-Category). However,
the Object-Category changes are essentially redundant, since increasing the length
of a letter automatically implies changing it to a group. In other words, both of
these rules convey essentially the same information, and should thus be regarded
as equivalent. Unfortunately, Metacat’s rule mechanisms are not clever enough to
recognize this type of rule equivalence. As a consequence, the program may end
up generating a slew of identical answers for a problem, all based on structurally
distinct—but essentially equivalent—rules. This problem is further compounded by
the tendency of the program to create many different variations of a single rule,
based on minor permutations of its constituent concepts, as was illustrated by the

proliferation of the eegee = geeq rules shown earlier.

5.3.2 Poor thematic characterizations of answers

Another weakness of the program has to do with its mechanisms for creating descrip-
tions of answers in terms of themes. Sometimes the resulting thematic characteriza-
tions do not accurately reflect the answers they are intended to describe. This may
in turn lead the program to rather peculiar conclusions about the similarities and
differences between various answers.

For instance, consider the problem “aabc=- aabd; iykk—=- ?”. One possible an-
swer is #ll, based on seeing aabc and 33kk as going in the same direction, with the
rightmost kk group of ¢9kk corresponding to the rightmost letter ¢ of aabc. This way
of looking at the problem ignores the fact that since aabe and #jkk contain doubled

letters, they share a strong underlying similarity. Taking this similarity into account

264 Performance of the Model

[®] Temporal Trace

Workspace

(Codaiats rin: T172)

d.::ﬂ".

Lewer Cigy.

S
a a b d

§
@
ENEN
&
"‘i"v\/_\,.,;‘\
|

String Pos. ; 2 || Change letter: gory of g letter to ”

L
aF @
tmosi==tprost Zmmost=>rmeost | Chomge letter vy af v oup 1o ”
group==leber lelter=>group gory of group
Obfect Type

Figure 5.7: The result of a justification run for the answer jll.

suggests the answer hgkk, which arises from viewing aabc and 23kk as “anchored” at
opposite ends by doubled letters, with the letter at the other end changing “by one”
(the ¢ to its successor, and, symmetrically, the % to its predecessor). This answer is

considerably more elegant than #ll.

Unfortunately, Metacat may fail to recognize the very different character of these
two answers, even after successfully making sense of each one individually. As an illus-
tration of this, Figure 5.7 shows the final state of Metacat’s Workspace after a justifi-
cation run for the answer #jll. The final activations of vertical themes in the Theme-
space are also shown. The program includes the vertical String-Position:identity

theme in its answer description for #jll, due to the strong activation of this theme by

5.3 Problems with the Model 265

the vertical bridges aa—% and c—kk.*

On the other hand, Figure 5.8 shows a justification run for the answer hjkk. The
top of the figure shows the Workspace after 520 codelets have run. Up to this point,
the program has not yet noticed the similarity between aa and kk (although it is
flirting with this idea). The vertical String-Position:identity theme is thus highly
active, on account of the a—t and c¢—k bridges. Soon afterwards, however, at time
step 541, these bridges are broken and replaced by a diagonal aa—kk bridge, depriving
the String-Position: identity theme of its support. Consequently, the activation of this
theme begins to diminish, while that of the competing String-Position: opposite theme
begins to rise. Less than 200 codelets later, at time step 730, a symmetric ¢—% bridge
is built, leading quickly to a successful justification of hjkk at time step 733 (see the
bottom of Figure 5.8).

As can be seen from the figure, however, the run ended before the vertical String-
Position: opposite theme could attain dominance over the String-Position: identity
theme. Furthermore, neither the aa—kk bridge’s leftmost=- rightmost slippage nor
the c¢—2 bridge’s rightmost = leftmost slippage appears in the Temporal Trace, be-
cause neither slippage was made under thematic pressure, and neither one involves
an important group (as judged by the program). In general, in the absence of a domi-
nant String-Position theme in the Themespace or an explicit String-Position slippage
in the Trace, Metacat assumes (incorrectly, in this case) that the initial and target
strings map onto each other in a straightforward, parallel fashion. It therefore includes
a String-Position: identity theme in its answer description for hgkk. Consequently,
after justifying hgkk, the program reports being “strongly reminded” of the earlier
answer #jll, since #¢ll’s answer description also includes a String-Position: identity
theme (as well as exactly the same rule). Indeed, when asked to compare these two

answers, the program judges hjkk to be “essentially the same” as #jll (see Figure 5.9).

12Gee section 4.7.1 of Chapter 4 for a discussion of how Metacat creates answer descriptions.

266

Performance of the Model

[#] Vertical Themes

d’{ﬂ".

Letter Cigy.

idom.

String Pos.

an @

Dbfect Type

[#] Temporal Trace

L]

a5 @

[#] Vertical Themes

Letter Cigy.
iden @) || b W
i '
Shing Fos Group Type

Object Type

Workspace

(Codaiets rin: 556)

1,

Tmost=>rmost hmost=rImost
letter=>lekter
Workspace
(Cogeiets rin: 733)
//—/\)
A K —A
a a c == a a b d

SAMESEEAIME

|| Change letter gory of i latter to

Smost=>Imost

LebCley=>Letiliey leler=>leler

Imost==rmost
FRMELIP=TIRIMEGTD
Eroup=rgroup

= hoJ |k k

|| Change letter govy of leftrmost letter to predk

Figure 5.8: A justification run for hgkk resulting in a misleading answer description.

5.3 Problems with the Model 267

fhe answer hikk is essentiafly the same as the answer ifff fo the
probfem "aabe —= aabd, ifkk —= 7" Both answers relv on seeftig two
strings (aabe and jikk in both cases) as going in the same direction.
Furthermore, the change from aabe to aabd is viewed in essentially the
same wav in both cases. Al in aff, I'd say thev're both very good
answers.

Figure 5.9: Metacat’s assessment of the answers hgkk and jll.

Needless to say, this is a rather odd claim to make.

Another amusing case in which Metacat arrives at questionable conclusions about
the relative merits of two answers it has discovered involves the problem “abc = abd;
xyz= ?”. Figure 5.10 shows the Temporal Trace for the final portion of a run in
which the program discovered the answer wyz. The answer description created for
wyz is also shown, including the answer’s associated vertical themes. In this run,
Metacat hit the usual z-snag several times and then negatively clamped the vertical
theme String-Position: identity, which resulted in the creation of a symmetric mapping
between abc and xyz. This subsequently led to the discovery of the answer wyz.
However, the program failed to notice the alphabetic-position symmetry between a
and z (as can be seen from the absence of a corresponding first = last slippage in the
Trace). Thus, no Alphabetic-Position: opposite theme was included in wyz’s answer

description.

In contrast, Figure 5.11 shows the final portion of a different run of the same
problem, in which the answer yyz was found. (This run is actually a continuation
of the run shown in Figure 4.12 of Chapter 4.) In this run, after hitting the snag
several times, the program negatively clamped the vertical String-Position: identity
theme, which, as before, led to the creation of a crosswise mapping between abc and
xyz. However, in this run, the program happened to make the first = last slippage
between a and z, unlike in the previous run. (In fact, this slippage was made twice,

because the a—z bridge got broken and then rebuilt.) Thus the program included an

268 Performance of the Model

[#] Temporal Trace

Tap e | [sv-¢] Listeoig] [prodrpessucgre |

[®] vertical Themes [T]

Answer Description

OPP."PP. %1 b

String Pos. || Group Type '71‘}1‘2 3; || Chenge letter—comegory of rightreost letter to successor ”
eﬁ?;?;g tup
three==three
red=rsuce
etCigy=>LetiCiey
whole=>whole
opp . predgyp=rsRccgp
Direction
b y Z = w y Z

Umost==rmost Smost=r-Imost | Chamge lerver—cotegory of leftmost letter to preds ”
letter==leller Tetter=>lcller goy of L '

Figure 5.10: The answer description created for wyz.

Alphabetic-Position: opposite theme in its answer description for yyz, on account of

the first = last slippages appearing in the Trace.

Figure 5.12 shows Metacat’s resulting commentary on the two answers yyz and
wyz. In this case, as can be seen, the program prefers the answer yyz, on account of
the extra Alphabetic-Position: opposite theme included in yyz’s answer description.
However, this is somewhat ironic, considering that even Copycat strongly prefers the
answer wyz (to which it assigns, on average, a final temperature of 14, as opposed
to 44 for yyz [Mitchell, 1993]), as do many people. Of course, on other runs of
this problem, Metacat, too, may express the opposite preference—as long as the

first = last slippage is made for wyz but not for yyz. (On the other hand, if this

5.3 Problems with the Model 269

[#] Temporal Trace

Clamp [first=siast | | first=>last | |a—£-—c| |x—y—z| [right=sieft | | succgrp=spredgrp | @

[#] Vertical Themes

Answer Description

==
A JEX a2 b ¢ a b d
String Pos. || Group Tipe kLL‘lll‘F 2/; || Chamge letter—category of rightmost latter to successor ”
P i
TertCigp-sLetiCigy
rigm:ﬂeﬁ

Eroup=rgroup

w @ = @

5,
X y z

1 [

ret=rdast Samost=xImost | Change latter o letrer to or ”
e ost==rmost letter==lelter | oy of

letber==Teler

Figure 5.11: The answer description created for yyz.

slippage happens to be made for both answers, then the program proclaims wyz and

yyz to be “essentially the same”.)

In any case, this example underscores both the fragility and the shallowness of
Metacat’s insight into its answers. To be sure, Metacat has more insight into its
answers than does Copycat, because it can at least explicitly point to certain ideas
as being of particular importance, such as the idea of alphabetic-position symmetry
in the present example. But this insight depends critically on the program’s having
included the appropriate themes in its descriptions of its answers. Furthermore, even
if the appropriate themes are included, the program may still fail to recognize many

important aspects of an answer. (For instance, nowhere in its commentary on yyz

270 Performance of the Model

Fhe answer we fo the problem "abe —= abd, xyz —= P" is based in part
on seeing alphabetic—position symmetry betweern abc and xye. In
caontrast, in the case of the answer wiz, the idea of seeing
alphabetic—position svmmetry between ahe and xye does not arise. All
in &ll, 'd say we is the better answer, since it is based on a Hcher set of
ideas.

Figure 5.12: Metacat’s assessment of the answers yyz and wyz.

does Metacat point out the fundamental inconsistency of seeing abc and xyz as
alphabetically-symmetric opposites while still changing the letter & to its successor,
instead of to its predecessor.)

Nevertheless, the fact that the program can—at least some of the time—perceive
quite subtle parallels and distinctions between different analogies represents a sig-
nificant step beyond the perceptual abilities of Copycat, even though, clearly, much
room for improvement still exists. All in all, I'd say Metacat is the better program,

since it is based on a richer set of mechanisms.

CHAPTER SIX

Conclusion

This chapter summarizes the work on the Metacat project presented in this disser-
tation, and discusses possible directions in which future work on the project might

proceed. The first section reviews the major ideas presented in each chapter.

6.1 Summary

Chapter 1 provided background on the Copycat model of analogy-making and high-
level perception, out of which the Metacat project grew. Since Metacat is an extension
of Copycat, this background was needed in order to understand the subsequent work
on Metacat presented in later chapters. The chapter began with a general discus-
sion of the central ideas motivating the development of Copycat, including the notion
of high-level perception (i.e., the ability to perceive situations in terms of abstract
concepts), and the notion of conceptual fluidity (i.e., the highly flexible and context-
sensitive nature of these concepts), which gives rise automatically to an ability to
perceive analogies through the mechanism of conceptual slippage. Copycat’s idealized
letter-string microdomain was then described, and the crucial idea of the domain’s
universality was stressed—that is, the fact that the program treats letter-strings sim-
ply as abstract configurations of objects and relationships, without knowing anything

about letters per se.

271

272 Conclusion

This was followed by a discussion of the principal components of Copycat’s archi-
tecture, including the Workspace (where the letter-strings reside and where perceptual
activity consequently takes place), the Slipnet (where the program’s repertoire of con-
cepts about its letter-string microworld are stored), and the Coderack (where codelets
wait to be chosen to run). The important role played by temperature in guiding
the program’s stochastic processing mechanisms was also discussed. Together, these
mechanisms give rise to the parallel terraced scan, which allows Copycat to simulta-
neously explore many potential pathways through its search space at different speeds,

according to each pathway’s estimated degree of promise.

Chapter 2 put the work on Copycat into perspective by first describing several
other projects closely related to Copycat, all of which use the same general stochastic
codelet architecture. This was followed by a discussion of Copycat’s principal weak-
nesses as a realistic model of human cognition. Several weaknesses were identified,
most, of which stem from the program’s lack of insight into what it is doing when it
solves analogy problems—on account of its inability to explicitly remember anything

that happens during a run.

The discussion of Copycat’s weaknesses was followed by an outline of the objectives
of the Metacat project, most of which are concerned with remedying the weaknesses
just described. These objectives include making the program sensitive to patterns
in its own processing (especially to repetitive patterns of behavior) by developing
mechanisms to support an in-depth capacity for self-watching; giving the program
the ability to remember its answers and to be reminded of other answers that it
has encountered before; enriching the information associated with answers so that
they can be compared and contrasted in an insightful manner; giving the program
the ability to make sense of an answer provided to it by “working backwards”; and

relaxing Copycat’s rigid constraints on rules so that a wider class of analogy problems

can be handled.

6.1 Summary 273

The main architectural components of Metacat were described next. The three

new components of the architecture (not present in Copycat) are summarized below:

e The Themespace contains structures that explicitly represent ideas that play a
key role in the program’s current interpretation of an analogy problem. These
structures, called themes, are composed of Slipnet concepts, and have time-
varying activation levels that change as the program explores different ways of
looking at its letter-strings. Under certain conditions, themes can exert strong
top-down pressure on Metacat’s stochastic processing mechanisms, forcing the
program to look at the strings in a particular way. Furthermore, themes serve
as the basis for comparing and contrasting different answers, since they are the

principal constituents of Metacat’s abstract descriptions of its answers.

e The Temporal Trace contains structures that explicitly represent important pro-
cessing events that occur during a run. Such events include the creation of
important Workspace structures, the activation of deep Slipnet concepts, the
occurrence of slippages, the discovery of new answers, running into snags, and

explicitly focusing on particular ideas.

e The Episodic Memory stores abstract descriptions of answers, and consequently

serves as the program’s long-term repository for its problem-solving experience.

Three extended examples were then presented, in order to more clearly illustrate
the ways in which these architectural components enable Metacat to watch (and
to respond to) its own behavior, to “work backwards” from a given answer to an
interpretation that makes sense for the answer, and to compare and contrast different
answers on the basis of themes. Finally, Metacat’s relation to other work in AI and
cognitive science was discussed.

Chapter 3 presented an in-depth discussion of Metacat’s generalized rule-building

mechanisms, and gave many examples of rules that the program is now able to build

274 Conclusion

(but which were not possible in Copycat). The internal structure of rules was also
described, as well as the three rule-quality measures of uniformity, abstractness, and
succinctness. This was followed by a detailed description of the program’s method
for creating new rules from the bridges between strings, in which regularities among
the concept-mappings underlying the bridges are transformed into a set of “intrinsic”
and “extrinsic” rule clauses that describe the differences between the strings. The
nondeterministic nature of Metacat’s rule-translation process was described next, to-
gether with the notion of coattail slippages—whereby a slippage involving a particular
relationship between one pair of concepts may occasionally induce slippages involving
the same relationship between other pairs of concepts. A few other refinements to

mechanisms inherited from Copycat were also discussed.

Chapter 4—the heart of the dissertation—began by describing the Themespace in
detail, and the ways in which themes can control the high-level behavior of Metacat
by exerting strong top-down pressure on the program’s stochastic processing mecha-
nisms. Various examples of patterns were presented next, including theme-patterns,
concept-patterns, and codelet-patterns. The following section illustrated how top-down
pressure exerted by clamping different types of patterns enables the program to size
up answers provided to it, by “working backwards” in justify mode. This was followed
by a description of the Temporal Trace and the types of processing events that can

be recorded therein.

The next section tied together themes, pattern-clamping, and the Temporal Trace
by explaining how these mechanisms make it possible for Metacat to monitor its own
behavior—at a highly chunked level of description—and to respond to this behavior
in appropriate ways, such as by breaking out of unproductive, mindlessly repetitive
patterns of behavior via jootsing. Next, examples of the program’s ability to describe
its answers and its behavior in English were presented. At the same time, however,

the canned nature of much of the program’s linguistic output was carefully stressed.

6.2 Contributions and Future Work 275

The last section discussed Metacat’s Episodic Memory. The nature of the de-
scriptions created by the program to characterize its answers—as well as the snags
that it encounters in searching for answers—was first described. These descriptions,
stored in memory, enable the program to recognize subtle parallels and distinctions
between different answers on the basis of the themes included in the descriptions. A
detailed example showing how Metacat constructs English-language summaries of the
similarities and differences between answers was then presented. Finally, the ability
of the program to be reminded of one answer by another according to the similarity
of the themes associated with the answers was discussed.

Chapter 5 presented in detail a number of complete sample runs of Metacat on
several families of analogy problems, in order to demonstrate more clearly the mech-
anisms discussed in Chapters 3 and 4. In addition, many examples were given of the
output generated by the program when comparing different analogies from these fam-
ilies. In contrast, the last section of the chapter presented examples that illustrated
a number of weaknesses of the current version of the program. These weaknesses
include the tendency of Metacat to create overly-complicated and implausible rules
for describing string changes, as well as its failure from time to time to characterize
answers in terms of the appropriate themes, which may lead the program to unwar-

ranted conclusions about the similarities or differences between answers.

6.2 Contributions and Future Work

The research presented in this dissertation represents another small step down a very
long road leading toward a deeper understanding of the nature of concepts, and of
the pivotal role they play in human cognition. As with Metacat’s forerunners along
this road, the bedrock assumption underlying this work is that only by understanding
the nature of concepts in a genuine and deep way will other aspects of cognition—

including analogy, memory organization, reminding, and self-awareness—come within

276 Conclusion

reach of understanding. Indeed, it is fair to say that understanding concepts is the

central problem of cognitive science and artificial intelligence.

In particular, this focus on concepts is what most clearly distinguishes the ap-
proach to analogy taken by Metacat and Copycat from approaches developed by
other researchers—such as the ACME model of Holyoak and Thagard [Holyoak and
Thagard, 1989], the SME model of Falkenhainer, Forbus, and Gentner [Falkenhainer
et al., 1990], or the derivational analogy approach of Carbonell [Carbonell, 1986].
Likewise, Metacat’s approach to the issues of memory organization and reminding
differs from other approaches—such as the ARCS model of Holyoak and Thagard
[Thagard et al., 1990], the MAC/FAC model of Forbus and Gentner [Forbus et al.,
1995], or the many CBR models of memory and learning descended from Schank’s
theories of memory organization [Leake, 1996; Schank, 1982]—on account of the for-

mer’s commitment to taking concepts seriously.

Copycat, too, takes concepts seriously, but whereas Copycat is concerned with
elucidating the ways in which concepts interact with the perception of similarity be-
tween potentially disparate situations, Metacat is concerned with the ways in which
concepts interact with self-perception. Both types of perception are crucial to cog-
nition, but the goal of a full accounting of them both remains a very distant goal
indeed. This goal, however, cannot be reached without first coming to grips with

concepts.

Another crucial difference between Metacat and the other approaches mentioned
above (and, for that matter, the majority of approaches being pursued in cogni-
tive modeling today) is Metacat’s commitment to modeling concepts within a mi-
crodomain. Accordingly, a second bedrock assumption of Metacat (and of Metacat’s
predecessors) is the belief that only by “starting small” will it be possible to penetrate

the deep mysteries surrounding the notion of reference and the meaning of symbols

6.2 Contributions and Future Work 277

within computational systems—and, in particular, the notion of self-reference. Grap-
pling with these issues is best done in the context of an idealized, “frictionless” world
free of the confusing and obscuring clutter of complicated “real-world” domains. In
this regard, work on Metacat can be viewed as following in the tradition of earlier Al
projects (mostly from the 1970s) that took the idea of microdomains to heart, such
as Terry Winograd’s SHRDLU program, which conversed with a human interlocutor
in impressively sophisticated English about a simulated world of toy blocks [Wino-
grad, 1972], and Anthony Davey’s Proteus program, which generated commentaries
on Tic-Tac-Toe games played against a human opponent in equally impressive and
sophisticated English [Davey, 1978|.

As far as possible future work on Metacat is concerned, there are quite a number
of directions in which research on this project could conceivably proceed. A few
examples of extensions to the program that could be made are discussed below, in

roughly increasing order of complexity:!

e A right-hand side vertical mapping could be constructed between the modified
string and the answer string when the program runs in justify mode, in ad-
dition to the usual left-hand side mapping between the initial string and the
target string. This would reflect more closely how people make sense of answers

provided to them. For example, when people are shown the answers below,

abc = abd rst = rsu

Tyz = dyz TYz = uYz

they instantly notice, in the case of the first problem, the two salient d’s in
abd and dyz, or, in the case of the second problem, the two salient »’s in rsu

and wyz. This immediately “gives away the game” by suggesting a crosswise

!Some of these extensions were suggested in [Mitchell, 1990], but bear repeating here.

278

Conclusion

mapping between these strings—and, likewise, between abe and xyz (or rst
and xyz). In fact, the ability to make a right-hand side vertical mapping was
first suggested in the original Copycat proposal [Hofstadter, 1984al, long before
Copycat had been implemented. Even now, this particular idea still awaits

implementation.

Groups of arbitrary letters could be constructed on the basis of spatial prox-
imity (e.g., the group zem in the string aaaxzemttt, or the three mab groups
in mxzbmaxbmab), or on the basis of symmetry (e.g., the whole-string group
arrgggrra). In a similar fashion, groups could be based on more complex
types of bonds between letters, such as simultaneous letter-category and group-
length bonds in rssttt; bonds between spatially non-adjacent letters that to-
gether form a figure/ground pattern (e.g., the letters p, g, and 7 in pzqgxrz); or
bonds based on new concepts formed from the composition of existing concepts

(e.g., “double successorship” bonds within ace).

More complex descriptions of objects within strings could be made, such as “the
rightmost letter of the leftmost group” (e.g., the rightmost a of aaabbbcce),
“the rightmost letters of all objects in the string” (e.g., the letters n, h, and ¢
in Imnfghopq), “the third letter from the leftmost letter of the string” (e.g.,
the ¢ in abedef), “the next-to-leftmost letter” (e.g., the 7 in igklm), or “the

next-to-last letter (in the alphabet)” (e.g., the y in wzy).

The information stored in answer descriptions could be expanded to include
temporal information about the overall structure of a run. In other words,
in addition to storing themes characterizing the essential ideas underlying an
answer, answer descriptions could include information about the pathway taken
in discovering the answer. For example, the answer description for wyz to the

problem “abc= abd; xyz= ?” might include information to the effect that “I

6.2 Contributions and Future Work 279

first hit a snag, but then restructured my view and saw a far deeper similarity
between abc and xyz”, or, for the answers mrrkkk and mrrjjjy to the problem
“abc = abd; mrryyy= 27, “I first found an answer based on little structure,
but then noticed a pattern, explored it more deeply, and discovered a hidden
layer of structure that revealed a much stronger degree of similarity between abc
and mrryyy”. This type of extension would make Metacat’s Episodic Memory
much more episodic than it currently is. Accordingly, extending the program

in this way should be given high priority in any future work on this project.

e Another important way in which answer descriptions could be enriched would
be to relax the restrictions currently imposed on the types of themes that can
be included in them. As was mentioned in section 4.7.1 of Chapter 4, the cur-
rent version of the program allows only themes of the category String-Position,
Alphabetic-Position, Direction, Group-Type, or Bond-Facet to be included in
answer descriptions (and only non-identity themes in the case of Bond-Facet).
These restrictions were imposed in order to improve Metacat’s ability to sensibly
characterize its answers. (For example, in the problem “abec=- abd; ijk= 27,
allowing Letter-Category themes to be included in answer descriptions would
likely mislead the program into regarding the letter-category differences be-
tween abc and ijk as being a key idea behind the answer g5l.) In a way, the
restrictions currently placed on Metacat’s answer descriptions are akin to the
restrictions that were placed on rules in Copycat, and should thus be viewed as

a temporary interim solution, which should eventually be generalized.

e More cognitively plausible mechanisms for memory indexing and retrieval are
needed. In the current version of the program, when a new answer is discovered,
the newly-created answer description is compared with all other answer descrip-

tions stored in memory, in order to determine the new activation levels of the

280

Conclusion

stored descriptions—and hence which answers will be recalled by the program
as a result of having found the new answer. This approach is adequate if only a
few answer descriptions exist in memory, but very quickly breaks down if many
descriptions exist. In other words, the current mechanisms for memory retrieval
and reminding in Metacat do not scale up, and are thus unsatisfactory. Accord-
ingly, for Metacat to develop into a psychologically realistic model of memory
and reminding, this issue must be squarely addressed, and should thus be given

high priority in any future work on the project.

Concepts about analogy-making in general in the letter-string microworld could
be given to the program. This would significantly increase Metacat’s degree of
“meta-ness”, since such concepts would provide the program with a much richer
conceptual vocabulary for describing and comparing analogies. For example,
such concepts might include the idea of bridge, mapping, rule, theme, slippage,
snag, pressure, answer, pattern, and the concept of concept itself, to name but

a few.

In particular, including meta-level concepts about the process of analogy-making

itself would allow Metacat to characterize entire analogy problems (not just individual

answers to problems) in terms of “the issues that they are about”, and would thereby

allow the program to notice connections and distinctions between analogy problems

as a whole. For example, the problem “abc=- abd; xyz= ?”, in its essence, is about

being forced to reinterpret a situation in response to an unexpected snag, which may

then lead to a kind of paradigm shift that results in the discovery of a far more elegant

way of interpreting the situation. Likewise, the problem “eqe=- geq; abbbc = ?” can

also be viewed in a very similar way. Giving Metacat the ability to appreciate such

abstract similarities between analogy problems as a whole would be an excellent topic

for future research.

6.2 Contributions and Future Work 281

Once Metacat is capable of looking at a particular problem and identifying the
issues that lie at its core (i.e., the ideas that motivated the invention of the problem
in the first place), the next major step would be to imbue the program with the
ability to take an interesting idea for a problem (perhaps supplied by a human), and
proceed to invent one or more problems on its own that are “about” that idea. Of
course, it would also be crucial to give the program itself the ability to come up with
its own “interesting ideas”. To do this, Metacat would need to have even-more-meta-
level types of concepts, such as the notion of “decoy answer” (i.e., an answer that
catches the eye quickly but that has little depth) versus “elegant hidden answer”
(i.e., an answer whose qualities are good in many ways, but that does not jump
to the eye at once). These two concepts actually are intertwined, in that one may
construct a problem deliberately to have both a decoy answer and an elegant hidden
answer, as in the problem “apc=- abc; opc=- ?” discussed in Chapter 2 on page 50.
Explicit representation of these kinds of very meta-level concepts would be needed
in a program that could make up high-quality analogy problems on its own. These
kinds of concepts are also deeply related to the issue of humor.

Finally, in conclusion, it is interesting to note that concurrent work by John
Rehling and Douglas Hofstadter on the Letter Spirit project, described briefly in
section 2.1.4 of Chapter 2, seems to be converging, in many ways, on the same set of
fundamental issues at the heart of the Metacat project.

As will be recalled, Letter Spirit is concerned with creative artistic design and
the perception of visual style in an idealized microworld of letterforms (called gridlet-
ters). Recent development of the program has involved incorporating architectural
components that, in particular, share much of the flavor of Metacat’s Themespace
[Rehling, 1997; Rehling, 1999]. Briefly, the main components of Letter Spirit include
the Examiner, which classifies a given letterform as one of the 26 possible lowercase
letters of the alphabet; the Adjudicator, which uses the output of the Examiner—
together with the letterform itself—both to judge how well the letterform fits into the

282 Conclusion

particular letter-category assigned by the Examiner, and to determine which stylistic
aspects of the letterform are the most salient; and the Drafter, which uses the stylis-
tic information extracted by the Adjudicator to create new letterforms representing
different letters of the alphabet drawn in the same style as the original letter. In turn,
the new letterforms created by the program are themselves subject to examination
and evaluation, in terms of letter-category quality and style, by the program itself.

The abstract stylistic information about letterforms, extracted by the Adjudica-
tor, is explicitly represented by structures called stylistic properties, which are stored
in Letter Spirit’s Thematic Focus. In general, these structures exert strong top-down
pressure on processing, guiding the program in its creation of new letterforms of a
particular style, which may in turn cause new stylistic properties to be noticed and
explicitly represented in the Thematic Focus. Stylistic properties are thus, in some
sense, analogous to Metacat’s themes, since they characterize gridletters (i.e., the
program’s concrete perceptual data) at an abstract level of description, and can in
turn influence the behavior of the program as it watches and responds to its own
activity. Furthermore, the ongoing development of Letter Spirit has brought out, in
very clear ways, the central and indispensable role played by self-watching in creativ-
ity. It will be interesting to see whether (or to what extent) future FARG work on
Letter Spirit and Metacat continues to converge on a common set of fundamental
ideas.

In summary, the work on Metacat described in this dissertation has attempted
to address the long-term goals set forth in [Hofstadter and FARG, 1995, Chapter 7]
for the further development of the Copycat project. To some extent, this effort has
succeeded, although—to be sure—in a far-from-complete way. A great deal of work
remains to be done. It is my hope that the work presented here will serve as another
stepping stone along the path toward a deeper understanding of human cognition in

all of its profound subtlety and complexity.

APPENDIX: RANDOM NUMBER SEEDS

This appendix lists the random number seeds used in creating the figures and sample
runs of Metacat presented in Chapter 5. In each case, the actual expression that

begins the run is given.

Sample runs (section 5.2)

Run 1: (mcat abc abd mrrjjj mrrjjjj 1092119323)
Run 2: (mcat xqc xqd mrrjjj mrrkkk 1248075611)
Run 3: (mcat rst rsu xyz uyz 2330176791)

Run 4: (mcat abc abd xyz dyz 2836825623)

Run 5: (mcat xqc xqd mrrjjj mrrjjjj 3729474543)
Run 6: (mcat ege geq abbbc aaabccc 789090523)
Run 7: (mcat abc abd xyz 3852097033)

Run 8: (mcat eqe geq abbbc 3557912874)

Answer comparison and reminding (section 5.2.3)

abc/xzyd: (mcat abc abd xyz xyd 1760747975)
abc/wyz: (mcat abc abd xyz wyz 3100511611)
abc/dyz: (mcat abc abd xyz dyz 2107869027)
rst/xyu: (mcat rst rsu xyz xyu 939480183)
rst/wyz: (mcat rst rsu xyz wyz 720286361)
rst/uyz: (mcat rst rsu xyz uyz 2330176791)

283

284 Appendix: Random Number Seeds
abc/mrrkkk: (mcat abc abd mrrjjj mrrkkk 4211806334)

abc/mrrijjj: (mcat abc abd mrrjjj mrrjjjj 1092119323)

xqc/mrrkkk: (mcat xqc xqd mrrjjj mrrkkk 1248075611)

xgc/mrrijjj: (mcat xqc xqd mrrjjj mrrjjjj 3729474543)

eqe/baaab: (mcat ege geq abbba baaab 3635369418)

eqge/aaabaaa: (mcat eqe qeq abbba aaabaaa 4209674874)

eqge/ qeeeq: (mcat eqge geq abbbc 2302461154)

eqge/aaabcee: (mcat eqe geq abbbc aaabccc 789090523)

Implausible rules

Figure 5.4 (top):
Figure 5.4

top):

(
(
Figure 5.5 (
(

bottom):

Figure 5.5 (bottom):

(section 5.3.1)

(mcat eeqee geeq xxixx 698282038)

(mcat eeqee geeq xxixx 175910650)

(mcat eeqee geeq xxixx 698282038)

(mcat eeqee qeeq xxixx 4109591222)

Poor thematic characterizations (section 5.3.2)

Figure 5.7:
Figure 5.8:
Figure 5.10:
Figure 5.11:

(mcat aabc aabd ijkk ij1l 2351730219)

(mcat aabc aabd ijkk hjkk 1810079903)

(mcat abc abd xyz 3009318743)

(mcat abc abd xyz 2006188493)

BIBLIOGRAPHY

Boden, M. A. (1991). The Creative Mind: Myths and Mechanisms. Basic Books, New
York.

Carbonell, J. (1986). Derivational analogy: A theory of reconstructive problem solving
and expertise acquisition. In Michalski, R., Carbonell, J., and Mitchell, T.,
editors, Machine Learning: An Artificial Intelligence Approach, Volume II, pages
371-392. Morgan Kaufmann, San Francisco.

Chalmers, D. J., French, R. M., and Hofstadter, D. R. (1992). High-level perception,
representation, and analogy: A critique of artificial intelligence methodology.
Journal of Experimental and Theoretical Artificial Intelligence, 4(3):185-211.

Chi, M., Bassok, M., Lewis, M., Reimann, P., and Glaser, R. (1989). Self-
explanations: How students study and use examples in learning to solve prob-
lems. Cognitive Science, 13:145-182.

Chi, M. T. H., de Leeuw, N., Chiu, M.-H., and LaVancher, C. (1994). Eliciting
self-explanations improves understanding. Cognitive Science, 18:439-477.

Davey, A. (1978). Discourse Production. Edinburgh University Press, Edinburgh.

Dybvig, R. K. (1996). The Scheme Programming Language. Prentice-Hall, second
edition.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R. (1980). The
Hearsay II speech-understanding system: Integrating knowledge to resolve un-
certainty. Computing Surveys, 12(2):213-253.

Evans, T. G. (1968). A program for the solution of a class of geometric-analogy intel-
ligence test questions. In Minsky, M., editor, Semantic Information Processing,

pages 271-353. MIT Press, Cambridge, MA.

Falkenhainer, B., Forbus, K. D., and Gentner, D. (1990). The structure-mapping
engine. Artificial Intelligence, 41(1):1-63.

285

286 BIBLIOGRAPHY

Forbus, K. D., Ferguson, R. W., and Gentner, D. (1994). Incremental structure-
mapping. In Proceedings of the Sixteenth Annual Conference of the Cognitive
Science Society, pages 313-318. Lawrence Erlbaum Associates.

Forbus, K. D., Gentner, D., and Law, K. (1995). MAC/FAC: A model of similarity-
based retrieval. Cognitive Science, 19:141-205.

Forbus, K. D., Gentner, D., Markman, A. B., and Ferguson, R. W. (1998). Anal-
ogy just looks like high-level perception: Why a domain-general approach to

analogical mapping is right. Journal of Erperimental and Theoretical Artificial
Intelligence, 10(2):231-257.

Fox, S. and Leake, D. B. (1994). Using introspective reasoning to guide index refine-
ment in case-based reasoning. In Proceedings of the Sixteenth Annual Conference
of the Cognitive Science Society, pages 324-329. Lawrence Erlbaum Associates.

French, R. M. (1995). The Subtlety of Sameness: A Theory and Computer Model of
Analogy-Making. MIT Press/Bradford Books, Cambridge, MA.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cog-
nitive Science, 7(2):155-170.

Gentner, D. (1989). Mechanisms of analogical learning. In Vosniadou, S. and Ortony,
A, editors, Similarity and Analogical Reasoning, pages 199-241. Cambridge Uni-
versity Press, Cambridge.

Goldstone, R., Medin, D., and Gentner, D. (1991). Relational similarity and the non-
independence of features in similarity judgments. Cognitive Psychology, 23:222—
262.

Hofstadter, D. R. (1979). Gddel, Escher, Bach: an Eternal Golden Braid. Basic
Books, New York.

Hofstadter, D. R. (1983). The architecture of Jumbo. In Michalski, R., Carbonell,
J., and Mitchell, T., editors, Proceedings of the International Machine Learning
Workshop, pages 161-170, Urbana, IL.

Hofstadter, D. R. (1984a). The Copycat project: An experiment in nondeterminism
and creative analogies. AI Memo 755, MIT Artificial Intelligence Laboratory.

Hofstadter, D. R. (1984b). Simple and not-so-simple analogies in the Copycat domain.
Technical Report 9, Center for Research on Concepts and Cognition, Indiana
University, Bloomington.

BIBLIOGRAPHY 287

Hofstadter, D. R. (1985a). Analogies and roles in human and machine thinking. In
Metamagical Themas, chapter 24, pages 547-603. Basic Books, New York.

Hofstadter, D. R. (1985b). On the seeming paradox of mechanizing creativity. In
Metamagical Themas, chapter 23, pages 526—546. Basic Books, New York.

Hofstadter, D. R. (1985c). Waking up from the Boolean dream: Subcognition as
computation. In Metamagical Themas, chapter 26, pages 631-665. Basic Books,
New York.

Hofstadter, D. R. (1987). Introduction to the Letter Spirit project and to the idea of
“gridfonts”. Technical Report 17, Center for Research on Concepts and Cogni-
tion, Indiana University, Bloomington.

Hofstadter, D. R. (1992). A short compendium of me-too’s and related phenomena:
Mental fluidity as revealed in everyday conversation. Technical Report 57, Center
for Research on Concepts and Cognition, Indiana University, Bloomington.

Hofstadter, D. R. and FARG (1995). Fluid Concepts and Creative Analogies: Com-
puter Models of the Fundamental Mechanisms of Thought. Basic Books, New
York. Co-authored with members of the Fluid Analogies Research Group.

Hofstadter, D. R. and French, R. M. (1992). Probing the emergent behavior of
Tabletop, an architecture uniting high-level perception with analogy-making.
In Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society. Lawrence Erlbaum Associates.

Holyoak, K., Gentner, D., and Kokinov, B., editors (1998). Advances in Analogy
Research: Integration of Theory and Data from the Cognitive, Computational,
and Neural Sciences, New Bulgarian University Series in Cognitive Science, Sofia,
Bulgaria.

Holyoak, K. J. and Thagard, P. (1989). Analogical mapping by constraint satisfaction.
Cognitive Science, 13(3):295-355.

Holyoak, K. J. and Thagard, P. (1995). Mental Leaps: Analogy in Creative Thought.
MIT Press/Bradford Books, Cambridge, MA.

Koestler, A. (1964). The Act of Creation. Macmillan, New York.

Kokinov, B. N. (1994a). The context-sensitive cognitive architecture DUAL. In
Proceedings of the Sizteenth Annual Conference of the Cognitive Science Society.
Lawrence Erlbaum Associates.

288 BIBLIOGRAPHY

Kokinov, B. N. (1994b). A hybrid model of reasoning by analogy. In Holyoak, K. J.
and Barnden, J. A., editors, Advances in Connectionist and Neural Computation
Theory, Volume 2: Analogical Connections, pages 247-318. Ablex, Norwood, NJ.

Kokinov, B. N., Nikolov, V., and Petrov, A. (1996). Dynamics of emergent com-
putation in DUAL. In Ramsay, A., editor, Artificial Intelligence: Methodology,
Systems, Applications. I0S Press, Amsterdam.

Kolodner, J. (1993). Case-Based Reasoning. Morgan Kaufmann, San Francisco.

Lange, T. E. and Wharton, C. M. (1994). REMIND: Retrieval from episodic memory
by inferencing and disambiguation. In Barnden, J. A. and Holyoak, K. J., editors,
Advances in Connectionist and Neural Computation Theory, Volume 3: Analogy,
Metaphor, and Reminding, pages 29-94. Ablex, Norwood, NJ.

Law, K., Forbus, K. D., and Gentner, D. (1994). Simulating similarity-based retrieval:
A comparison of ARCS and MAC/FAC. In Proceedings of the Sizteenth Annual
Conference of the Cognitive Science Society, pages 543-548. Lawrence Erlbaum
Associates.

Leake, D. B., editor (1996). Case-Based Reasoning: Ezperiences, Lessons, € Future
Directions. MIT Press/AAAI Press, Cambridge, MA.

McGraw, Jr., G. E. (1995). Letter Spirit (Part One): Emergent High-Level Perception
of Letters Using Fluid Concepts. PhD thesis, Indiana University, Bloomington,
IN.

Meredith, M. J. (1986). Seek-Whence: A Model of Pattern Perception. PhD thesis,
Indiana University, Bloomington, IN. Also available as Technical Report 214,
Computer Science Department, Indiana University.

Meredith, M. J. (1991). Data modeling: A process for pattern induction. Journal of
Experimental and Theoretical Artificial Intelligence, 3:43—68.

Mitchell, M. (1990). Copycat: A Computer Model of High-Level Perception and Con-
ceptual Slippage in Analogy-Making. PhD thesis, University of Michigan, Ann
Arbor, MI.

Mitchell, M. (1993). Analogy-making as Perception. MIT Press/Bradford Books,
Cambridge, MA.

Mitchell, M. and Hofstadter, D. R. (1990). The emergence of understanding in a
computer model of concepts and analogy-making. Physica D, 42:322-334.

BIBLIOGRAPHY 289

Oehlmann, R. (1995). Meta-cognitive attention: Reasoning about strategy selection.
In Proceedings of the Seventeenth Annual Conference of the Cognitive Science
Society, pages 66-71. Lawrence Erlbaum Associates.

Oehlmann, R., Edwards, P., and Sleeman, D. (1994). Changing the viewpoint: Re-
indexing by introspective questioning. In Proceedings of the Sixteenth Annual
Conference of the Cognitive Science Society, pages 675-680. Lawrence Erlbaum
Associates.

Pirolli, P. and Bielaczyc, K. (1989). Empirical analyses of self-explanation and transfer
in learning to program. In Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society, pages 450—-457. Lawrence Erlbaum Associates.

Poincaré, H. (1921). The Foundations of Science: Science and Hypothesis, The Value
of Science, Science and Method. The Science Press, New York.

Pélya, G. (1957). How to Solve It. Princeton University Press, Princeton, NJ.

Ram, A. and Cox, M. (1994). Introspective reasoning using meta-explanations for
multistrategy learning. In Michalski, R. and Tecuci, G., editors, Machine Learn-
ing: A Multistrategy Approach, 4, pages 348-377. Morgan Kaufmann, San Fran-
cisco.

Rehling, J. (1997). Automating creative design in a visual domain. In Veale, T.,
editor, Computational Models of Creative Cognition. Proceedings of the Mind I
workshop held at Dublin City University, Ireland, September 1997.

Rehling, J. (1999). Letter Spirit (Part Two): Automating Creative Design in a Visual
Domain. PhD thesis, Indiana University, Bloomington. (Forthcoming).

Riesbeck, C. K. and Schank, R. C. (1989). Inside Case-Based Reasoning. Lawrence
Erlbaum Associates, Hillsdale, NJ.

Sandoval, W. A., Trafton, J. G., and Reiser, B. J. (1995). The effects of self-
explanation on studying examples and solving problems. In Proceedings of the
Seventeenth Annual Conference of the Cognitive Science Society, pages 253-258.
Lawrence Erlbaum Associates.

Schank, R. and Abelson, R. (1977). Scripts, Plans, Goals, and Understanding.
Lawrence Erlbaum Associates, Hillsdale, NJ.

Schank, R. C. (1975). Conceptual Information Processing. North Holland/American
Elsevier, Amsterdam.

290 BIBLIOGRAPHY

Schank, R. C. (1982). Dynamic Memory: A Theory of Learning in Computers and
People. Cambridge University Press, Cambridge, England.

Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling with
an unknown distance function. Psychometrika, 27:125-140.

Smith, E. E. and Medin, D. L. (1981). Categories and Concepts. Harvard University
Press, Cambridge, MA.

Thagard, P. (1989). Explanatory coherence. Behavioral and Brain Sciences,
12(3):435-467.

Thagard, P., Holyoak, K., Nelson, G., and Gochfield, D. (1990). Analog retrieval by
constraint satisfaction. Artificial Intelligence, 46(3):259-310.

Tversky, A. (1977). Features of similarity. Psychological Review, 84:327-52.

VanLehn, K., Jones, R., and Chi, M. (1992). A model of the self-explanation effect.
The Journal of the Learning Sciences, 2(1):1-59.

VanLehn, K. and Jones, R. M. (1993). What mediates the self-explanation effect?
knowledge gaps, schemas, or analogies? In Proceedings of the Fifteenth Annual
Conference of the Cognitive Science Society, pages 1034-1039. Lawrence Erlbaum
Associates.

Veloso, M. (1994). Planning and Learning by Analogical Reasoning. Springer-Verlag,
Berlin.

Veloso, M. M. and Carbonell, J. G. (1993). Derivational analogy in PRODIGY:
Automating case acquisition, storage and utilisation. Machine Learning, 10:249—
278.

Weizenbaum, J. (1976). Computer Power and Human Reason: From Judgment to
Calculation. Freeman, San Francisco.

Winograd, T. A. (1972). Understanding Natural Language. Academic Press, New
York.

Zuckerman, J. (1992a). SchemeSGL: A Symbolic Graphics Language for Chez Scheme.
Motorola, Inc., second edition.

Zuckerman, J. (1992b). The SchemeXM Manual. Motorola, Inc., second edition.

